

ICOM IC-745 160-10 MTR 100W XCVR / 0.1-30MHz RCVR

The IC-745 represents a major breakthrough in the ham Industry.... a full featured HF base station transceiver with a combination of standard features found on no other transceiver in its price range.

Compare these exceptional standard features:

- $100 \mathrm{KHz}-30 \mathrm{MHz}$ Receiver
- 16 Memories
- 100\% Transmit Duty Cycle Transmitter with exceptionally low distortion
- IF Shiff AND Passband Tuning
- Receiver Preamp
- $10 \mathrm{~Hz} / 50 \mathrm{~Hz} / 4 \mathrm{KHz}$ Tuning Rates with 4 MHz band steps
- Adjustable Noise Blanker (width and level)
- Continuously Adjustable AGC with an OFF position
- Full function Metering with a built-in SWR Bridge
- Optional Internal AC Power Supply

Other Standard Features. Included as standard are many of the features most asked for by experienced ham radio operators: dual VFO's, RF speech compressor, tunable notch filter, all-mode squelch, program band scan, memory scan (frequency and modes are stored), receiver and transmitter incremental tuning and VOX. ICOM's proven transceiver designs and technology are used in the IC-745 all ham band transceiver which includes SSB CW, RTIY, AM receive and an optional FM plus a 100 KHz to 30 MHz general coverage receiver.

ICOM System.
The IC-745 is compatible with ICOM's full line of standard HF accessories.

Accessories available include the IC-PS15 base supply IC-PS30 system power supply (switching), IC-PS35 internal power supply, the IC-2KL linear amplifier, AT100 automatic antenna tuner, AT500 automatic antenna tuner, HP1 headphones, and HM12 hand or SM6 base microphone

Options. The EX241 marker and EX242 FM module, plus a wide variety of filters for sharp audio reception are available

-6dB	Center
Width	Freq. MHz
$500 ~ H z$	9.000
270 Hz	9.000
2.1 KHz	0.455
500 Hz	0.455
250 Hz	0.455

The IC-745 is the only transceiver today that has such features standard...the number of options and accessories available and such an affordable price.

CD ICOM
 The World System

Don't miss our 30 meter excitement. HUSTLER -
STILL THE STANDARD OF PERFORMANCE.

3275 North " B " Avenue Kissimmee, Florida 32741

BEST BUY!

EASY-TO-ASSEMBLE KIT only $\$ 660^{00}$
freight prepaid 40 ft . M-13 aluminum tower and FB-13 fixed concrete base (beautiful!)

> HAZER Lowers antenna with winch. Complete system comes to ground level in upright position.

> HAZER your Rohn 20-25G
> $\mathrm{H}-3-8$ sq.ft ant $\$ 213.00 \mathrm{PPd}$.
> $\mathrm{H}-4-16 \mathrm{sq}$.ft. ant. $\$ 278.00 \mathrm{PPd}$.
$\mathrm{H}-5-12 \mathrm{sq} . \mathrm{ft}$. ant. (for $\mathrm{M}-13$ above) $\$ 302.00$ PPd. All Hazers include winch, cable \& hdw. TB-25 - Thrust bearing $\$ 42.50$
> 3-8 EE $-44^{\prime \prime} \times 6$ forged steel eye and eye turnbuckle $\$ 10.75$
> $6^{\prime \prime}$ diam. -4 ft . long earth screw anchor $\$ 12.75$
> $1 / 40 \mathrm{OD}-7 \times 7$ Air craft cable guy wire 1700 lb . rating. 12 ft .
> W-115 - 115 VAC winch - 1000 lb . load $\$ 329.95$
> W-1000 - Manual winch 1000 lb. capacity $\$ 23.95$
> W-1400 - Manual winch 1400 lb capacity $\$ 29.95$
> P-2068 - Pulley block for $3 / 16$ cable $\$ 5.65$ $50 \mathrm{M}-18 \mathrm{~S}-18$ inch face aluminum tower. stainless bolts HAZER, TB-25 bearing and hinged base sy stem $\$ 1523.00$ treight prepaid 25860 - Martin Super Tower (nothing else compares) 60 galv. steel, totally freestanding in 100 MPH wind with $30 \mathrm{sq.ft}$ antenna \$2992.00

> Glen Martin Engr.
> P.O. Box 7-253

> Boonville, Mo. 65233
> VISA
> 816-882-2734

GLEN MARTIN ENGR

-281

CW Communications/Inc. group is the world's largest publisher of computer-related informa tion. The group publishes 52 computer publications in 19 major countries. Nine million people read one or more of the group's publications each month. Members of the group include: Argentina's Computerworld/Argentina; Austra lia's Australia Computerworld, Australian Micro Computer Magazine, Australian PC World, and Directories; Brazil's DataNews and MicroMun do; China's China Computerworld, Denmark's Computerworld/Danmark and MicroVerden; Fin land's Mikro; France's Le Monde Informatique, Golden (Apple), and OPC (IBM); Germany's Com puterwoche, Microcomputerwelt, PC Welt, Soft ware Markt, CW Edition/Seminar, Computer Business, and Commodore Magazine; Italy's Computenworld Italia; Japan's Computerworid Japan and Perso ComWorld, Mexico's Com puterworld/Mexico and CompuMundo; Netherland's CW Benelux and Micro/Info; Norway's Computerworld Norge and MikroData; Saud Arabia's Saudi Computerworld, Singapore's The Asian Computerworid, Spain's Computerworld/Espana and MicroSistemas; Sweden's ComputerSweden, MikroDatorn, and Min Hemdator, the UK's Computer Management and Computer Business Europe; the US's Computerworld, HOT CoCo, InCider, InfoWorld, ir., Mac World, MICRO MARKETWORLD, Microcomputing, PC World, PC Jr. World, RUN, 73: Amateur Radio's Technical Journal, and 80 Micro.

INFO

Manuscripts

Contributions in the form of manuacripts with drawings and/or photographs are welcome and will be considered for possible publication. We can assume no responsibility for loss or damage to any material. Please en close a stamped, self-addressed envelope with each submission. Payment for the use of any unsolicited material will be made upon acceptance. All contributions should be directed to the 73 editorial offices. "How to Write for 73' guidelines are available upon request. US citizens must include their social security number with submitted manu scripts.

Editorial Offices:

Pine Street
Peterborough NH 03458 Phone; 603-924-9471
Advertising Offices:

Peterborough NH 03458 Phone: 603-924-7138

Circulation Offices:

Elm Street

Peterborough NH 03458 Phone: 603-924-9471

Subscription Rates

In the United States and Possessions: One Year (12 issues) $\$ 25.00$
Two Years (24 issues) $\$ 38.00$
Three Years (36 issues) $\$ 53.00$

Elsewhere:

Canada and Mexico- $\$ 27.9711$ year only, U.S. funds. Foreign surface mail- $\$ 44.97 / 1$ year only, U.S. funds drawn on U.S. bank. Foreign air nail-please inquire.

To subscribe, renew or change an address:

Write to 73 , Subscription Department, PO Box 931, Farmingdale NY 11737. For renewals and changes of address, include the address label from your most recent issue of 73 . For gift subscriptions, include your name and address as well as those of gift recipients.

Subscription problem or question:

Write to 73 , Subscription Department, PO Box 931, Farmingdale NY 11737. Please include an address label.

73: Amateur Radio's Technical Journal (ISSN 0745-080X) is published monthly by CW Communications/Peterborough, Inc., 80 Pine Street, Peterborough NH 03458 . Second class postage paid at Peterborough NH 03458 and at additional mailing offices. Entire contents copyright (9) 1984, CW Communications/ Peterborough, Inc. All rights reserved. No part of this publication may be reprinted or otherwise reproduced without written permission from the publisher, Microfilm Edition-University Microfilm, Ann Arbor MI 48106. Postmaster: Send address changes to 73 , Subscription Services, PO Box 931, Farmingdale NY 11737. Nationally distributed by International Circulation Distributors.

GUARANTEED TO OUT PERFORM Any Other Dish On The Market or your money back*
 'Offer good to Direct Dealers and Distributors within 7 days of purchase

 guarantee our line of antennas to out perform any other of like size on the market. All of our 2.4, 3 and 3.7 meter antennas are UPS shippable. Even our 4.9,6.1, 7.3 and 9 meter antennas can be air shipped or taken as carry-on airline baggage. Our precision welding and use of the finest materials gives you an antenna that is lightweight and extremely durable. There are over a dozen colors available for even the most discriminating customer.
Shippable

Remember the sitverline \qquad
Finest Antennas Avallable

FREE INFORMATION Call 1-800-331-2774
in Oregon phone 656-2774 Telex \# 294858 CSAT UR

W2NSD/4 NEVER SAY DIE editorial by Wayne Green

THE HAMVENTION

Dayton was as big as everor bigger. Hara Arena was pretty full on Friday, packed on Saturday, and pretty full on Sunday with hams not just from the midwest, but from all over the world. There was even a ZS contingent from South Africa wondering when I was going to get back down to visit them again.
A handful of old-timers groused about my $35-\mathrm{wpm}$ petition, but 99% got the point and enjoyed it. Some 73 readers were suckered in by media reports and did Archie Bunkers. (See my talk.)
A few years ago, I got to talking on Friday-mostly because the meeting rooms they had available then were so noisy on Saturday as to be almost impossible. They've built some new (quiet) meeting rooms, so I hope to be invited to do a Saturday talk next year.
Yes, I enjoy the acclaim I get-It helps a lot when I get to feeling discouraged. I get more pleasure than I can describe when I meet people at shows who tell me that my talks or editorials inspired them to change.
If you haven't been making the yearly pilgrimage to Dayton, maybe 1985 is the year to get off your duff. These DARA fanatics have their Hamvention worked out in every detail (and I emphasize the word work). Zillions of prizes, all reported on computer monitors. Somehow, they manage to guide the cars bringing over 20,000 hams into neighboring fields. They even have the incredible flea market well organized. It goes on for acresthe biggest one l've ever seen. I spent a couple hours walking around it this year and didn't even cover half of it. You wouldn't believe the amount of
stuff there! You can find any model rig or receiver ever made, any test equipment, any radio part, any tube, transistor, IC, wire of any kind, coax, connectors, and so on. It's all there at prices that are hard to pass up.

If you want weather stations, laboratory clocks, muffin fans, relay racks, hi-fi, lo-fi, an old Emerson radio, Teletype ${ }^{\oplus}$, relays, telephones, slow-scan, RTTYyou name it and it's there on hundreds of tables. There were even some EE8A WWII surplus telephones and some Gonset Communicators. I thought those had reached their final resting ground long ago.

The temperature went from the 40 s the day before up into the 80s for the hamfest, forcing me to grovel at the Kenwood booth for a hat to keep what's left of my brains from frying while I was doing the flea market.

At the 73 booth, I shook a lot of hands, got my ego properly rebuilt, and met an enormous number of old friends. Larry Horne N2NY was there. He used to work for me almost 30 years ago. He's worked out some really fast Morse-code teaching techniques and has been reputed to get newcomers started at 50 wpm and copying in one weekend. Why spend months starting at 5 wpm and gradually relearning the code all the way up, driving yourself and your family crazy, when you can just as easily start out at 50 wpm? I dunno if these people can copy 5 wpm or not. . probably not. Probably not even 13 per, but at 50. . . no strain.

If you're going to make it to Dayton next year, be sure to drop me a QSL card and let me know what subjects you'd like
me to talk about. For that matter, if there's something you think I should cover in an editorial, hey, this is a two-way street.
Some ham dropped by the booth and beefed to Jim Gray W1XU that Wayne has his editorial and that the readers have no way to be heard. Jim asked him if he'd written a letter to the editor. Grumble, no. So write one, said Jim. A couple minutes later, the same chap started loudly with the same theme, more interested in generating a fuss than in accuracy. Letters with anything worthy of being printed will be printed. General beefs or emotional harangues probably won't make it-unless our Executive or Managing Editor wants to expose the vacuity of thought which characterizes some letters.
On the whole, l'm awfully proud of 73 readers. You are, with very few exceptions, intelligent and perceptive people. I don't write for 12 -year-olds. I write for intelligent hams and most readers respect this. The 12 -year-olds, of all ages, can have problems understanding me.

THE DAYTON TALK

[At 2:00 pm on April 27, Hara's Room 2 hosted W2NSD's yearly report on where amateur radio is today and where it could be tomorrow. And what to do about it. We hope you enjoy this transcript of some of his remarks. -JCB.]

Good afternoon. I'm Wayne Green W2NSD. And I understand that you read my editorials but don't agree with them 100 percent. [Loud guffaws. -Ed.]

So on that basis...had a number of questions asked me since l've been here. And l'll try
to address most of those, if I can. If I forget some of them, make a note and ask me later, and I'll try to cover whatever I've forgotten about. But, in general, I cheat on my talks. I don't plan much ahead. And I figure either I'll think of what I was supposed to talk about or you'll remind me.
Now, since my talk last year, we've had a few minor changes in my organization. And those of you who read the magazine are aware that basically I sold all of the Wayne Green, Incorporated, magazines to another company, IDG, International Data Group, who publishes Computerworld and about 50 magazines in 18 countries. It makes it very handy for travel-there is always a company office there.

I got a good deal out of it, as you may have read. And people keep wanting to know, "What are you going to do with the 60 mill?" [Guffaws.]

Well, I'll tell you. I'm going to try to put it to the best use I can and do my very best to make an awful lot of people very wealthy. It's an old story that you can't take it with you. And indeed, the agreement I made was that whatever's left over when I leave goes back to the company.

Now, all of the reasons that I made that arrangement-one of the reasons that I made the deal with IDG-is that they were aiming in the same direction that I was. It was my intention to take Wayne Green, Incorporated, and eventually have the employees own it. IDG is doing the same thing. And indeed they have turned a substantial percentage of the corporation over to the employees' fund already. And the schedule eventually will be 100 percent of it. ["Superham" Don Wallace W6AM enters room and sits down in front row.]

With the bo-nanza, I have formed a new company called Wayne Green Enterprises. And I have a number of projects in the works with that. And I'll tell you about some of those because they have a lot to do with my background in amateur radio. (Hi, Don, good to see you. Delighted that you could come.) And I think that I have some plans that may eventually help amateur radio a lot.

We're starting out, essentially, with a new publishing organization. And in order to get the people to do this, I'm starting a

KENWOOD

pacesetter in amateur radio

TR-7950, watts to see! TR-7950/7930

The TR-7950/7930 has become the unanimous choice of the 2 meter FM operator! It stands alone in fea tures, performance and reliability. with no other rig even close!
The TR-7950/7930 features a large L.C.D. display that is easy to read in direet sunnight and is back lighted for comfortable night-time viewing. It displays TRANS/REC fre quencies, memory channel, repeater offset (ts s--), sub-tone number ($\mathrm{F}-\mathrm{O}$, 1. 2, 3) tone, scan, and memory scan lock-out. It includes an LED S/RF bar meter, and LED indicators for reverse, center TUNING, PRIORITY and ON AIR. The 21 multi-function memory channels store frequency, repeater offset, and optional sub-tone channels. Memories 1 through 15 are for simplex or $\pm 600 \mathrm{~Hz}$ offset. Memory pairs 16/17 and 18/19 are paired for non-standard repeater olfset. Memories " A " and " B " set upper and lower scan limits, or are for simplex or $\pm 600 \mathrm{kHz}$ offset. In MEMORY mode, a circle of light appears around the memory selector
knob. When the memory selector knob is rotated in either direction to channel 1, an audible "beep" sounds. With 45 big watts, the TR-7950 is the most powerful 2 meter FM rig you can buy. The TR 7930 with a modest 25 watts is also available. A HIILOW power switch allows power reduction to approx. 5 watts.

Other key features include: Programmable band-scan width, Center stop during band-scan, with indicator. Scan stops on busy channel and resume scan is automatic (time 5 sec . adjustable) or carrier operated. A scan delay of approx. 1.5 sec . is buitt-in. Scanning can also be accomplished with UP/DOWN microphone or "SC" key on front panel. Programmable priority alert can be set into any of 21 memory channels. With Alert switch "ON," a dual "beep" sounds when signal is present. The microprocessor is pre-programmed for simplex or $\pm 600 \mathrm{kHz}$ offset in accordance with the 2 meter band plan, with an
"OS" key to allow manual changes in offset. The keyboard functions as a 16 -key autopatch encoder during transmit. Frequency coverage is $142.000-148.995 \mathrm{MHz}$, and it has a repeater reverse switch and mobile mounting bracket. All these features are available in one compact. lightweight rig.

Yes, Kenwood is on top with the TR-7950! Its. field proven reliability and matehless performance makes the TR-7950 the rig of tomorrow, today!

TR-7950 optional accessories:
TU-79, three frequency tone unit, KPS-12 fixed-station power supply (7950), KPS-7A fixed-station power supply $(7930), \mathrm{SP}-40$ mobile speaker; SP-50 mobile speaker, MC-55 mobile microphone with time-out timer, MC-46 16-key autopatch UP/DOWN mic, SW-100A/B power meters, PG-3A noise filter:
More information on the TR-7950/7930 is available from authorized dealers of Trio-Kenwood Communications, 1111 West Walnut Street, Compton, CA 90220.

publishing school. And we have about 10 magazines lined up to get started with the people that we train in this school. And, of course, the people who do well in school we'll put on the new publications. The people who do poorly, we'll sell to our competitors. [Chuckles.]

The new magazine, the first one, will be Digital Audio. And how many of you are not familiar with digital audio in the compact disc? Are any of you out of communication with the world? [Chuckles.] OK. Well, perhaps you remember the $78-\mathrm{rpm}$ record. And then there came along a newfangled contraption called a long-playing record which within a few years put the $78-\mathrm{rpm}$ record out of business.

Well, there is a new technology called digital audio which is going to put the LP out of business in a very few years. And the new record is the compact disc which is about yea big. And it is written on and read by laser. And it is so phenomenally better than LP records that you have to hear it but once to be addicted to this new sound. For the first time, when you listen to hi-fi, you can hear the sound of silence. And for you technical people, you have the potential with this new recording medium of a 95 -decibel range of sound (where on an ordinary record about the best that they can do is around 60 dB). So it's thousands of times better. Well, we're going to try to help this industry, this brand new industry, to grow with a magazine.

The second magazine will be in the telecommunications field and this will be for businessmen so that they will be able to cope with these new telephones and
new types of communications that are on the market. Right now, I know of no magazine out there for businessmen to tell them what these things do.

We have two or three computer magazines in the works. And one would think that with 300 magazines on the market that there would be enough, but there still is a need for a few more that other people have not yet perceived. And we will be proceeding with that.
Now, perhaps even more important, once we have gotten things running fairly smoothly with these relatively easy magazines, we have two huge ones in the works. And when I say huge, I mean circulation on the order of 10 to 20 million. What I intend to do is take the 60 million [dollars] and within four years build that up to one billion. And I think we're going to be able to do it. And I believe that every person that works for us is going to be, at the minimum, a millionaire. My calculations are that within four years they should be worth approximately 1.6 million each. Because we're putting aside part of the stock and the people who work for us have a share in the company.

The big magazine-and the one that is going to be the most important to amateur radiowill have to do with teenagers. And basically, we want to start a magazine which is an instruction book for growing up. And you can bet that it is going to be very heavily laced with high tech. It'll encourage kids to be interested in amateur-radio communications, to be interested in computers.

I think all of you are well aware of what's happened in

QSL OF THE MONTH

To enter your QSL, put it in an envelope along with your choice of a book from 73's Radio Bookshop and mail it to 73, Pine Street, Peterborough NH 03458, Attn: QSL of the Month. Entries not in envelopes or without a book choice will not be accepted.
computers. How many of you here have Model 100s already? One, two, three, four, five, not bad, six, seven, right. A year from now, I suspect there will be at least ten times that many in the audience that have briefcase portable computers. But these computers are just part of it. It's what these are going to force to happen that is important. And that is the key for anyone who would really like to make money, because these small computers are going to require communications.

Right now, you can plug this [holds up Model 100] into the telephone and you can communicate through hundreds, any of hundreds, of bulletin boards, communications services, and so forth. The next step-and it's something that we could do with amateur radio right now, if we wanted, with our current tech-nology-any one of you could probably do this if you'd sit down and do it. And that is put a small relay transmitter in here, probably 149 Megahertz, and make it so if you use this within the room with a small room repeater, it would pick up the information from that so you don't have to plug it in anymore. And you could hook that onto the telephone. That's the first step.

The next step is to have an area repeater so that the room repeater goes to your area repeater. Any of your regular repeaters that you have today could do this. Have the area repeater, say, every five minutes, or every three minutes, or every minute, send a pulse out with a coding for your particular computer and it says essentially, "Are you turned on? Do you have any traffic?" And your computer, if you have it turned on, will say, "Yes, I'm turned on, I have no traffic," every so often. It will take a few milliseconds to do it.

Once you have written the message to someone anywhere in the world and you say "Go," the next time you are polled by that local repeater through your room repeater, it will say, "Yes, I have traffic." And it will dump it with error-correcting at 25,000 words a minute.

And that will be stored in your local repeater, which will then look up to see where-in-the-devil this thing is going and route it either to another repeater or to a local recipient or perhaps by a
satellite link to somebody down in Ceylon [Sri Lanka] who was sitting on the beach with another system. Or to his home repeater waiting for when he comes home and turns on his unit and it finally says, "Yes, I'm here, is there any traffic?"
We can do that with the technology we have today. Nobody has to invent a thing. We just have to do it.

If you do it, you know as well as I do that there is no power on Earth going to stop that from selling. It is a service that is needed desperately. And some bright person somewhere is going to do that and going to become incredibly wealthy and you're going to say, "Gee whiz, look at that, how did he do that, wasn't he lucky?" I find that the harder I work, the luckier I get.

So these things are there. We are going to need communications in 10 years that are on the order of a thousand timesmaybe ten thousand timeswhat we have today. And that means that we are going to need ten thousand times as many engineers and technicians as we have today.

Now, I'm sure that most of you are aware that the growth of amateur radio last year was two and a half percent. And that this year we're looking for a net loss. Unless something changes radically. I'm sure you're also aware that the growth of amateur radio in Japan last year was 25 percent and has averaged, over the last 20 years, over 300 percent a year. It slowed down a little bit in the last few years. We have averaged for the last 20 years a growth of 2 percent. Average. Two point zero percent in the United States.

I wrote in 73-a couple of years ago-an editorial, and I said I bet you it isn't going to be long before our military are sending electronic development contracts to Japan. And I got the biggest bunch of hee-haws from the readers. And they said, "Boy, are you crazy." Big headlines about four months ago: The military tried to get electronic contracts with Japan for military equipment development and they turned us down.
l'd like to do something about that. l'd like to reach teenagers and interest them in amateur radio. In the United States, we

Continued on page 76

A fresh idea!

Our new crop of tone equipment is the freshest thing growing in the encoder/decoder field today. All tones are instantly programmable by setting a dip switch; no counter is required. Frequency accuracy is astonishing $\pm .1 \mathrm{~Hz}$ over all temperature extremes. Multiple tone frequency operation is a snap since the dip switch may be remoted. Our TS-32 encoder/decoder may be programmed for any of the 32 CTCSS tones. The SS-32 encode only model may be programmed for all 32 CTCSS tones plus 19 burst tones, 8 touch-tones, and 5 test tones. And, of course, there's no need to mention our one day delivery and one year warranty.

Shoot at Will

KK2Y's Dayton mandate was to capture things on film. He did it. Enjoy a slice of Hamvention.

DARA boys (L-R) Terry Falkner N8EEO, Joe Moore K8VAZ, Jim Orihood WD8JCI.

Jack Mitchell AA8Q Ceneral Chairman, with W2NSD.

Call or write US for Your Crystals
 for Industrial use for YOur Tecmnolasy

Bash Educational Services, Inc.

NOVICE CLASS EXAMINATION PACKAGE

 with everything the examiner needs to legally and correctly administer a NOVICE CLASS exam under the FCC's NEW RULES. The package includes:For the Novice:

* 10 Different Exams (from FCC PR Bulletin 1035A)
* 10 Blank Answer Sheets

For the Examiner:

* Master Answer Sheet
* Complete Set of Instructions
* If you have more than 10 exams to give, Bash grants you the right to copy the tests and the answer sheets.
\$9.95 PKG. PRICE
Plus $\$ 2.25 \mathrm{~S} 8 \mathrm{H}$ For mail order Add: 65 e sales tax if in Calif.
P.O. Box 2115 San Leandro, CA 94577 Telephone: (415) 278-8275

WORK THE U.H.F. BANDS

Add a transverter or converter to your existing $10 \mathrm{~m}, 6 \mathrm{~m}$ or 2 m equipments. Choose from the largest selection of modules available for DX, OSCAR. EME, ATV.

TRANSVERTERS

MMT 50-144 \$189.95
MMT 144-28 \$169.95
MMT 432-28 (S) \$259.95
MMT 439-ATV $\$ 339.95$
MMT 1296-144 \$299.95
OTHER MODELS AVAILABLE
write for details

POWER AMPLIFIERS

all models include RF VOX \& Low Noise RX Pre-Ampl.
(no pre-amp in MML432-100)

2 Meters:	100 W output	MML144-100-LS	IW or 3 W in	\$249,9
	100 W output	MML 144-100-S	10W input	\$284.
	50 W output	MML144-50-S	10W input	\$199.95
	30W output	MMLI44-30-1S	IW or $3 W$ in	\$109.95
	25 W output	MML 144.25	3W input	\$114.9
432 MHz :	100 W output	MML $432-100$	10 W input	\$369,95
	50W output	MML 432.50	10 W input	\$199.95
	30W output	MML432-30-L	IW or 3 W in	\$199.9

1268-1296 MHz:
Coming soon. Watch for details.
ANTENNAS (incl. 50 ohm balun)
2 Meter J-Beams: 12.3 dBd gain
8 over 8 Horizon'l pol D8-2M
\$63.40 8 by 8 Vertical pol D8-2M-vert ASK $1250-1300 \mathrm{MHz}$ Loop-Yagi 1296-LY \$44.95

70/MBM 48 $70 \mathrm{~cm} / \mathrm{MBM} 48$ $70 \mathrm{~cm} /$ MBM 88 \$59.95 $\$ 89.95$

Send 40 c stamps for full details of our VHF/UHF items.
Pre-selector filters Pre-amplifiers Antennas Low-pass filters Transverters Crystal Filters Varactor triplers Converters
Spectrum International, Inc. Post Office Box 10845
Concord, Mass. 01742 USA -436

here is the next generation Repeater ${ }^{\circ}$

MARK 4CR

- Unlimited vocabulary speech messages in your own voice
- Hundreds of tone access functions, many with time-of-day setting
- All vital parameters can be set remotely by tone access
- Two phone lines and dozens of input/output control lines

In 1978 we created the first microprocessor based repeater and here is its successor the incomparable MARK 4CR. Of course it has autodial and tail messages, after all, we invented those features. Sure it has autopatch, reverse

- 4 channel receiver voting plus full linking capability
- Bus structured design for easy hardware/software expansion
- "Overload proof" receiver with 7 large helical resonators
- Our famous MCS squelch, often called the best in the business, is now even better with automatic fast/slow switching patch and built-in ID. But hold on -- it also has Message Master ${ }^{\mathrm{TM}}$ real speech and receiver voting. Its all new receiver puts 7 large helical resonators up front for extremely high dynamic range. Yes, MARK 4CR is the next generation!

MICRO CONTROL SPECIALTIES

HF Equipment Regular SALE IC-740* 9-band 200w PEP xcvr w/mic $\$ 1099.00899^{9 s}$
*FREE PS-740 Internal Power Supply \&
\$50 Factory Rebate - until gone!
PS-740 Internal power supply....... 159.00149^{95}
*EX-241 Marker unit 20.00
*EX-242 FM unit. 39.00
*EX-243 Electronic keyer unit.
*FL-45 500 Hz CW filter (lst IF)
50.00
*FL-54 270 Hz CW filter (1st IF).
59.50
*FL-52A 500 Hz CW filter (2nd IF)
${ }^{*}$ FL-53A 250 Hz CW filter (2nd IF)
*FL-44A SSB filter (2nd IF)
47.50
$96.50 \quad 89^{93}$

SM-5 8-pin electret desk microphone 96.509^{895}

HM-10 Scanning mobile microphone 159.00144^{95} 39.5

MB-12 Mobile mount.
*Options also for IC-745 listed below
IC-730 8-band 200w PEP xcvr w/mic $\$ 829.00$ 599ss FL-30 SSB filter (passband tuning) 59.50
FL-44A SSB filter (2nd IF)............ 159.00144^{95}
FL-45 500 Hz CW filter................ 59.50
EX-195 Marker unit.
39.00

EX-202 LDA interface; $730 / 2 \mathrm{KL} /$ AH-1 27.50
EX-203 150 Hz CW audio filter..... 39.00
EX-205 Transverter switching unit 29.00
SM-5 8-pin electret desk microphone 39.00
HM-10 Scanning mobile microphone 39.50
MB-5 Mobile mount
19.50

IC-720A 9 -band xcvi/.1-30 MHz rcvr \$1349.00 8999s
FL-32 500 Hz CW filter............... 59.50
FL-34 5.2 kHz AM filter 49.50
SM-5 8-pin electret desk microphone $\quad 39.00$
MB-5 Mobile mount.................. 19.50
IC-745 9-band xcvr w/.1-30 Mhz rcvr $\$ 999.00769^{9 s}$ PS-35 Internal power supply 160.00144^{45} CFJ-455K5 28 kHz wide SSB filter $\quad 4.00$
HM-12 Hand microphone 4.00
39.50

SM-6 Desk microphone
39.00
See IC-740 list above for other options ()

IC-751 9-band xcvr/.1-30 MHz rcvr \$1399.00 1199 PS-35 Internal power supply 160.00144^{95}
FL-32 500 Hz CW filter (1st IF)
59.50

FL-63 250 Hz CW filter (1st IF)
48.50

FL-52A 500 Hz CW filter (2nd IF).
FL-53A 250 Hz CW filter (2nd IF).
96.50 89"s

FL-33 AM filter.
96.50 89s

FL-70 2.8 Khz wide SSB filter
31.50
46.50

HM-12 Hand microphone 39.50
SM-6 Desk microphone
CR-64 High stability reference xtal
39.00

RC-10 External frequency controller
MB-18 Mobile mount
35.00

Options: 720/730/740/745/751 Regular SALE PS-15 20A external power supply. 149.00134^{95}
EX-144 Adaptor for CF-1/PS-15

Options - continued

CF-1 Cooling fan for PS-15.
PS-20 20A switching ps w/speaker
CC-1 Adapt. cable; HF radio/PS-20
CF-1 Cooling fan for PS-20.
EX-310 Voice synth; 745, 751, R-70A SP-3 External base station speaker ... Speaker/Phone patch - specify radio BC-10A Memory back-up...
EX-2 Relay box with marker
AT-100 100 w 8 -band automatic ant tuner AT-500 500 w 9 -band automatic ant tuner MT-100 Manual antenna tuner. \qquad
\qquad
AH-1 5 -band mobile antenna w/tuner
PS-30 Systems p/s w/cord, 6 -pin plug GC-4 World clock.
HF linear amplifier
IC-2KL w/ps 160 -15m solid state amp
VHF/UHF base multi-modes Regular SALE
p1795.00 1299
250 Factory Pransceiver 5749.00 549"
IC-551D 80 Watt 6 m transceiver er PS-20 20A switching ps w/speaker EX-106 FM option. \qquad
BC-10A Memory back-up SM-2 Electret desk microphone 8.5

C-271H 100 w 2 m FM/SSB/CW xcur PS-35 Internal power supply PS-15 20A power supply
IC-271A 25w 2m FM/SSB/CW xcvr. AG-20/EX-338 2 m preamplifier

Regular SALE 45.00
229.00199^{95}
10.00
45.00
39.95
49.50
49.50
139.00
39.00129^{95}
8.50
34.00
349.00314^{95}
449.00399^{95}
249.00224^{95} 289.0025995 289.00259^{95}
259.95233^{95}

IC-471A $10 \mathrm{w} 430-450$ SSB/CW/FM xcvr PS-25 Internal power supply..
EX-310 Voice synthesizer
HM-12 Hand microphone
.............
\qquad
VHF/UHF mobile multi-modes
IC-290H 25 w 2 m SSB/FM xcvr, TTP mic 549.00489^{35} IC-490A $10 \mathrm{w} 430-440$ SSB/FM/CW xcvr 649.00579^{35} $\mathrm{VHF} / \mathrm{UHF} / 1.2 \mathrm{GHz}$ FM \qquad Regular SALE IC-22U 10w 2 m FM non-digital xcvr $299.00249^{9 s}$ EX-199 Remote frequency selector IC-25A $25 \mathrm{w}, 2 \mathrm{~m}$, grnleds, up-dn TTP mic 359.00319 BU-1 Memory back-up. BU-1 Mernory back-up
38.50

IC-25H* as above, but 45 watts.
389.00339^{95}

* FREE BU-1H memory back-up with IC-25H purchase

IC-27A Compact 25w 2m FMw/TTP mic 369.00329^{95} IC-27H Compact 45 w 2 mFM w/TTP mic 409.00369^{95} UT-16/EX-388 Voice synthesizer ... 29.95 RP-3010 10 w 440 Mhz FM repeater 999.0089995 IC-37A Compact 25 w 220 FM, TTP mic 449.00399^{95} IC-47A Compact 25w 440 FM, TTP mic 469.00419^{95} IC-120 1w 1.2 GHz FM transceiver.... 499.00449^{95} RP-1210 10 w 1.2 GHz FM repeater ... 1199.001089 Cabinet for RP-1210 or RP-3010 249.00
Duplexer 121010 w 1.2 GHz duplexer 1199.001089 6 m portable Regular SALE IC-505 3/10w 6 m port. SSB/CW xcvr $\$ 449.00399$ ss BP-10 Internal Nicad battery pack 79.50 BP-15 AC charger.

1250
BP-15 AC charger
12.50

EX-248 FM unit
case
SP-4 Remote speaker

Hand-held Transceivers Deluxe models Regular SALE IC-02A for 2 meters \$ 319.00289^{95} IC-02AT w/DTMF 349.00314^{95} IC-04A for 440 MHz TBA IC-04AT w/DTMF..... 379.00339^{95}
Standard models Regular SALE IC-2A for 2 meters $\$ 239.50214^{95}$ IC-2AT with TTP 269.50219^{95} IC-3A for 220 MHz ... 269.95234^{95} IC-3AT with TTP...... 299.95 23995 IC-4A for 440 MHz ... 269.95 23455 IC-4AT with TTP..
299.9523995

Accessories for Deluxe models Regular
BP-7 $800 \mathrm{mah} / 13.2 \mathrm{~V}$ Nicad Pak - use BC-35 67.50
BP- $8800 \mathrm{mah} / 8.4 \mathrm{~V}$ Nicad Pak - use BC-35 ... 62.50
BC-35 Drop in desk charger - all batteries.... 69.00
BC-16A Wall charger-BP7/BP8
10.00

Accessories for both models Regular
BP-2 425 mah/7.2V Nicad Pak - use BC35.... 39.50 BP-3 Extra Std. 250 mah/8.4V Nicad Pak.... 29.50 BP-4 Alkaline battery case. \qquad 12.50

BP-5 $425 \mathrm{mah} / 10.8 \mathrm{~V}$ Nicad Pak - use BC35 49.50 CP-1 Cig. lighter plug/cord - BP3 or Dlx 9.50 DC-1 DC operation pak for standard models 17.50 LC-2AT Leather case for standard models..... 34.95
HM-9 Speaker microphone.
HS10 Boom microphone/headset. \qquad
HS-10SA Vox unit for HS-10 (dlx only) 34.50

HS-10SB PTT unit for HS-10. 19.50

ML-1 2 m 23 w in/10w out amplifier. SALE 79.95 ML-25 2 m 2.3 w in 20w out amplifier.... SALE 179.95 3A-TTN Optional TT Pad - 2A/3A/4A 39.50 SS-32M Commspec 32-tone encoder 29.95

Shortwave receivers
Regular SALE
R-71A 100 Khz -30 Mhz digital receiver $\$ 799.00689$
FL-32 500 Hz CW filter.
59.50

EX-310 Voice synthesizer
39.95

RC-11 Wireless remote controller... 59.95
CR-64 High stability oscillator xtal 56.00
R-70 $100 \mathrm{Khz}-30 \mathrm{Mhz}$ digital receiver 749.00599^{95}
EX-257 FM unit..
38.00

IC-7072 Transceive interface, 720A 112.50
FL-44A SSB filter (2nd IF)........... 159.00144^{95}
FL-63 250 Hz CW filter (lst IF) $\quad 48.50$
SP-3 External speaker 49.50
CK-70 (EX-299) 12v DC option..... 9.95
MB-12 Mobile mount.
19.50

VISA ${ }^{-}$
HOURS: Mon. thru Fri. 9-5:30; Sat. 9-3
Milwaukee WATS line 1-800-558-0411 answered evenings until 8:00 pm, Monday thru Thursday.
Please use WATS line for Placing Orders.
For other information, etc. please use Regular line.

Order Toll Free: 1-800-558-0411

Ohio 44092			ASVEGAS. Nev. 89100	cACB , Ilimeis focan
28940 Euclid Avenue Phone (216) 5857388 Ohio WATS 1-800-362-0290	621 Commonwealth Ave Phone (305) 894-3238 Fla WATS $1.800-432.9424$	1898 Drew Stree: Phone (813) 461-4267 No in-State WATS	1072 N. Ranche Drive Phone (702) $647-3114$ No in-State WATS	ERICKSON COMMUNICATIONS 5456 N. Milwaukee Avenue Phone (312) 631-5181
${ }_{\text {Cutaide }}^{\text {Ohio }} 1$-800-321-3594	autsite Flonia $1-800-327-1917$	No Nationwide WATS	Cutside ${ }^{\text {Nevadi }} 1$-800-634-6227	15 min . from O'Hars!

COMMUNICATE

 THEN THE WORLD!

Better communications start with your subscription to 73 Amateur Radio's Technical Journal

YES!Start my no-risk subscription today and send me 12 issues of 73 for $\$ 19.97$. I understand that with payment enclosed or credit card order I will receive a FREE issue making a total of 13 issues for $\$ 19.97$.
\square CHECK/MO
$\square \mathrm{MC}$
\square VISA
$\square \mathrm{AE}$
\square Bill Me $\$ 19.97$ for 12 issues
Card \# \qquad Exp. Date \qquad
Signature \qquad
Name
Address \qquad
City \qquad State Zip \qquad

Introducing the New B215 2 Meter Solid State Amplifier from Mirage Communications

2 Watts In - 150 Watts Out \$289.95

- Built-In Rx Preamp
- All Mode-SSB, CW, FM
- Remote Keying
- DC Power 13.6 VDC at 18 Amps
- 5 Year Limited Warranty
- Optional RC-1 Remote Control Available
- Made in the U.S.A.

Available at Mirage Dealers Worldwide

Secrets of Cordless Phones

Is privacy sacred and range not? Maybe some hands-on research can help you decide.

Ipurchased a wireless tele phone some time ago. Being curious about electronic gadgets, I did some handson research by examining the electronic innards and came up with a few mods and suggestions to make it even more useful. Wireless phones employ full-duplex operation and consist of two parts. The hand-held unit transmits on 49 MHz and is crystal-controlled. The base unit transmits on about 1700 kHz but uses an LC circuit. Its frequency can be adjusted by a tuned slug. Both operate in the FM mode. There are several ways to increase
the phone's range and still preserve your privacy and avoid interference.

First of all, if you are considering the purchase of a wireless phone and you already own a programmable police scanner, enter in the following frequencies: 49.830, 49.845, 49.860, 49.875 , and 49.890 MHz . Scan these five channels for a few days to get an idea which frequencies are most populated in your neighborhood. Using a Bearcat 250 with an outdoor antenna, I was able to get clear reception for over one-half mile. You may hear a juicy thing

Amplifier speaker, hand-held unit, and base unit.
or two because people just don't realize others can listen in. For this reason, avoid initiating credit-card calls over a wireless phone. Remember, you'll only hear one side of the conversa-tion-the hand-held unit's side. The other side of the phone conversation is carried on 1695,1725 , or 1755 kHz , although there are a few newer designs which duplex both sides of the conversation in the $49-\mathrm{MHz}$ band.

The $49-\mathrm{MHz}$ frequencies are designated as channel numbers or letters. For example, 49.830 is channel 1 or A, 49.845 is channel 2 or B, and so on. The wireless phones are usually marked on the outside of the box they are packed in which channel they operate on. In my neck of the woods 49.845 MHz seemed to have the least amount of traffic so I purchased a unit marked "channel 2." It's a good idea to avoid channel 3 or C

Fig. 1.
(49.860). All the new unlicensed kid handie-talkies operate on this frequency these days, and even though they are AM, you will still receive some interference. If you don't have a scanner to check out the neighborhood frequency usage, you'll have to take pot luck. Just avoid channel 3 or C . If you purchase a wireless phone by mail, state which channel you wish. You may not get what you want but it's worth a try.
In case you want or need to change frequency on your wireless phone, here's some general information. The transmitting crystal in my hand-held is marked 16.615 MHz but is actually a third-overtone, $49.845-\mathrm{MHz}$ crystal. Crystals can be ordered from Jan Crystals, PO Box 06017, Eort Myers FL 33906-6017. Be sure to tell them the name brand and model of your particular phone. It also would be a good idea to send along the original crystals to ensure that the new ones will be ground to the correct electrical characteristics.
The $49-\mathrm{MHz}$ receiver at the base is a slightly differ-

Close-up of $49-\mathrm{MHz}$ base-unit receiver crystals. The 39.145 crystal is socketed and can be changed easily.
ent story. To receive 49.845 MHz , my unit uses a master crystal oscillator on 10.245 MHz to clack against a socketed $39.145-\mathrm{MHz}$ crystal. This adds up to 49.390 MHz which is exactly 455 kHz (the i-f amp frequency) below 49.845 MHz . Other units may vary.

For the most privacy, you could change your wireless phone to operate on a frequency a smidgeon above or below the five designated $49-\mathrm{MHz}$ channels and never have to worry about someone else with a similar unit making phone calls (either inadvertently or on purpose) through your base unit. However, to keep inside the law, it would probably be better to shift it to a frequency actually "between" the $15-\mathrm{kHz}$ spaced channels, keeping in mind to stay away from the vicinity of 49.860 MHz . A shift of 5 kHz is enough to keep you safe from similar units.
My hand-held had a crys-tal-controlled, $1700-\mathrm{kHz}$ receiver. The HC32 crystal was 2.150 MHz which is 455 kHz above the $1695-\mathrm{kHz}$ basetransmitter frequency. The base-transmitter frequency can easily be changed by adjusting a slug-tuned coil so you'll only need to change the receive crystal in the hand-held unit. Shifting the low-frequency link will also give you more privacy and less interference.

Now take a look at the power cord coming out of your base unit. One side of the zip cord is marked with a white line, small lettering, or a groove running the length of it. This is the "antenna" side of the $1700-\mathrm{kHz}$ base transmitter. Keep this side plugged into the "hot" terminal of the electrical outlet for better phone range. In my case, it added about 100 feet of extra range.

Conversely, to increase the range of the $49-\mathrm{MHz}$ base receiver, it can be connected to an outdoor antenna. I used a quarter-wave CB ground plane with half the radiator removed. A six-meter antenna would work fine and so would an allband scanner antenna, although these are more costly. You can use a clip lead connected between the base unit's telescoping antenna and the center of the external antenna's coax or open the base unit and solder a short length of shielded cable to the PC board and terminate it with the proper in-line female connector. Using an external antenna is all the more reason to shift the $49-\mathrm{MHz}$ link to prevent unauthorized use of your phone line through the base unit.

By the way, you can listen to the $1700-\mathrm{kHz}$ side of the conversation on most broad-cast-band AM radios if they have a bit of over-tuning on

$16.615-\mathrm{MHz}$ crystal in hand-held unit is actually a $48.845-\mathrm{MHz}$, third-overtone unit.
the high end of the dial. I've monitored my own base unit on two different hifi receivers successfully and have heard a couple of other neighborhood phones as well. You can hear both sides of the phone conversation on these frequencies. Just remember, the signals are FM so you'll have to use slope detection by tuning a bit to either side of the FM carrier.
I turned my base unit into a $49-\mathrm{MHz}$ receiver by soldering a cable to the circuit board and running it to the input of an Archer 277-1008 amplifier sold by Radio Shack. There are four terminals on the circuit board connecting to the phone lines. To find the correct two terminals, first disconnect the base unit from the phone lines. Put the handheld on "talk" so it is
transmitting on 49 MHz . Using two clip leads, experimentally hook up two terminals at a time to the input of any audio amplifier until you get a loud squeal from the feedback between the hand-held and the audio amplifier. Once you've found the correct terminals, install the circuit in Fig. 1 between the base unit and audio amplifier. This prevents any loading on the phone line when you plug the base unit back in. It also allows you to listen in on any phone call using the audio amplifier. Now when you have the base unit on but disconnected from the phone line, it is a $49-\mathrm{MHz}$ receiver for one of the five channels.

I also tapped into the base unit's regulated power supply to power the audio amplifier. It provides about

PC board in base unit. The $1700-\mathrm{kHz}$ transmitter frequency can be varied by a slug-tuned coil.

"MAXCOM"

AUTOMATIC ANTENNA MATCHER

matches ONE antenna DIPOLE OR LONGWIRE . 3 TO 70 MHZ .
VSWR LESS THAN 1.5:1

* INSTANT MATCHING *
* NO CONTROL LEADS *
* 5 Year warranty *

CONTACT :
MAGNUM DISTRIBUTORS INC.
1000 8. DIXIE HY. W. +3
POMPANO BCH. FL. 33060
305-785-2002 TLX 514365

PC board in hand-held unit. On the left of the board is the $1700-\mathrm{kHz}$ receiver crystal, marked 2.150 MHz . In the middle is the $49-\mathrm{MHz}$ crystal socket.

10 volts. The collector of the regulator power transistor (the "tab") and one side of the filter capacitor provide the power. Use a voltmeter to find the correct polarity. I added a jack to the amplifier speaker's battery terminals for quick connecting to the base's power supply. There's not much to it.

The wireless phones are
quite nice to have when you aren't near a "real" phone. The only other suggestion to purposely curtail reception by others on the $49-\mathrm{MHz}$ end is to keep the telescoping antenna on the handheld extended just enough for clear communicationsusually, you won't need to extend it at all when you use the unit in the house.

A broadband, low SWR dipole that really works in apartments, small yards, attics, anywhere a small antenna is a must. Indoors or out, you can work ANY HF BAND, including 10 MHz . No gimmicks or add-ons. Imagine 80 M in as little as $24 \mathrm{ft}$. . Complete kit and instructions, plus 50 ft . of coax. Easy to set up and adjust. More information available - just call or write.

Blacksburg Group

Box 242 Suite 500 Blacksburg, Virginia 24060
703/951-9030
$\$ 67.95$ postpaid (in USA.) Money Back Guarantee Virginia residents add 4% sales tax

ENGINEERING MAKES THE DIFFERENCE

Production Expertise And Service Integrity Form The Foundation For Your Long-Term Satisfaction

The fact that the Computer Patch Interface unit by Advanced Electronic Applications, Inc. is known as the best value on the market is no accident. The CP-1 was designed by Al Chandler, K6RFK (PHD-E.E.), an active RTTY user since 1963.

Given a cost per unit budget for the CP-1, Al designed as much performance as possible into the Computer Patch, including a unique new tuning indicator, referred to by one of our customers as the "Dead Eye Dick" tuning indicator. This indicator is ideal for RTTY and CW, in that it is both fast to tune and (within 10 Hz) as accurate as scope tuning. It also performs under poor signal to noise conditions in which other indicators provide no useful data.

Al's variable shift tuning was designed to move the space filter center frequency from 2225 Hz to 3125 Hz without changing the bandwidth (by varying the Q of the filter). All this is accomplished using a precision ganged potentiometer to assure proper tracking of the multiple filter stages. We could have used a pot costing a tenth as much by simply using a two-pole filter design, but we feel the advantage of a sharper filter reduces the noise bandwidth significantly and allows the variable shift control to be used like passband tuning for extra elimination of adjacent channel interference.
Some manufacturers are concerned that amateurs might try calibrating their own equipment and, therefore, have used non-adjustable components, which results in sub-optimal performance. Although more costly, trimpots used in AEA equipment allow factory adjustment for performance to design specifications. Competently designed active filter circuits need not be adjusted after leaving the factory; however, for specialized use the owner can easily change filter parameters.
Mindful of the fact that many of our customers are new to RTTY, Al made the CP-1 tuning as forgiving as possible, while providing the most critical operator a piece of equipment in which he could be proud. Even old "pro's" are surprised at the poor signal conditions under which the CP-1 will still provide good copy.

You can now experience the BEST RTTY, CW, and AMTOR offered. Couple the CP-1 with our new AEASOFT ${ }^{\text {TM }}$ software packages designed for the MARS, SWL, or amateur radio operator, and you will feel a pride reminiscent of what "made in U.S.A." brought in years gone by. Please do not hold the low price of the CP-1 against us. This is one case where you get much more than you pay for relative to any of the competitive units. For more information send for our FREE cataiog. Better yet, see your favorite dealer.

Advanced Electronic Applications, Inc.

Modern-Eyes the S-Meter

Here's how to de-strain your baby blues by adding a simple LED readout.

Gordon W. Patterson

12-4215 Meadowvale Drive Niagara Falls, Ontario
Canada L2E 5W8

Photos by Tish Cox

Having recently acquired a Realistic Patrolman 6 salvaged from the neighborhood garbage can, I decided that some form of indication was needed when I was tuned to the local repeater, VE3NRS. The only thing missing from the receiver was a band-selector shaft. This was easy enough to fix, and the receiver works great! I also use the receiver to
listen to a local net which meets on 144.6 AM every Sunday night at 0230 .

Various magazines were searched for an S-meter circuit; those found were unappealing. Then one day I stumbled across an LM3914 IC and my troubles were over. The LM3914 chip is a monolithic IC which senses analog voltage levels and drives up to ten LEDs, providing a linear analog display. This IC requires no resistors between the IC and the display, as the current drive to the display (LEDs) is regulated and programmable. The display can be used as either a bar or dot array. Another option of the LM3914 is operation from as little as 3 volts to a max-
imum of 18 volts. The IC can drive LEDs of many colors.

Theory of Operation

In operation, the device senses changes in the voltage applied to its input. The unit I built has an input range from 0.13 to 1.3 volts. So with each increase of .13 volts, the IC will turn on an LED in sequence.

Referring to Fig. 1, R1 controls the current going to the LEDs. With a value of 1000 Ohms, current through R1 will be $1 / 10$ LED current, which gives a value of about 10 mA for LED current.

Take a look at Fig. 2. This
is the internal operation of the LM3914. The 1.2 reference voltage is used for comparison of the voltage which is applied to the input. With each increase of .13 volts of the input signal, a resulting comparator will turn on and produce an output at pin 1 and pins 10 to 18 which will drive an LED. The LM3914 could be replaced with a handful of LM339s, but it would seem senseless since cost would rise and there would be more work required in constructing the circuit. Also, more discrete components would be needed.

In Fig. 1, you will notice that the display can be placed in the bar mode by connecting pin 9 to the Vcc

Photo A. The S-meter-inside view.

Photo B. The S-meter-outside view.
line, or in the dot mode by connecting pin 9 to pin 11. The 2.2 -uF capacitor between pin 2 and the LED anode line is added only if the display flickers during operation.

Construction

The circuit was constructed on a PC board made by Radio Shack. The board was cut in half so that the LM3914 could be mounted behind the LED display using standoffs. The LED display I used was an MV57164 also purchased at the local Radio Shack. If you want to save money, you can use ten individual LEDs. Also, I recommend using DIP sockets for the display and the IC.

The entire project was placed in a $4^{\prime \prime} \times 21 / 4^{\prime \prime} \times 21 / 4^{\prime \prime}$ chassis box since there was no room on the front panel of the receiver to mount the display. If you mount the display in a box, you will have to file a rectangular hole to accommodate the display.

I used banana jacks and plugs for the input, bar-dot display, and power connections. I mounted all of the latter on the back of the chassis box, including the calibration pot. However, you can select whatever you think is better. I used $1 / 2$-inch spacers which brought the display to mesh nicely with the chassis.

Fig. 1. Schematic.

Hookup

Once the project is finished, the only external connections needed are power and the input connection to the receiver's discriminator circuit. The power can be supplied from the receiver. Once this is accomplished, apply power to the unit. The display will be either on or off.

Now turn the receiver off but keep the supply to the project on. Adjust R2 until the first LED lights, and then back off on the pot until the LED goes off. Now apply power to the receiver and watch the display. Tune around the band a bit to see the reaction of the display. If you can't get the display to light, check to see that

	Parts List	
Part	Description	
IC1	LM3915	Price
MV57164	LED display	$\$ 5.99$
R1	1k, $1 / 2$-W resistor	5.99
R2	10k pot	.05
C1	2.2-uF, 25-V electrolytic cap	1.00
A1	18-pin DIP socket	.50
A2	20-pin DIP socket	1.19
PCB	Printed circuit board	1.29
	8 1/2-inch spacers, @ .05	2.29
	5 banana jacks, @ .35	.40
	8 nuts/bolts, $1 / 8 \times 2$ inch, © $\times 05$	1.75
		.40
		$\$ 20.85$
All of the parts are listed with Canadian price, and can be		
purchased from Radio Shack.		

you have it in the circuit properly.

Conclusion

I've included a couple of photos of the completed unit so you can see what the device looks like. No longer do I have to tune by ear

Fig. 2. Circuit of the LM3914.
when I listen to the local repeaters. I'm already in the process of building another "Modern S-Meter" for an old, somewhat tired DX-160.

So heat up them soldering irons!

Your Ham Tube

 Headquarters !

Let's Have More Hams

Part I: How to organize and run a Novice class.

Every amateur-radio club attempts, or at least should attempt, a Novice class. Many of these classes wind $u p$ in a shambles very soon, however, as attrition reduces them to a small number of hardy hangerson.
"Oh well," you say, "it's just separating the men from the boys, right?"

Wrong! You are throwing away many potential hams who wanted to get their licenses. They would not have taken the time to show up in the first place if they were not interested. That screening process has already been done for you, so there's no need to do it again.

So, what can be done to better organize and then run a Novice class which has the potential for graduating 100
percent of those who start? Plenty, and most of it has to be done before the first student walks in and stares at an instructor or a chalkboard.

Planning

Planning has to be done well in advance, and several questions have to be answered. What theory and regulations teaching system or syllabus will be used? Which method of teaching the Morse code will be utilized? Where will the class be taught? How often will the classes meet? Who will the instructors be? How will the class be publicized? These are the most important items, and this article will delve into each briefly.

Theory and Regulations

Any attempt to teach ra-
1900-1910
1910-1920
1920-1940
1940-2000
2000-2010
2010-2030
2030-2045
2045-2100
Introductions, names, etc.
Questions and answers
Resistors and capacitors
Ohm's Law, $\mathrm{E}=\mathrm{IR}, \mathrm{P}=\mathrm{EI}$
Break
Morse code practice
Review of Ohm's Law, practical problems
Questions and answers

Fig. 1. Example of a basic teaching plan.
dio theory and regulations without an organized syllabus or teaching plan is doomed to disorganization. The plan must cover the entire subject matter and state exactly what must be taught on which day and in what order. Do not delude yourself into thinking that the FCC syllabus is sufficient. A student teacher in college presenting that document to his teaching supervisor would be laughed out into the hallway with detailed instructions about how much more work was required before he should show his face again.

Break down each class session into precise time periods during which certain matters will be taught. Fig. 1 shows a bare outline for one two-hour session.

Each instructor should have an even more detailed guide, showing exactly what will be presented to the students, both orally and visually. Fig. 2 shows a good example of what an instructor's detailed lesson plan might look like for part of the section on Ohm's Law from the basic teaching plan shown in Fig. 1.

Use a chalkboard, overhead projector, slides, demonstrations, or whatever you have available. A visual presentation has far more impact on getting an abstract idea like voltage or current across to a wideeyed bunch of students who have barely even heard of a resistor, let alone Ohm's Law.

There are several Novice teaching systems available, including those by Radio Shack and Heathkit ${ }^{\text {® }}$. The ARRL "Tune in the World" syllabus is a good, readily available course. It is complete and easy to use as a teaching guide, and it comes complete with a textbook. However, regardless of the syllabus used, be sure it is complete, comprehensive, and presented in a logical sequence. If Extra, Advanced, and old-timer Generals aren't sure if it is a logical sequence, take it down the street to your local junior high school science teacher. Remember, you are teaching people who are not hams and may never have seen a ham radio.

Morse Code

The requirement for learning the Morse code has driven off more potentially outstanding amateur-radio operators than any other barrier. While I am not personally convinced that the code is a valid requirement for a modern ham, it is nonetheless a legal requirement and must be taught. So, why not make it as painless as possible? Do not allow it to screen out scores of new hams before they have had a chance to get started.

After searching the market for Morse-code teaching methods, I have run across two distinct varieties. Both teach the code at five words per minute, initially. However, one teaches each character or letter at 5 wpm (slow style), while the other teaches them at 13 to 16 wpm (fast style). The slow style has characters going by painfully slowly, while the fast style zips them by briskly. The fast style leaves enough time between the characters to give an overall speed of 5 wpm . In my personal experience, there is no question about which is best. The fast style is far superior for learning the characters, and eliminates the necessity of relearning the characters at a higher speed later.

Among the fast styles, there are two subcategories of teaching methods. One of them teaches the letters by groups of dits ($\mathrm{E}, \mathrm{I}, \mathrm{S}, \mathrm{H}, 5$), then dahs ($T, M, O, 0$), then on to the other letters related in much the same way (ARRL's method). The other starts with A and N , then adds T and E, M and I, and so forth, teaching in groups based more or less on opposites (73 's method). I can see merits in both methods and have used them almost interchangeably. The key to the whole thing is teaching the characters at a high speed (13 to 16 wpm), gradually bringing the overall speed
up once the characters are learned. Oh, yes ... if you want them to copy a 5-wpm test without any trouble, teach the code up to about 7 wpm to allow for the jitters.

Now, how to test for code comprehension. Send a 5minute typical QSO, complete with abbreviations, numbers, and punctuation, and see how they do. You can either give a written test, as does the FCC, or just see if they can get a solid minute's copy out of the whole thing. Be consistent and let them know what you expect from the beginning. You are the one who has to sign on the dotted line and guarantee to the FCC that the individual can communicate in the Morse code at 5 wpm .

One big problem nearly always encountered is a shortage of code-practice oscillators (CPOs). If the student doesn't get one in the first few weeks, he will have a hard time keeping up. The club can help out in several different ways. One is to have all those unused CPOs "donated to the cause" and give them to the prospective Novices. A better way is to have each student build one right away. Take part of the students' registration fee ($\$ 5.00$ is more than enough) and buy the parts to make a simple oscillator. Club members can make up some PC boards ahead of time and provide the students with a few soldering irons and a couple of helping hands. By the end of the first session, each one will have his/her own private CPO. Another quicker alternative is to buy up a bunch of Radio Shack's code oscillator modules (cat. \#20-1155) for about $\$ 3.30$ each. These modules will require the addition of a speaker, a battery, and a key.

Another inexpensive and easy-to-build code-practice oscillator is shown in Fig. 3. This project should be easily

Ohm's Law, E=IR
$\mathrm{E}=$ electromotive force measured in volts
$\mathrm{I}=$ current measured in Amperes
R = resistance measured in Ohms
Draw basic circuit diagram on board
Show relationship between variables when one is changed
Do some formula solutions
Example: Voltage $=12 \mathrm{~V}$
Resistance $=2$ Ohms
What is current? Answer: 6 Amps
Fig. 2. Sample instructor teaching guide.
within the capability of the club to help the new student build. One would need to add some sort of mounting for the components, probably a small PC board, wire, a flexible two-strand cable to connect the key, a couple of screws to hold the speaker, as well as any miscellaneous items the builder would want to add. The tone isn't the best, but it is adequate. Probably some variation of the resistors could improve things.

This does not include the key. Radio Shack has a pretty decent one for $\$ 5.95$. The circuit draws about 30 mA at 9 volts with the key down. A 9-volt battery should provide several hours of code practice. The current could probably be reduced some by substituting a $1-u F$ capacitor in the speaker lead. (I didn't have one.) The circuit draws no current when the key is open, so there is no need for a power switch.

Instructors

During my early Naval training at Officer Candidate School in Newport, Rhode Island, I remember one particular leadership lecture. The school had brought in an old captain, whose name I have since forgotten, to talk to us about the mysteries of command and leadership. I remember very little of what he said, except for three rules:

Know your stuff.

Take care of your men.
Be a man.
These three rules, which I am sure he borrowed from someone else, summarize a
lot of things about what an instructor should be.

Know your stuff. Choose an instructor who is very well versed in the material which is to be taught. Even a six-year-old will see right through a faker within five minutes.

Take care of your men. The instructor needs to be constantly in touch with how well the students are grasping the subject matter. Be demanding but person-able-never be reluctant to drop back and teach it all over again with a smile if it did not work the first time. If at all possible, use a different approach. If they didn't understand, it is quite possible that the technique was faulty or the examples didn't make sense.

Be a man. Do not pretend to be Mr. or Ms. Know-it-all. If you do not know the answer to a question, admit it right off and make a note to bring the answer back next class period. The students will not think any less of you if you do not know one or two things. Also, have the moral conviction to stand up for some standards in what you expect of the students to pass the course. Do not let someone get by with what you know very well to be poor ability in Morse code, just because you are afraid to tell him that he has to work harder or do it again.

Teacher-student ratio. Limit the classes to ten or twelve students for each instructor. By keeping the teacher-student ratio down, each teacher can be personally involved with the students' progress.

Class frequency. In many cases, how often the class can meet will depend on how often the classroom is available. Barring this restriction, however, twice a week is best. Once a week can be made to work, but the time between sessions makes the classes almost unrelated. If classes meet more often than twice a week, students (as well as instructors) will start dropping out from time starvation. Remember, ham radio is not the only thing in the world.

Publicity. If no one knows that you are going to have a class, it is hard to gather a crowd. Assign one person (the club's public-relations chairman) to get the word out. Draw up some flyers and get them put up around town. Be sure they get to the junior and senior high schools. If one of the club members works for the local school district, tap him to be the special agent for getting those youngsters notified. They are the best potential hams going because of their unbridled enthusiasm. Most of these kids play around with computers routinely, so electronics is nothing new, and the idea of communicating fascinates them.

Get a spot on the publicservice announcements of your local TV and radio stations. Don't just drop off a note and leave; get ahold of news reporters and bend their ears for a while. Tell them they can film the class for a personal-interest story.

Then, don't forget to look for prospective students in your own backyard: wives, husbands, sons, daughters, friends at work, next-door neighbors. All of these people have probably been in-
troduced to ham radio by knowing you. Heck, offer to pay half their registration fee with the other half kicked back if they pass the test. (I hope you're not in this game for the money.)

Miscellaneous Planning Considerations. Choose one individual to be the Novicetraining coordinator. Then choose a second person to be the Morse-code instructor. Once this is done, you have gone a long way toward ensuring consistency of instruction. The training coordinator must ensure that continuity is maintained between different instructors. The Morse-code instructor will ensure that the students aren't confused by a myriad of different pet methods of learning code. It's hard enough for the students to learn the code without having to fight their way through several different instructors' ideas about how it ought to be done.

For each student, assign a club member to be his "EImer." This individual should be present at the first session, and then he should regularly contact the student throughout the progress of the class. This personal touch is essential to maintain interest, especially when initial frustrations are encountered. It also helps when the time comes to set up the first Novice station, or to answer the frantic telephone call at 9:00 pm concerning the unexplained interference to channel 3. Cet your Elmers out.

The First Class Session

The basic rule for the first class session is to relax the students and introduce them to amateur radio pleasantly. Set up a demonstration of

Fig. 3. Inexpensive code-practice oscillator.
$2 m$ FM, HF CW, and SSB, and throw in some RTTY or ASCII and even some SSTV if it's available. Have the gear set up and tested well in advance with club members planted out in the community for guaranteed contacts.

Make introductions quickly. Pair students off with their Elmers, talk about ham radio a lot, discuss how the course will be run, and build that code-practice oscillator. End it all with the demonstration, letting the students get on the air a bit.

I watched the glazed eyes of several students after they walked out of a first session in which they had been hit with $E=I R, P=I E$, $468 / f(\mathrm{MHz})$, and a list of the Novice operating frequencies. They had little idea of what they had been given, and they felt they were already in over their heads.

So, bring them in gently, then begin talking about the more substantive material in session number two. By then, they have had a chance to talk to their Elmers, get in a bit of code practice, read the text book, and raise a few good questions. Things will be off to a better start with much less early attrition.

Keeping It All Flowing

Once the initial excitement has died away, it is down to the work of teaching and testing. If you have more than one instructor, the class coordinator must constantly be sure that the teaching is consistent between classes. Keep track of each section's progress. If one student seems to be dropping behind, get the assigned Elmer onto the case right away. The Morse-code instructor should be sure that all practice is done consistently and should check each student every class period. Tests should be available every class session for anyone feeling he is ready. Emphasize the impor-
tance of getting that code out of the way first.

Wrapping It All Up

At some point, all the material will have been taught, and everyone will have been given an opportunity to learn the code.
Those who have not passed the code by the end of the program need to have special attention. In most cases, these people are the "Nervous-Nelly" types, who get the jitters each time they take a test, or who have convinced themselves that it is all too hard. With these people you have to pull out all the psychological stops. Be sure these people get with their assigned Elmers. Keep encouraging them. Above all, keep them with other hams and try to maintain their interest.

You will lose some, perhaps, but don't let it happen because you just let them slip away, frustrated. Stay in touch with them, and let them know that it is always possible to try again. It is often easier the second time around.

If you publicize well, and in the right places, the people will respond. Then, by managing the resources available to the local club and by spending a lot of preliminary time in planning and organizing, you can graduate most anyone who sincerely tries. Let's get some more good hams into our community. They are out there just waiting for you to give them a chance.

CPO Parts List

555 timer	$\$.34$
1 k	.05
100 k	.05
.01 uF	.08
2 uF	.13
2 " speaker	1.25
$9-\mathrm{V}$ battery	1.00
battery lead	.10
case	1.99
	(Radio Shack)
Total	$\$ 4.99$

Thanks to WAOPBQ, my dad, for the circuit design and description.

PRESENTS: THE ONLY HAM RADIOCOURSE ON VIDEOTAPE

Ham MasterTapes brings the best oossible personalized Ham Radio icense preparation right into your own iving room. If you, a friend or family nember wants the best help available to jet past the FCC test hurdle, it's ivailable now in Beta or VHS home ideo format.
Larry Horne, N2NY brings his 33 ears of Ham Radio teaching experience ight to your home. Each of the 26 video essons has close-up details of comionents and systems along with superb raphic drawings. Each lesson has nportant points superimposed over the ction and reviewed at the end of each ection. This makes note-taking a snap! liss something? Didn't get it the first me? Just back up the tape and run it gain or freeze-frame it for detailed lose-up study!
Larry's classroom is a real ham shack. ee, a 13 -year-old boy, and Virginia are :d through the learning process. The uestions that they ask are the ones arry knows you would ask if you were lere in person. You soon feel like you're art of an ideal small class.
The topics covered will not only get ou through the Novice test-General ass theory is covered also. By the time su get your Novice license, you will be ble to upgrade to General or echnician!
Larry's technique of involving the zwer with the demonstrations makes
the most difficult topics easy to understand. Understanding-not mere memorization-is what makes Ham MasterTapes so effective. When you study the 700 possible FCC questions, the answers will be obvious.

Larry doesn't stop with just testpassing. All the proper techniques of operating practices and courtesy are demonstrated. The instruction manual for that new rig won't be a mystery! Larry becomes your own personal instructor to help you on that first set-up and contact!
The Ham MasterTapes series is produced in one of New York City's top commercial studios. Not only is the production crew made up of real professionals but many of them are also licensed amateurs. Everybody puts in obvious extra effort to make the production a classic.

The 6 -hour course is available on three 2-hour Beta II or VHS.SP cartridges for $\$ 199.95$,for individual , home or nonprofit Ham Club use. (High schools or colleges must order our Scholastic licensed version, $\$ 499.95$ for Beta or VHS and $\$ 750$ for $3 / 4^{\prime \prime}$ U-matic.)

To order, call or write Larry Horne, N2NY at Ham MasterTapes, 136 East 31st Street, New York NY 10016. Phone 212-685-7844 or 673-0680 MasterCard and Visa accepted. New York state residents add appropriate sales tax.

Let's Have More Hams

Part II: How to take and pass FCC exams.

Take it from me, upgrading your amateur license is a major task. Think about it. First there's the time spent studying, then there's the trip to the exam point (often far away), and finally there's the exam itself.

I know. I've recently returned from taking the Advanced exam. For me, the entire process was fun because I passed the first time. Unfortunately, for some in the room it wasn't fun. They failed. And for some it was their third time.

Despite all protests otherwise, the real reason applicants fail the exam is inadequate preparation. When you go for the written, you must know the material thoroughly.

This is going to be even more important in the future with the recent changes allowing volunteer examiners. You can be sure that the new exams will not be com-
promised easily. Some book publishers may find themselves out of business. The net result will be an increased emphasis on understanding and a reduced reliance on question memorization.

Surprisingly, most, if not all, study materials overlook one important phase of prep-aration-that of preparing your test-taking skills. Remember, the FCC determines your qualifications by administering a test. It's unfortunate but true that a person can know the material but still miss questions because of poor test-taking skills. My goal in this article is to improve your skills. A little time spent on brushing up here could make the difference between passing and failing.

The First Mistake

Mistake number one usually comes long before the applicant walks through the examination-room door. Sometime after he begins

In the circuit shown, what is the value of R1?
A) 24.28
B) $120 Q$
C) 4.88
D) 488

Fig. 1. Sample question one.
studying for his first license, the ham-to-be learns that all FCC exams are multiple choice.

A feeling of pleasure and relief overcomes the neophyte. After all, he reasons, what could be easier? The answer's right there in front of me. All I have to do is pick it out.

This attitude toward a multiple-choice-type exam is the first mistake. Actually, a well-written multiple-choice exam is not the gift some think it to be. It can be one of the most difficult exams to bluff your way through. Multiple-choice questions are written to require a sound knowledge of the covered material. Let's look at Fig. 1, which is sample question number one, and use it as an illustration.

In order to answer this question, we have to know Ohm's Law. To get the answer, you must divide the voltage by the amperage. In this case, B is the correct answer: 120Ω.

If you're well grounded in this basic law, it's no problem. But what if you are
weak on this point? What if all you could recall was that Ohms, volts, and Amps are interrelated and that you can get one by multiplying or dividing the others. somehow or another. If you multiply volts times Amps, you come up with 4.8Ω. This answer also is listed (C) as a possible choice. No amount of inductive reasoning can help you eliminate a wrong answer like this. You must know the material.

The Role of the "GoodLooking" Wrong Answer

FCC exams have often been maligned as being unfair, tricky, or as not really testing your knowledge. Actually, it's not so. The charges stem from the use of the "good-looking wrong answer" in a multiple-choice test. Look back at question one again.

The purpose of this question is to test the applicant's ability to use Ohm's Law to solve basic dc calculations. Therefore, all the answers can be derived by adding, multiplying, or dividing the other numbers in the problem.

How much testing can occur if the wrong answer choices are listed in $\mathrm{kHz}, \mathrm{pF}$, or mA instead of Ohms? Very little, of course. If the wrong answer choices are listed in anything but Ohms, the purpose of the question is defeated.

In order to test the applicant's ability effectively, the wrong answer choices must be similar in form and content to the right answer. In the process of keeping the wrong answers from being obvious, the exam writers create the good-looking wrong answer. These answers are designed to be equally as appealing as the right answer. For the individual with a poor grasp of the material who is just guessing, it can be extremely difficult to differentiate the right answer from a good-looking wrong answer.

Exam writers create goodlooking wrong answers by taking a basically correct answer and modifying it with a misconception. Here's an important point for you to remember as you're taking your exam. When you're considering the various choices, don't be looking for truth in the answer, be looking for error!

All answers will have some semblance of truth in them. Only one will contain no error. The amount of error incorporated in the test answers determines the difficulty of the test. The less error, the more difficult it is to distinguish the right answer from the wrong one.

Let's look at question two in Fig. 2 and use it as an example. Question two is a definition question. The correct answer is C : diode detector. Now look at all the incorrect answers. The words "diode" and "detector" are sprinkled through the wrong answers. They are the truth part. The balance makes up the error part.

It takes a thorough knowledge of the material to
answer the question. If all you can remember is that it's "some type of detector" or "it had a diode in it," your chance of guessing correctly will be minimal.

Now that you're aware of these good-looking wrong answers, be careful to stay clear of them on your exam. Don't jump at the first answer that looks appealing. Look at it closely. Remember, you're looking for error, not truth.

The Multiple Types of Multiple Choice

Although the whole exam is multiple choice, all the questions won't have the same format. In fact, they break down into three distinct types with a different technique needed to correctly answer each type. Let's look at each of them. My goal is to give you a practical technique for getting what you do know down on paper in the form of a correct answer.

Problem questions. The first kind is the problem question. Question one is an example of this kind. This question provides some information about the circuit and then, based upon this information, asks you to determine the value of some other portion of the circuit. To be able to answer this question, you must be familiar with electronic formulas.

The most important step in correctly answering this type of question is to keep your eyes off the answers. I strongly advise that you cover them with a sheet of the scratch paper provided with the exam. The choices that the exam offers are irrelevant at this point and will bias your thinking if you read them.

Having covered up the answers, read the question carefully. Note all the information given. Your answer must be based on this information alone. Don't read anything into it.

Next, determine what

What is the simplest form of an amplitude modulation detector circuit?
A) Transistor detector
B) Balanced detector
C) Diode detector
D) Diode series demodulator
E) Diode rectifier

Fig. 2. Sample question two.
steps you're going to use to arrive at the answer. In question number one you could say to yourself, "I'm going to divide the voltage by the amperage to get the resistance."

Usually the questions are not this easy. You'll find yourself having to do two or three intermediate steps to arrive at the final answer. In the longer problems, this technique really pays off. If you think the problem through in advance, you are less likely to stop short of the final answer or become confused.

The final preparatory step is to decide what is the correct unit of measure for your answer. Is it Ohms, volts, uH , or pF ? Determining this now can help you avoid some of those good-looking wrong answers. It's common to find the result of some intermediate step listed among the answers. Don't get caught.

While all this seems timeconsuming and unnecessary, it's neither. What you've done so far you would have done anyway. The advantage is that you are less likely to make an error if you do all the reasoning in a single step rather than piecemeal as you go. In addition, knowing what you're doing tends to take off some of the pressure. As you relax, you'll probably do better work.

Now start your work by writing down your formula in its symbolic form. It doesn't matter if it's as simple as Ohm's Law. Write it down.

Right now I can hear someone saying, "Hrump! That's dumb. I'll bet Extraclass hams don't write down formulas!"

Well, maybe they do and maybe they don't, but you aren't an Extra (yet). Frankly, it doesn't matter if you ever write one down again after the exam. It is important that you get the right answer this time, and writing it down reduces the possibility of skipping steps in the procedure.

Besides, if you goof, everything's written down on paper in logical order so that you can recheck your work.

Once you've arrived at your final answer (making sure that it's in the same unit of measure that you determined beforehand), uncover the test answers and compare your answer to those listed.

Just a personal observation here: I've rarely arrived at the exact same answer as was listed in an FCC exam. The difference probably lies in where we rounded off very large numbers. Your answer should be close, however. Pick the one closest to yours if you're satisfied you've made no mistakes in your calculations.

Does this sound like a lot of work? Actually, it's no more than you would do any other way. What you have done is to force yourself to think your way through the problem first, then to solve it by following a pattern of logical steps, and finally to avoid letting miscues from those goodlooking wrong answers bias your reasoning.

Definition questions. The second kind of question that you'll encounter is the definition question. It's just what it sounds like. You must choose a word or phrase from the list of answers that the definition in the ques-

A low-pass filter attenuates-

A) -all frequencies below its cutoff.
B) -all frequencies above and below its bandpass,
C) -all frequencies in its bandpass.
D) - all frequencies above its cutoff.

Fig. 3. Sample question three.
tion best describes. Question two in Fig. 2 is our example.

Our number one rule here is the same as with the problem question: Don't look at the answers. Cover them with a sheet of scratch paper. They're irrelevant and can only tend to bias your thinking.

Now, with your answers covered, read the definition carefully. While reading, pay close attention to any limiting words such as "only," "all," "most," "always," etc. These words can affect the answer to the question. Make sure you've noted them when forming your answer.

Having read the question, decide (still without looking at the test answers) what you believe the answer to be. Now you may uncover the exam answers. Your answer will probably be on the list. If not, there will be one that you recognize as meaning the same. You've found your answer.

Again you have gone through a thought procedure that has forced you to arrive at the answer on your own. The definition-type question is where you are most susceptible to the good-looking wrong answer.

Statement questions. The final kind of question is the statement question. This question differs substantially from the two kinds discussed above. Let's look at question number three in Fig. 3 and explain it.

Question three is composed of the beginning of a statement. Each of the answers forms a completion to the statement. You will be asked which one of the possible answers makes a true statement when coupled to the question. Part of the in-
formation needed to answer the question is located in the answer portion, so in this case you must become involved with the exam answers before forming your own answer.

Be cautious, because it's extremely easy to draw a wrong conclusion based on something contained in one of the good-looking wrong answers. As you look at your possible answers, you will find that most of them sound reasonable.

Remember what we said about the good-looking wrong answers being a basically true statement with some degree of error included. The answer that you're looking for here is the only one that makes a completely true statement coupled with the question. Therefore, you should be looking for errors in reasoning.

The best way to handle this question is to treat it as a multi-part True and False question. Look at the same question in Fig. 4. In this illustration we take the question and mentally couple it to answer A ; because answer A when connected to the question makes a false statement, we have penciled an F in front of it. The same process is used as we determine that B and C are incorrect. Answer D when connected to the question forms a true statement. D, then, is the right answer.

You are more likely to get the question right if you treat each answer as a separate True-False statement and look for errors in reasoning.

Statement questions can take several forms. Some may have no information in the question. They may simply ask, "Which of the following statements is cor-
rect?" This is still a statement question and is answered using the same technique.

Statement questions may also take a negative form. You may be asked, "Which of the following is not true?" Special care must be taken to see that you remember that you're looking for the one statement with error. Under the pressure of the exam, it's easy to forget that the question is reversed and panic when you find two statements that are absolutely true.

What To Do When You're Not Sure

It would be wonderful if you had prepared yourself so thoroughly that you knew the correct answer to every question. That's not realistic, though. There are always the tough ones.

Let's review a couple of suggestions that might help when the going gets tough.

First, there's the old stand-by-skipping and coming back to it later. Usually the applicant hopes that there will be something in one of the later questions to help him answer the one he's stuck on.

This suggestion is highly overrated. Exam writers are on the lookout to ensure that information from one question doesn't answer another. The best that you can reasonably expect is to come back to the original question in a different frame of mind.

Another method of finding an answer to an otherwise impossible question is to rearrange the words in the question. Look at Fig. 1 again.

If you can't remember how to find resistance, perhaps you can remember
how to find amperage. With the information given, we can rearrange the question so that we can solve for amperage. Which of the possible answers, when divided by the voltage, gives .2 Amps? Answer B is the only one.

You can do something similar with definition and statement questions. To use this system, look at each of the answers and recall everything that you can about it. Your goal is to eliminate answer choices for which you can recall some other function or characteristic.

Look at Fig. 2 again. Let's assume that you couldn't decide between answers C and E. Perhaps you were unsure because you knew that both were tied in with changing ac to dc. By reviewing everything you can on both subjects, just perhaps you'll recall that diode rectifiers are used in power supplies. Since you can think of another application for diode rectifiers (answer D) but can't think of another use for diode detectors (answer C), then diode detectors is your best choice.

I'm offering no guarantees; nothing is going to give you the answer when you don't know enough. The hope is that one or another of these suggestions may shake something out of the old brain box that you aren't aware is there.

The Follow-Through

You're finished with the exam but not with the chance for a mistake. Like everyone before you, there are probably one or more questions that you're not too sure about. What should you do?

Changing answers is a counterproductive activity.

For the best buys in town call: 212-925-7000
Los Precios Mas Bajos en Nueva York.

We are your FLAGSHIP STORE for the 1984 ARRL National Convention. Join Us. July 20th through 22nd.

R-600, R-1000, R-2000, TS-930S/AT, TS 430S, TR 2500/3500, TR-9130, TR 7950, TW-4000A.
Kenwood Service/ Repair.

ROCKWELUCOLLINS

 KWM-380VoCom/Mirage/Daiwa Large inventory of Tokyo Hy-Power Saxton Wire \& Cable Amplifiers \& 5/8入HT Gain Antennas in Stock

Transceivers

KITTY SAYS: WE ARE NOW OPEN 7 DAYS A WEEK Saturday \& Sunday 9 to 6 PM
Monday-Friday 9 to 6:30 PM Thurs. to 8 PM Come to Barry's for the best buys in town. For Orders Only Please Call: 800-221-2683

FT-ONE, FT-980, FT-230R FT-757GX FT-726R,FT-77, FRG-7700, FT-203R
YAESU ICOM Land-Mobile H/T FT-208R IC2AT Midland FT-708R IC3AT Wilson Mini-Com II FTC-1903 IC4AT Yaesu FTC-2203, FT-4703 ALCIL ICO2AT Icom IC-M12 (Marine)

SMART PATCH
CES-Simplex Autopatch 510 -SA Will Patch FM Transceiver To Your Telephone. Great For Telephone Calls From Mobile To Base. Simple To Use - \$319.95.

DRAKE, TR-7A, L-7, Earth Satellite Receiver ESR-24, THETA 9000E \& 500, EARTH SATELLITE STATION ESS-2250

Nye-MB5 3 Kilowatt Tuner
IC-R7IA, IC-751A, IC-745, IC-27 A/H, IC-37A IC-47A, IC-271A/H, IC-2KL, IC-471A, IC-290H,

SANTEC

AEA 144 MHz AEA 440 MHz ANTENNAS

Computer Interfaces stocked: MFJ-1224 AEA CP-1, Kantronics
Big Ham Clock/Ham Tags ST-222/UP

TET ANTENENAS
Repeaters in Stock:
Yaesu FTR-2410, Wilson
COM IC-RP 3010 (440 MHz)
ICOM IC-RP 1210 (1.2 GHz) Spectrum

MAIL ALL ORDERS TO BARRY ELECTRONICS CORP., 512 BROADWAY, NEW YORK CITY, NY 10012.

New York City's LARGEST STOCKING HAM DEALER

 COMPLETE REPAIR LAB ON PREMISES
"Aqui Se Habla Espanol"

BARRY INTERNATIONAL TELEX $12-7670$ TOP TRADES GIVEN ON USED EQUIPMENT Monday-Friday 9 A.M. to 6:30 P.M.
Thursday to 8 P.M.
Saturday \& Sunday 9 A.M. to 6 P.M. (Free parking) Pald parking lot across the street anytime.
AUTHORIZED DISTS. MCKAY DYMEK FOR SHORTWAVE ANTENNAS \& RECEIVERS. IRT/LEX."Spring St. Station"
Subways: BMT."Prince St. Station" IND."F" Train-Bwy. Station"
Bus: Broadway \#6 to Spring St.
Path-9th St./6th Ave. Station.

We Stock: AEA, ARRL, Alpha, Ameco, Antenna Specialists, Astatic, Astron, B \& K, B \& W, Bash, Bencher, Bird, Butternut, CDE, CES, Collins, Communications Spec. Connectors, Covercraft, Cubic (Swan), Cushcraft, Daiwa, Dentron, Digimax, Drake, ETO (Alpha), Eimac, Encomm, HeilSound, Henry, Hustler (Newtronics), Hy-Gain, Icom, KLM, Kantronics, Larsen, MCM (Daiwa), MFJ, J.W. Miller, Mini-Products, Mirage, Newtronics, Nye Viking,' Palomar, RF Products, Radio Amateur Callbook, Robot, Rockwell Collins, Saxton, Shure, Swan, Telex, Tempo, Ten-Tec, Tokyo Hi Power, Trionyx TUBES, W2AU, Waber, Wilson, Yaesu Ham and Commercial Radios, Vocom, Vibroplex, Curtis, Tri-Ex, Wacom Duplexers, Repeaters, Phelps Dodge, Fanon Intercoms, Scanners, Crystals, Radio Publications.

WE NOW STOCK COMMERCIAL COMMUNICATIONS SYSTEMS
DEALER INQUIRIES INVITED. PHONE IN YOUR ORDER \& BE REIMBURSED COMMERCIAL RADIOS stocked \& serviced on promises.

State of the Art Kits by Hal-Tronix, Inc.

```
TRIS ACCUKEYER NOT ISA AEVISED VERSION OF TEE FANOUS WBNYF ACCUKEVEA BUT WITH SDE TONEON
BOARCOOUES COMPLETE WITH ALI ELECTHONAC PARTS, LESS SOCKETS, POWER SUPPLY ANO CCSEE
ACCUMENOAY tIOI
LOW COST METHOD OF AODING MEVOAY TO TME ACCUKEYEA COMES WITH TWO HOT NEMOQIES SNEM
YOU 2 CHANHELS CAPAOLE OF 3O CHARACTERS PER CHANEL, COMES COMPLETE WTH ALL ELECTHONIC
M,
```



```
LOW COST METHOD OF ADDING UARGER MEMORY TO THE ACCUKEYER. PROVISIONS FOA & 2102'S IONLY' 
MPLETE WITH SOCKETS, LESS 3 OF THE 2102S, LESS POWER SUPPLY AND CASE
                                    SPECIAL OFFER
$1 BUU THE ACCUKEYER AND 1101 OPTON TOGETHER
(ONLVE2200
MONLY 23200
MREYER PADOLEENABLES ONE TO GENERATE DOTS AND DASHES WITM THE TOUCH OF A FINGER NOO MOVINO
PARTSI COMES COMPLETE WITH ALL ELECTMONIC PARTS LESS CASE AND POWEH SUPPLY
                VARIOUS CLOCK KITS
```



```
6DIGIT ELECTRONIC CLOCK KIT, 12 OR 24 MOUAFOAMAT, CONP/
HaL sMsMarm Cloek Kit:
```



```
ONBCARD COMES COMPLETE LESS POWER ADAPTON ANO CKSE.
```


OPERATEOCLOCK COMPLETE LITSS OPTIONS, POWER SUPPLY ADAPTOR AND CASE
OPTION R1-TOMAKEIT AN ALLAM CLOCK
CLOCK CASE, Reg, se. So Clock Cass -Whan Bought with Clock Kit
12 VOLT A.C. ADAPTOR R Reg. S..g5. Whan Bought with Clock KIf
GOHZTIME BASE
HAL NTSC RF MOD

```
\(\qquad\)
CRYSTAL TME BASE KIT USING MMSSO9.
HAL NTTC RE MOD
BULLO YOUR OWH VIDEO RF MODULATOR. A MINITV. TRANSMITIER. FOR CHANNELS 3 OA A USING A S.A
 POWER SUPPLY AND HARDWARE NOTE CASE FOWE SUPPLY AND HARDWARE MAL FE 100






\section*{Free Antenna Accessories Catalog}


\author{
4 Coaxial Antenna Relays
}

Remotely select up to 9 antennas from your transmitter, using only one coaxial cable. Environmentalized, high power and low loss.

\section*{W2AU and W2DU Baluns,}

Our baluns, center insulators and insulators have been preferred for 20 years by Hams, industry, and the armed forces. Protect against TVI and lightning \(1.8-200 \mathrm{MHz}\)


\section*{4 W2VS Antenna Traps}

Add these traps to your dipole and get low SWR on 2 to 6 bands, depending on how many you add. Antenna wire and custom kits also available.

\section*{Send For Yours Today}

Don't delay. Call or write today, and we will send you free literature which fully describes our Ham antenna accessory product line

Dealer inquiries also welcome


6743 Kinne St., East Syracuse, NY 13057 Toll Free 1-800-448-1666 TWX 710-541-0493 NYIHIIAKICanada (Collect) 315-437-3953

Here's a hard and fast rule: Don't change your answers unless you either find an error in your calculation or you recall a specific piece of information that makes you realize an answer is wrong. Don't change your answer because you're having second thoughts. Your first impression is usually your best. Leave it alone.

There's one last thing that you should do before turning in your exam. Take a few seconds to relax from the tension of the exam and then go back over your answer sheet. This time you're looking for errors on your answer sheet. Look at each question and then the answer that you put down on your sheet. Is it the answer that you intend to have there? Under the pressure of the exam, you could easily have marked the wrong answer slot on the sheet. Now's the time to check the sheet and correct any mistakes.

The last step? Turn in your sheet and wait for the result. If you've followed the suggestions given here, your exam will be a true reflection of what you know-and that's what it should be.

\section*{A Word About Preparation}

As I've said before, the key to passing an FCC exam is preparation. You absolutely must know the material. Think about it for a moment. How much real studying have you done? I don't mean reading the Q \& \(A\) manuals, I mean real hon-est-to-goodness studying

Before you waste time and effort taking the exam, consider spending some time, effort, and money on a formal course of study. Not only will it help you get through the exam, it will also make ham radio more interesting.

73, and I hope to hear you on the bands with an "interim" attached to your call!

\section*{HICH PERFORMANGE PRESELECTOR-PREAMP}

The solution to most interference, intermod, and desense problems in AMATEUR and COMMERCIAL systems.


\section*{- 40 to 1000 Mhz - tuned to your frequency}
- 5 large helical resonators
- Low noise - High overload resistance
- 8 dB gain - ultimate rejection> 80 dB
- 10 to 15 volts DC operation
- Size - \(1.6 \times 2.6 \times 4.75^{\prime \prime}\) exc. connectors
- FANTASTIC REJECTION!

Price - \(\$ 89.95\) bipolar w/RCA jacks Connector options: BNC \$5, UHF \$6, N \(\$ 10\)
\(\pm 5\) Mhz@450 Mhz: -50dB
SUPER HOT! GaAs Fet option \(\$ 20\)

\section*{AUTOMATIC IDENTIFIERS}
iD. 1

- For transceivers and repeaters - AMATEUR and COMMERCIAL - Automatic operation - adjustable speed and amplitude
- Small size - easy installation - 7 to 15 voits DC
- 8 selectable, reprogrammable messages - each up to 2 min. long - Wired, tested, and programmed with your message(s) Model ID-1 - \$49.95 Model ID-2 W/2 to 10 minute fimer - \(\$ 69.95\) We offer a complete line of transmitter and receiver strips and synthesizers for amateur and commercial use.
Request our free catalog. Allow \(\$ 2\) for UPS shipping - Mastercard and VISA welcome
10-2


What you DO get is one compact package that TURNS ON RTTY READY No program load, "SYS" commands, or rats nest of external wiring to enjoy the best in CW/RTTY operation. (AMTOR too, if added.)

The simple, uncomplicated design and ease of operation are not to imply mediocre performance. On the contrary, Microlog's years of software and hardware experience combine in the AIR-1 to provide a level of performance found only in much more expensive dedicated systems. Compare for yourself or ask an AIR-1 owner, they're our best salesmen!
- Computer-enhanced detection means extensive use of software digital filtering techniques for noise and bandwidth that track the operating speed and code.
- Full speed RTTY 60 to 132 WPM, CW to 150 WPM, \& 110/300 Baud ASCII.
- Choice of full- or split-screen display with large type ahead text buffer and programmable memories.
- On-screen tuning indicators mean you never have to take your eyes off the video for perfect copy tuning. RTTY "scope" cross-hatch and "red-dot" signal acquisition monitor right on the screen.
- Keyword or manual control of VIC or Parallel printer and receive buffer storage.
- Convenient plug-in jacks for all connections.
- Single board design contains TU \& ROM software that does not require external power.
- Full one-year warranty
- WRU, UNshift On Space, Word wrap-around, Test "Quick Brown Fox" \& "RYRY" in ROM. Break buffer, Random Code generator, Handkey input, Real-time clock, sturdy metal cover and more.

AIR-1 for VIC-20 or C-64 \(\$ 199\) (with AMTOR \(\$ 279\) ). Microlog Corporation, 18713 Mooney Drive, Gaithersburg, MD 20879 Tel: 301-258-8400

\section*{MICROLOG}

INNOVATORS IN DIGITAL COMMUNICATION
Note: VIC-20 is a trademark of Commodore Electronics, Ltd.
Copyright © 1984 Microlog Corporation

\title{
Son of Nicad Conditioner
}

\section*{This intelligent discharger knows when to stop and tells you how much time it took.}

Ifound the "Nicad Conditioner" article by W2KPE (73, April, 1981) quite interesting, having previously constructed a similar device. The nicad conditioner discharges a battery pack each time before then recharging it.

I recently needed to construct another for the local security force which was interested in cycling its batteries. Since they already had a battery charger set up to "rapid-charge" batteries, I decided to build only W2KPE's simple discharger (shown in his Fig. 1, reproduced here) Several problems immediately developed with his simple circuit. First, it would not stop the discharge at the desired cut-
off voltage; it just turned into a buzzer. And if the battery was accidentally connected backward, the control transistor burned out instantly. My improved circuit corrects these problems and adds a simple timer to make life-testing of batteries much easier

First, some background for those who may not have read the earlier article. The nicad batteries commonly used in hand-held transceivers have one undesirable characteristic: memory. They tend to remember the way in which they have been used. If they have been used only lightly, or not at all, any attempt to heavily and fully discharge them will result in a quick


Fig. 1. K2KPE's conditioner/discharger circuit.
discharge-much quicker than their Amp-hour rating would suggest. (See Fig. 2.) This is especially true if they have been continuously charged without use for a long period. It has been shown that completely charging and discharging the battery several times (cycling) will erase the memory and restore full capacity.

A single nicad cell may be safely and fully discharged by merely placing a suitable load resistor across it (Fig. 3) and waiting for the voltage to go to zero. This, however, is not suitable for discharging nicad battery packs. If we let the nicad pack discharge to zero, a

discharge time
Fig. 2. Nicad discharge characteristics. Note early drop associated with memory.
very dangerous phenomenon can occur. Some of the cells in the pack will discharge to zero before the others, due to mismatch of cell capacities. The cells which reach zero volts first will still have current being forced through them by the others. This will tend to re-verse-charge (change the polarity of) these cells. Once a nicad is reverse-charged, it is very likely to short out. If a single cell in a pack shorts out, it will no longer take any charge and can only be rescued by heroic measures.*

To reduce the possibility of reversing any cells, it is good practice to halt the discharge of a nicad pack when its voltage drops to just less
""Zapping Dead Nicads to Life," K2OAW, 73, January, 1976.


Fig. 3. Single-cell discharger.


Photo A. The mounting of the discharger is not critical. This version was built into a \(3^{\prime \prime} \times 5^{\prime \prime} \times 7^{\prime \prime}\) mini box.
than 1 volt per cell ( 10 to 12 \(V\) for a 12 -cell, 15 -volt battery pack).

W2KPE's final circuit, with a latch to start the charger, probably worked just fine. However, his basic circuit has two problems:
1) When the battery reaches the point of discharge \(\left(\mathrm{V}_{\text {bat }}=\mathrm{V}_{\mathrm{z}}+.7\right.\) volts \()\), the relay opens and removes the load. The battery voltage increases when the load is removed, causing the relay to pull in, loading the battery, and the cycle repeats rapidly. This makes a good buzzer to tell you the battery is discharged! However, it leads to a serious life problem for the relay, and I prefer to use an LED as an indicator to minimize noise pollution.
2) If the battery is connected backward, virtually the entire battery voltage is placed across Q1's baseemitter junction. Unfortunately, the breakdown voltage of most transistor baseemitter junctions is less than 6 volts. Once the junc-
tion breaks down, there is nothing to limit the current flow and the transistor burns out.

In my improved circuit (Fig. 4), the discharge cycle is started via zener 1 . \(\mathrm{Z1}\) 's voltage was chosen so that the discharger will start auto matically only with a good, fully-charged battery. Once the relay pulls in, zener 2 is connected. The battery will continue discharging until its voltage drops to less than \(\mathrm{V}_{\mathrm{Z} 2}+2.1 \mathrm{~V}\). The series diode, D1, prevents polarityreversal burnout. D3 keeps R2 from drawing current (through Z1 and Z2) with the relay open.

To use the discharger, first charge the battery in the normal way and then connect it to the discharger. If the discharge LED (D4) comes on, there are no shorted cells. If not, the battery has a shorted cell or may not have been fully recharged. S1 allows the discharge of low-voltage batteries to start. Once the discharge cycle is started, just


Photo B. The discharger and CMOS timer are built on a piece of IC perfboard.
sit back and wait for the LED to go out. The length of time that the LED stays on is proportional to the battery's capacity.
A discharge timer (Fig. 5) is a very useful addition. It allows a relative measurement of battery capacity without constant attention. The circuit measures the length of time it takes to discharge the battery. To use it, discharge the battery as above. Once the LED goes out, push the "read" button before removing the battery. The number of minutes it took to discharge is displayed in binary by LEDs D5 through D12.

The timer circuit is quite simple. IC1, a 555 timer, runs as a \(1 / 64\)-minute oscillator whenever the relay is pulled in. Its output drives a 14 -bit CMOS counter, IC2. The last 8 bits are displayed by LEDs D5 through D12. R6 and C2 act to reset the count to zero upon battery insertion. The CMOS counter is always connected to the battery. Its current drain is so low that it does not further discharge the battery once the relay opens. As long as the battery voltage remains above 3 volts, it will remember the discharge time. S2 connects the display LEDs only when a reading is desired, so that the battery will not discharge significantly after the relay opens.

I was only interested in re-
lative discharge times, so the timing of a 555 was adequate. A crystal-controlled clock could be substituted if greater accuracy is needed.

\section*{Design}

Select zener 1 so that \(\mathrm{V}_{\mathrm{Z} 1}+1.4 \mathrm{~V}\) is just less than the fully-charged battery voltage. Select zener 2 so that \(\mathrm{V}_{\mathrm{Z2}}+2.1 \mathrm{~V}\) is your desired cutoff voltage (usually equal to 1 V per cell in the battery).

\section*{Zener Diodes}

In selecting zener diodes, I ran into two problems:
1) They are made with fairly broad tolerances; usually I had to pick from several to get the exact voltage I wanted.
2) Above 10 volts, they are available only in fairly coarse steps.

Since the cutoff voltage is not critical, this caused no problem with Z2. However, I wanted to set the turn-on voltage fairly accurately. My solution was to stack 2 zeners in series for Z1 (see Fig. 6). The zener voltages effectively add. Because low-voltage zeners are available in finer steps, this made possible a more exact setting of the turn-on voltage.

I started with the existing Z2 (8.2 V) and placed a 5.6 -volt \(\mathrm{Z1}^{\prime}\) in series, giving an equivalent \(\mathrm{V}_{\mathrm{Z} 1}\) of 13.8 volts. This set the turn-on voltage at 15.2 volts.


Photo C. Press the read button and see the discharge time in binary form. This battery has been discharging for 39 minutes \((32+4+2+1)\).

\section*{Zener Substitute}

A crude but effective substitute for the zeners can be made with several seriesconnected forward-biased diodes. Eight series silicon diodes will work as a 5.6 -volt "zener." Each additional diode raises the voltage by about .7 volts. Any small silicon diodes such as 1N914s will do. While series diodes take up much more room, they offer the advantage of easily setting the voltages with good resolution (. 7 V ), and at 10 for \(\$ 1\) (Radio Shack part no. 276-1122), they are cheaper and easier to get than standard zeners. The voltage drop across each diode is not very precise, so you may have to experiment to get the exact voltage you need.

The load resistor should draw about the same current as your transceiver does in transmit \(\left(R 2=V_{\text {bat }}\right.\) \(I_{\text {trans }}\) ). R2 will get hot and must be a power resistor. If your load current is fairly low, you may want to include the 20 mA or so that the relay and indicator LED draw in the discharge calculation. Because the CMOS counter can only safely drive \(3-\mathrm{mA}\) loads directly, set LED current-limiting re-
sistors R7 through R14 for 3 mA at fuli battery voltage.

The values in the parts list


Fig. 4. Improved discharger with polarity protection and shorted-cell detection.
are what I used for Motorola 15 -volt ( 12 -cell), \(450-\mathrm{mAh}\) batteries discharged at 300 mA .

\section*{Construction}

Nothing is particularly critical. I built my unit in an aluminum Bud box, with a sleeve from a charger mounted on top. All of the circuitry except the load resistor is mounted on a small piece of perfboard. The
switches support the board and the LEDs are positioned to show through holes cut in the top. The load resistor gets moderately warm, so adequate ventilation should be provided.

An alternative to the CMOS timer is a standard electric clock. If a doublepole relay is substituted for K1, the second pole can control a 110-volt-ac outlet (Fig. 8). An ordinary electric

\section*{Parts List}
\begin{tabular}{|c|c|c|c|}
\hline Part & Description & Radio Shack part number & Price \\
\hline C1 & 1-uF, \(50-\mathrm{V}\) ( \(16-\mathrm{V}\) ) & 272-1419 & \$. 49 \\
\hline C2 & . \(33-\mathrm{uF}, 50-\mathrm{V}(.47,16-\mathrm{V}\) ) & 272-1417 & . 49 \\
\hline D1, D2, D3 & 1 N 4001 silicon diode & 276-1101 & . 75 \\
\hline D4 & Jumbo red LED & 276-041 & . 40 \\
\hline D5-D12 & Mini red LED & 276-026 & 3.16 \\
\hline IC1 & NE555 timer & 276-1723 & . 99 \\
\hline IC2 & CD4020B CMOS counter & Active Elec.** & . 63 \\
\hline K1 & SPDT relay, 12-V, 1000-Ohm coil & 275-003 & 2.99 \\
\hline Q1 & 2N2222 NPN transistor & 276-1617 & . 20 \\
\hline R1 & 8.2k, 1/4.W (6.8k) & 271-1333 & . 08 \\
\hline R2 & 50-Ohm, \(25-\mathrm{W}\) (10-W) & 271-133 & . 45 \\
\hline R3 & 1.8k, 1/4.W & 271-1324 & . 08 \\
\hline R4 & 1-meg, 1/4-W & 271-1356 & . 08 \\
\hline R5 & 180k, 1/4-W ( \(150 \mathrm{k}, 1 / 2 . \mathrm{W}\) ) & 271-047 & . 09 \\
\hline R6 & 100k, 1/4-W & 271-1347 & . 08 \\
\hline R7-R14 & \(5.1 \mathrm{k}, 1 / 4 . \mathrm{W}(4.7 \mathrm{k})\) & 271-1330 & . 63 \\
\hline S1, S2 & SPST NO push-button & 275-1547 & 1.00 \\
\hline Z1' & 1N751 5.1-V zener (1N4733) & 276-565 & . 45 \\
\hline \multirow[t]{9}{*}{Z2} & 1N756 8.2-V zener (see text) & & \\
\hline & Metal chassis ( \(\left.5.25^{\prime \prime} \times 3^{\prime \prime} \times 2^{\prime \prime}\right)\) & 270-238 & 2.49 \\
\hline & IC perfboard, \(1.5^{\prime \prime} \times 4^{\prime \prime}\) scrap & \(276-168\left(2^{\prime \prime} \times 3^{\prime \prime}\right)\) & 1.95 \\
\hline & Charger contact sleeve & Motorola*** & \\
\hline & for HT 220 "Omni" (1 have often & P/N 15-84799H03 & 4.55 \\
\hline & found fully-assembled used & + 2 04-84734H01 & . 18 \\
\hline & charger sleeves at ham flea & +2 39-05605A01 & 1.32 \\
\hline & markets for only \$2-3.) & + 2 14-82296E01 & . 80 \\
\hline & & +2 41-82093A02 & . 53 \\
\hline
\end{tabular}

\footnotetext{
- All of the parts I used were found in the depths of my junk box. I have listed the nearest equivalent Radio Shack parts where possible. Any difference between the part used and the (Radio Shack) part is noted with parentheses.
* Active Electronics, PO Box 8000, Westborough MA 01581.
*. Motorola C \& E, 85 Harristown Rd., Glen Rock NJ 21076. For other radios, either contact manufacturer for charger replacement part or home-brew suitable contacts out of nails or sharpened screws and plastic.
}



KANTRONICS
JL Interface
\(\$ 179.00\)
Interface II
229.00

Large Variety of Software Available
for RTTY, CW, Ascii \& Amtor
CALL FOR PRICES \& INFORMATION
KEN-PRO
KR-500 Elevation Rotator
\(\$ 179.00\)
LARSEN
NLA 150 MM \(5 / 8\) Wave 2 M Mag. Mt. .... \(\$ 39.95\) MFI
9410 Tuner, MTR, Switch, Balun, ....\$89.95 989 3Kw Roller Inductor Tuner ... 289.95 1224 \& 1228 Computer Interfaces CAL 36.00

VERY LARGE STOCK OF MFG. PRODUCTS
CALL FOR DISCOUNT PRICING
MIRAGE


TOKYO HY-POWER CALL FOR DETAILS
YAESU


Send SASE for our new \& used equipment list. MON-FRI 9AM-6PM • SAT 9AM-3PM

\section*{USED EQUIPMENT}


This list was compiled 5/15/84. Our used equipment changes daily. Please write or call for our cur-
 rent listing.

\(\$ 39.00\)
.\(\$ 209.00\)

\(\$ 225.00\)
159.00
119.00

\(\$ 850.00\)
950.00
75.00
35.00
\(\$ 169.00\)
\$ 675.01
\(\$ 550.00\)
\(\$ 550.00\)
325.00
325.00
269.00
69.00
25.00
139.00
100.00
169.00
\(\$ 1,875.00\)
699.00
149.00
139.00
355.00
\(\$ 1.199 .00\)
689.00
599.00
629.00
629.00
699.00
699.00
789.00
789.00
499.00
499.00
479.00
169.00


\section*{Send SASE for our new \& used equipment list. ICOM, WILSON, KENWOOD MON-FRI 9AM-6PM - SAT 9AM-3PM}


Photo D. If you don't like ICs, use an electric clock. This discharger uses the guts of an old kitchen clock as the timer.
clock can then display the elapsed time. While this is easier to build and read, the cost of the clock is higher, it would not reset itself, and it is not as portable.

A few words of caution: This device is very useful but it is not a panacea.

Nicads can lose capacity for reasons other than memory, in which case cycling will not restore full capacity. One of the prime causes of early failure is overly-rapid charging, leading to overheating and electrolyte discharge. Once a cell's seal



Fig. 5. Discharge timer. Each lit LED represents a fixed time since the discharge started. Add all the illuminated times to get the total time of discharge.
has been broken and the internal electrolyte vented, there is no way to restore lost capacity. For this reason, unless you are very confident that your "rapid charger" can limit any temperature rise, I would never recommend charging any faster than at a .1-C rate. This means that the charge current is set to one tenth the milliampere-hour capacity (C) of the battery. For my \(450-\mathrm{mAh}\) batteries, this requires a charge current of 45 mA . It takes about 16 hours to fully recharge a battery at this rate. Most manufacturers claim their cells can withstand this charge rate indefinitely without failure.

Nicads have a finite life of only several thousand discharge cycles. Since each full cycle by the discharger represents one of them, it seems best not to allow your battery to develop a memory by fully using it (transmitting) rather than cycling it. Unfortunately, many hams' lifestyles don't permit this. The radio sits in the charger till the weekend, or maybe they prefer to listen most of the time. In these cases, occasionally cycling the battery makes sense, especially before big events when you will need longer-than-usual service.

In summary, nicad batteries need occasional cycling to remove memory effects. Care must be taken in discharging nicad batteries to prevent cell-reversal damage. An improved discharge device is presented for use by those who already have a suitable charger. The


Fig. 6. Zener arrangement for improved resolution in setting turn-on voltage.


Fig. 7. Series-diode substitute for zeners. Any silicon diodes will do. 1N914s or 1N4001s are fine.


Fig. 8. Electric clock used as a timer. This requires an extra pole on relay K1.
improved discharger can detect the presence of shorted cells, is not subject to reverse-voltage burnout, and is silent in operation. A timer has been added to aid in judging battery capacity.
Over the last several years, this battery discharge device and its predecessor have kept my batteries up to snuff and enabled me to salvage several perfectly good battery packs from the reject piles of local commercial users.

\section*{and Satellite Communications Enthusiasts}

\section*{Introducing New Ultra High Performance Antennas from KLM Electronics, Inc.}

KLM Electronics is fueling the Moonbounce and Oscar 10 revolution with Antenna Equipment that delivers truly Out-of-This-World performance.

For the Moonbouncer, our New 2M-16LBX is designed to be the highest gain 2 meter antenna available on the market today by more than a full db , making the \(2 \mathrm{M}-16 \mathrm{LBX}\) an outstanding performer as a single antenna or in Moonbounce (EME) arrays.

The New 432-30LBX follows the same pattern as the \(2 \mathrm{M}-16 \mathrm{LBX}\), and soon will become the industry's standard of comparison.

Featuring straight forward construction, and an innovative tapered boom that greatly reduces windload and adds strength and durability. Virtually unbreakable, insulated, \(3 / 16^{\prime \prime}\) rod parasitic elements are anchored through the boom to insure years of trouble-free performance.

For the satellite enthusiasts, the \(2 \mathrm{M}-22 \mathrm{C}\) high gain 2 meter, circular polarized antenna, features the same rugged construction and total flexibility as our very popular \(2 \mathrm{M}-14 \mathrm{C}\) with a 2 db increase in gain.

Four or more 2M-22Cs make an excellent array for Moonbounce (EME) by eliminating Faraday fading.

Fiberglass/aluminum stacking frames are available as well as 2 and 4 port power dividers and phasing harnesses to optimize the performance of these type arrays.
Watch for our new elevation drive system coming soon.


432-30LBX
BANDWIDTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430- 440 MHz
*GAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.3 dBd BEAMWIDTH ..................................... (E) \(19^{\circ}\), (H) \(20^{\circ}\) FEED IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ohms unbal. BALUN included BOOM LENGTH ................................... \(21 \mathrm{ft} 11 in.\). F/B \(\ldots \ldots \ldots \ldots \ldots \ldots . .20 \mathrm{~dB}\) F/S . . . . . . . . . . . . . . . . . 30 dB VSWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5:1 WINDLOAD . .................................... 1.71 sq. ft. (max.) TURNING RADIUS ..................................... 12 ft .4 in. WT. (lbs.)
.\({ }^{9} \mathrm{lbs}\).


2M-22C



2M-16LBX
BANDWIDTH ..................................... 144-146 MHz
*GAIN ........................................ (144 MHz) 14.5 dBd
BEAMWIDTH ................................... (E) \(26^{\circ}\), (H) \(29^{\circ}\)
FEED IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ohms unbal.
BALUN .................................... 4:1 coaxial, 2 KWPEP
BOOM LENGTH .............................. 28 ft .1 in. (tapered)
VSWR ............................................................ 1.5:1
WINDLOAD . ................. (H) 1.75 sq. ft. (V) 2.44 sq. ft. max.
WT. (Ibs.) ..................................................... 10 lbs.
TURNING RADIUS .................................... 15 ft .5 in.
See the complete line of KLM antennas and equipment at your local dealer, or write for our catalog.

\footnotetext{
* To provide a more accurate and consistant gain figure, performance of this KLM antenna has been carefully measured and correlated in accordance with National Bureau of Standards Note \(\# 688\). This gain figure may appear somewhat conservative when compared with others commonly found in conventional industry literature and based on older, less exacting rating methods:
}

\title{
Perfboard and Soldertail?
}

\section*{Definitely. What is commonly done is never written up (until now) but always appreciated.}
L. B. Cebik W4RNL 2514 Dereck Drive, \(\mathrm{H}-1\) Knoxville TN 37912

Many ham authors specify perfboard construction for their one-time projects. Then they say atmost nothing more about the mechanics of building the circuit on the board.

Photos and sketches give us a general idea of the construction methods, but very few articles exist on using perfboard construction effectively. In the spirit of sharing some ideas that have worked well for me over the years (along with some cautions about a few things that lead to trouble), let's see how we can improve our perfboard projects.

Printed circuit boards for transistor and IC projects make construction a breeze. Unfortunately, PC boards are not practical for every project. If an author does not provide us with a source for ready-made boards (and we should not expect every author to make a PC-board layout for his own one-time project), then our willingness to generate our own boards depends on many


Fig. 1. Planning component layout on perfboard.
factors, including time, ability, and desire to design and fabricate the etched pattern. For many small-to-moderate-size one-time circuits, perfboard construction is more practical.

Many types of digital circuits which use few passive components call for wirewrap techniques. Most ham circuits, however, will require soldered connections. Therefore, we will concentrate on soldertail techniques applied to perfboard construction. Adaptation of these ideas to wire-wrap projects should be easy.

\section*{Handling Perfboard}

Perfboard is generally made from a phenolic material, usually about \(1 / 16\) th of an inch thick. This immediately limits its utility since it is prone to slight warps in readily-available grades. For PC boards, use the more stable epoxy glass material. For point-to-point wiring on perfboard, the warp is usually not significant in boards up to 5 by 7 inches.

There are several hole patterns for perfboard. Hole separations of .1, 187, and . 2 inches are common, but 1-inch hole spacing is the most practical for ICs. For most uses, .042 -inch hole diameters are best, although . 062 -inch hole diameters are available. The smaller holes again work best for IC projects. In fact, the 042 -inch holes on .1 -inch centers precisely fit the needs of ICs and their sockets. Conveniently, Radio Shack carries this type of board in three sizes: \(2.75,4.5\), and 8 inches long, all by 6 inches wide. My own preference is to buy the larger sizes and cut the precise size board my latest project requires.

Phenolic material has some of the properties of mica in that it chips in jagged layers and does not break cleanly. However, with only a little care, it cuts and drills easily. A hack or coping saw with a fine tooth blade cuts perfboard well if you align your cut with a row of holes. Keep the saw blade as parallel to the board as possible, with no more than a 30 -degree angle. This technique reduces binding as you pass holes, and the result is fewer broken phenolic scraps. For safer sawing, I clamp the perfboard between two quarter-inch-thick lath strip scraps with a bench vise. The edges of the lath strips are within a row or two of the holes I intend to cut along, which stabilizes the perfboard, and the vise cuts into the wood and not the phenolic. I keep any leftover pieces of perfboard more than one inch square, since I never know when I might need one for a miniature project or a small circuit addition.

Drilling perfboard for screws and other hardware is fairly simple. Use a scrap of wood to back up the perfboard when drilling; this prevents drill-bit snags that can
shatter a small board. In general, a \(1 / 8\)-inch diameter drill bit clears \(4-40\) screws nicely, while \(9 / 16\) is the correct drill-bit size for 6-32 screws. I usually avoid drilling holes larger than 9/16inch diameter in one try since the large drill bits tend to snag the phenolic material more easily. For larger openings, drill out the perfs inside the desired perimeter until the scrap falls out and then file the material to the final opening size. Another technique is to drill the corner holes, insert a coping saw blade, and saw the opening. You will usually still need a bit of finish filing. One of the advantages of perfboard is that you can add larger openings for relay sockets and other components more readily than with PC boards.

Generally, I try to do all necessary drilling and cutting at one time before mounting components to get in the way of clamping and backing. There are few more frustrating accidents than to have your complete circuit wired, only to watch the perfboard crack or shatter as you try to drill just one more mounting hole.

\section*{Perfboard Layouts}

One secret to easy electronic construction is paper. The more complete your plans, the more smoothly the project will go together. Even if you are reproducing an author's circuit exactly and have good photos to guide you, paper planning still can save you time and frustration. As inexpensive as many of today's components are, paper is still cheaper.

Example 1. Being able to cut and drill all holes before wiring is a matter of knowing just where they all go and what size they must be. Making some trial paper templates using the real components you have on hand will allow you to determine their size and spacing.


Fig. 2. Trimming transistor leads to fit IC sockets.

In addition, the practice also will let you revise the project and spot errors or neglected needs. You can see how much room you need to clear the mounting brackets or posts, how much space the transformer mounting foot requires, and how much filing you will need to do after cutting a hole for a relay socket. Then you can plan the circuit details so that everything will fit conveniently.

Example 2. Equally important is the component layout. Fig. 1 illustrates two important considerations: socket pin orientation and component placement. The IC timer, a 555 , runs its timing components to pins 6 and 7 , while the output emerges from pin 3. Even though we conventionally think of "upper left" as the proper place for pin one, this project calls for an "inverted" placement of the 555 socket. Now the timing components are near the board edge so that leads to the potentiometer are conveniently reached. Too, the output pin is close to the input pin of the next IC.
In digital circuits, socket placement can make jumper wiring either easy or a jumbled nightmare. In counting and readout circuits, you may have several outputs to several inputs.


Fig. 3. Using posts for offboard connections.

Aligning the jumpers neatly makes short work of the wiring. Having them go over and around an IC to reach the input pins invites undetectable open circuits and other typical building problems.
Leave room enough for the components that go between sockets. Perhaps the best way to be sure your plan will work is to trial-fit all components on uncut perfboard. This practice often reveals unnecessarily long leads and other minor wiring problems before you cut leads. The result is often a revised layout plan. Sometimes, when 1 am smart enough to have a large extra piece of perfboard on hand, I place all components on the supplementary board. Using this model, I mark the project board for cutting and drilling. Then I move the


Fig. 4. Using posts to separate circuits for testing and adjustment.


Photo B. A dual-regulated power supply on perfboard supported by posts.
components, one at a time, to the project board. This technique tends to cut considerably both assembly time and errors.

Transferring a layout plan to perfboard requires only a pencil and ruler. Measure and lightly mark the positions for holes. You also can mark the corners of IC sockets and large components for reference. The only precaution here is to eliminate pencil markings completely before covering them with components. Pencil lead is a conductor: not a good one, but good enough to have given me an additional input to a CMOS IC in one project. Erase pencil marks thoroughly just before mounting components.

\section*{Handling and Wiring Components}

It would be impossible to
establish guidelines for handling every kind and combination of components you might encounter, but the following ideas are adaptable to most projects.

First, use IC sockets wherever possible. Use them not only for ICs, but for switching transistors as well. An 8 -pin DIP socket will handle two small transistors if you trim and bend the leads as shown in Fig. 2. The advantage of IC sockets over readily-available transistor sockets is that the latter require a fairly large hole through the perfboard. The IC socket rides atop the board with its pins sticking through.

Second, use posts for all off-board connections. Do not run off-board wires directly to components or socket pins. The strain may be too much. Fig. 3 shows


Fig. 5. Mounting components to perfboard.


Fig. 6. Under-board compo-nent-lead junctions.
the right and wrong way to connect off-board wires. An added advantage of posts is that you can connect and disconnect off-board components from the top side, which makes final assembly of the project a much easier matter.

There are many additional uses for posts, a few of which are illustrated in Fig. 4. You can separate stages of a circuit until after testing by using a pair of posts at the outputinput point; a jumper then connects the two circuits for normal operation. This technique permits you to adjust interstage signal levels with no danger of overloading the next device. Paired posts, again jumpered for normal operation, also permit current measurements during the test phases of a project as well as during troubleshooting. I prefer Vector T-46 wire-wrap posts, available through Jameco and other mail sources. The T-46 extends .4 inches above the board and .56 inches below. Its square shank and flare give it good holding power in the perfboard hole. After all soldering, trim the aboveand below-board lengths. Below-board, be sure that


Fig. 7. Mounting jumpers on perfboard.
the post does not touch the chassis or cabinet base. Above-board, cut the post to the height of the tallest circuit component. Wire cutters do the job nicely.

Third, do not crimp components when bending their leads. Some builders prefer to top-mount all components. For this technique, Vector T-42 posts (or similar) permit soldering up to about three leads per junction. However, this method usually requires more space than making direct connections with component leads bent to pass through the board. Fig. 5 shows some right and wrong ways to handle components such as resistors, diodes, and capacitors. Axial-lead components such as resistors require curved bends to avoid eventual lead breakage. Often this takes one more hole, but that is a small price for circuit reliability. Where space is at a premium and component interaction is not a problem, vertical mounting is practical. Wherever you take care in smoothly bending component leads, you will encounter fewer cases of component strain or breakage, even if your layout does not permit instant solder support.

Fourth, when you use component leads to make connections, decide in advance for every junction which lead will serve as the key or post lead. Fig. 6 illustrates the idea. The capacitor lead serves as a post to which the resistor and diode connect. The reasons for choosing the capacitor lead


Fig. 8. Perfboard power and ground buses.


Fig. 9. Soldering leads to IC sockets.
in this example are three. The capacitor lead is the fattest and strongest and thus makes a better post. Too, the capacitor is permanent, whereas the resistor may require another value after testing the circuit. Finally, the capacitor can stand soldering heat somewhat better than the diode.

This case gives only a small sample of the reasons why one or another component may become the junction post; each will have its own rationale. Nevertheless, avoid bringing leads from many directions and simply twisting them together. The under-board layout may be as crucial to reliable circuit operation and ease of revision as top-board component placement.

Fifth, run jumpers topside and through the board at their ends, as shown in Fig. 7. This technique serves several useful purposes. It permits you to trace wiring after the board is mounted. It also takes the strain off the jumper wire, especially if you happen to snag it during construction. Standardizing on top-wire runs also reduces the chances of los-
ing track of jumpers while building. Although excessive looping of jumpers creates an unsightly project board and potential trouble in sorting through the maze, do not put excessive strain on the wires to pull them flat against the board. Leave enough slack to prevent wire breakage, either immediate or later. Then press the wires into place.

These simple guidelines to component handling are mostly matters of common sense. You can add to the list according to your own building experiences. Unfortunately, we often forget these rules while building, usually through either haste or distraction. There is nothing like a soldering iron burning a hole in the test bench to cause us to mishandle a component. If we could only remember which component we were installing during the incident, we would know the first place to look when the circuit malfunctions. If you do not believe it happens, I have two look-alike IC voltage regulators, one positive, one negative, that I once installed under just such conditions.


Fig. 10. Mounting single perfboards vertically.

That neither works is proof that I put each where the other should have gone.

\section*{Wiring Perfboard Projects}

Wiring and soldering a perfboard project can be one of two things: easy or frustrating. Easy wiring requires that we figure out the best way to handle the peculiarities of attaching components and wires to a phenolic board with a hundred small holes per square inch. I wish that I had known what I now know (through experience) back when I miswired my first perfboard.

No. 18 copper wire is the largest that will fit through the . 1 -inch holes of IC perfboard. For most purposes, No. 18 wire is too large for all but heavy current buses, such as voltage and ground lines on a TTL project. No. 22 or 24 solid hookup wire works best for most wiring. Anything smaller grows hard to handle and solder. We can make off-board connections with stranded wire of the same size.

If we have made a good layout plan, the wiring task should be straightforward. For non-rf projects, I usually begin with voltage and ground buses, arranged as shown in Fig. 8. Long runs pass above and below the board at least once to anchor them in place. Rf projects that require large areas for the ground plane may not be the best projects for perfboard techniques. For dc and lower ac frequencies (up to a few MHz ), perfboards and buses work well. Jumpers provide voltage
and ground connections to the individual components.

Wiring IC sockets presents problems to many builders. Whether working with PC or perfboard, we manage to lose the sockets as they fall off the board the moment we turn it over to solder. There are many tricks to hold the sockets in place. If there will be unused pins, bend them inward so that the socket lightly grips the board. Some builders put a tape loop under each socket to secure it during construction. Alternatively, you can use a small flat box on which to lay the inverted board for the first socket pin solder job. Whatever the technique, solder all the power and ground jumpers first; this will lock the socket in place for the rest of the project.

The traditional rules of soldering state that every solder joint should first be a solid mechanical connection over which we then flow solder. The solder seals the joint, ensuring a longlasting electrical connection between wire and terminal. PC boards, of course, violate the old rule as a matter of course. Component and socket leads pass through the holes and, in fact, may not touch the pad. Solder, electrically and mechanically, connects the two. So long as we do not exceed certain weight and vibration limits, the connection will be good for a long time.

Perfboard construction requires that we connect jumpers and component leads to socket pins. Fig. 9


Photo C. A two-board IC and transistor project ready for vertical mounting.
shows two common techniques, and most builders use both in the course of wiring a single IC socket. No. 22 or 24 wire will bend in a loop around IC socket pins with room to spare for the loop to the next pin. However, circumstances often dictate that the partial-bend connection is most practical. Ensuring a good connection is a matter of making sure that the wire in fact touches the socket pin with natural tension before soldering. Unless the lead is under considerable stress, the connection will hold indefinitely. Use a small jeweler's awl to test each such con-
nection before being satisfied that it will hold.

Whatever the construction method, small components used in modern circuits require careful handling. Radial-lead capacitors, such as the small electrolytic type, should be flush with the board. Unless we are careful, they will fall out of position when we flip the board to solder. Resistors, disc capacitors, and diodes should be close to the board, but not necessarily pressed too tightly lest we crimp the component lead. In many cases, the lead is stronger than the component itself. Where this is


Fig. 11. Mounting perfboards horizontally.


Fig. 12. Vertically mounting two perfboards.
true, let the lead support the component. Diodes and transistors are sensitive to solder heat, so care is in order. Being sure that the component is mechanically well connected ensures that we can solder quickly with minimum heat. Earlier figures showed the techniques for handling jumpers and offboard connections. Finally, never solder an IC or transistor socket with the device in place.

There are two methods for wiring and testing a solid-state project. One is to wire and test each stage, one at a time. This permits ready circuit revision in early stages before component space has disappeared. For many types of IC projects, it is more convenient to wire the entire circuit and then test the stages by plugging in one or two ICs at a time (with power off and capacitors discharged). With either method, it is safer to remove ICs while making circuit additions or revisions. The IC that will fry due to static charge or excess heat is the unit of which we have only one.

\section*{Mounting Perfboards}

The photos, besides illustrating perfboard construction generally, show different types of mounting schemes. Basically, there are only about five ways to handle the attachment of perfboards to your project case.

Fig. 10 and Photo A illustrate simple vertical board mounting using L -brackets. Digi-key and other mail sources carry this common but surprisingly hard-to-find bracket. Be sure that the board clears the case with about an eighth of an inch to spare so that you have room to align the L-brackets with the case and board holes. This is perhaps the simplest vertical mounting scheme, but it is limited by the weight and size of the project board as well as anticipated rough handling of the
entire project. Vibrations transmitted to the free end of the board have considerable mechanical force.

The most common method of horizontal mounting appears in Fig. 11 and Photo B. The drawing shows mounting posts threaded for \(6-32\) screws. Note that in this case the transformer hardware doubles to connect to the post. The object is not to save two screws (although the space they take might be handy for other circuit components). Instead, the mounting posts support the transformer's weight directly. Had the project used corner posts, a few hard knocks might let the transformer crack the perfboard. Horizontal mounting with fourcorner support is superior to L-bracket mounting only if the expanse of perfboard does not support too heavy or too dense a weight.

In most cases, hollow pillars and long screws make a perfectly acceptable substitute for threaded posts. We need not buy commercial posts, but can make our own from rigid plastic tubes. In fact, exploring the plastic packaging and worn out parts of many household items is a good way to build a stock of very useful plastic pillars, standoffs, and other items.

We can achieve superior vertical-mounting stability using two boards with a combination of L-brackets and posts. Fig. 12 and Photo C show how. Each board has its own L-brackets for fourpoint support. Posts connect the two boards at the four corners. With this technique, the builder can remove each board independently for repair or revision. Photo C shows separate automatic voltage- and currentmeasuring circuits (for a bench supply) back-to-back. The only cautions to observe with this mounting method are to ensure that the two circuits will not interact through radiation or capacitive coupling.


Fig. 13. Perfboard mounting with interface shielding.

Where circuit isolation is important, Fig. 13 comes into play. Two boards conveniently fit to one aluminum shield panel. The 18 -gauge or thicker aluminum panel supports both boards and the builder can remove each independently. This technique is limited to cases where a simple interface shield is adequate to prevent unwanted interaction between circuits, which includes most low-power receiving and test equipment applications.

Modern packaging techniques have taught us that
rigid physical mounting is not the only route to good circuit protection in the project case. For small projects, a floating mount may be both simpler and more effective than nuts and bolts. Fig. 14 illustrates the general principle. The circuit board rides between two foam pads within the case. The case presses the foam lightly to hold it in place. The light pressure also holds the perfboard securely in its place. If there are some projecting components, we can cut a few indentations into the top


Fig. 14. Packaging perfboards in foam.
foam panel. This form of mounting works very well as long as the foam can exert enough pressure to lock the perfboard in place without over-stressing any of the components.
These sample mounting methods may add to your repertoire of packaging techniques. In any event, plan your packaging during the layout stage of the project, since perfboard mounting will determine some of the cutting, drilling, and wiring requirements. Of course, these mounting techniques also apply to numerous other construction techniques.
Although perfboard is
handy, it is not the ideal construction base for all projects. As noted, some rf projects may require ground planes that perfboard alone cannot provide. Where PC boards are available for projects you do not want to modify, use them. However, for the one-time ham project of moderate size, perfboard construction can be as satisfactory and durable as any other. It all depends on how you handle the material. Hopefully, the collection of ideas out of my experience will spur you to share some of your own with the rest of us who regularly build with perfboards and soldertails.


IF YOU HAVEN'T HEARD OUR BEEPERS YOU'RE NOT LISTENING!
What'a a BEEPERP Sometimes called a "courtesy boep," both Faxican BEEPERS add a gentle high frequency beep automatically to the beginning of each transmission and a low beep at thin end. "Talk-over" is a thing of the past! INTRODUCING BP-4 "The PRO" BEEPER. The PRO in state-of-theart beeping Includes is digitally-programmable tumer (use it for ID or timeput warninge), an automatic "Slumber Mode" for long battery \(\mathrm{Ufe}(9 \mathrm{~V}\) bat tery reguired-not included), ant programmable zolume control of the unique double 4 -beep timeout warnine. Wo apeakert Uses a ptemo-tranaduope!
Hook-up's a snap with eicher modell Interfaces to virtually all modern gear. Manual supplied with esch BEEFER Avalisble in three versions:
" A " verstions are complete with case, cable, industry" standurd 4-pin connectors
" B " verision are the sarne as above but without connec. tors. Add your own!
"C" versions ase etreuthboard models for custom in. utallations. Perfect for repeaters or bullding INTO your ris

BEEPERS ARE A
FAXSCAN EXCLUSIVE!


DESIGN EVOLUTION IN RF P.A.'s

1. Models with \(G\) suffix have GaAs FET preamps. Non-G suffix units have no preamp.
2. Covers full amateur band. Specify 10 MHz Bandwidth for \(420-450 \mathrm{MHz}\) Amplifier.
\(\star\) SEND FOR FURTHER INFORMATION \(\star\)
TE SYSTEMS
P.O. Box 25845

Los Angeles, CA 90025
(213) 478-0591

\title{
Watch a Warhorse Work
}

\section*{With a new tank circuit, the SB-221 does great things for 160 and 10.}

The conversion of an amplifier to operate down on 1.8 MHz involves more than adding a coil tap and a switch position, as the 10 -meter conversion usually does. A new and larger coil assembly is required, as well
as a plate choke and a filament choke with larger inductance. These add up to several components and some expense. There is plenty of room in the SB-221 to place the new components, however, making the con-


Photo A. The new components to be added to the SB-221 to convert it for 160 -meter operation. The new component is the larger one in each case. The smaller original ones were removed from the amplifier.
version a simple one. The most difficult job is removing the switch deck that shorts out the sections of the main-output \(\pi\)-network inductor, and then replacing it after modification.

The SB-221 as designed by Heathkit \({ }^{\top}\) M comes with a 10-11-meter reject filter and tuned input circuits for 80 , 40,20 , and 15 meters. All being bypassed leaves the amp with an untuned input.


Fig. 1. The rear deck of the bandswitch as shown in the Heathkit assembly manual is at left, and the modified deck is at right. Three new switch contacts are added using new fingers or ones salvaged from old switches. They are mounted on both sides of the ceramic wafer, using \#2 brass nuts and bolts. The mounting holes are already in the wafer; no modification to it is needed. The work on the switch is easy; the hardest part of the whole conversion is removing the deck and putting it back again.


Photo B. The SB-221 converted for operation on 160 through 10 meters. The new tank coil is mounted on the front panel, using two holes that previously held a plastic Heathkit label. The new larger plate choke is mounted on the wall at left, using the original plate-choke standoff. The bandswitch is removed from the partition wall, modified, and replaced.

The new output tank coil is approximately \(33 \mu \mathrm{H}\) which uses all of the \(250-\mathrm{pF}\) tuning capacitance that is available to resonate at 1.8 MHz . Although a larger capacitor would give a better Q, the resulting efficiency of the amplifier is almost as good on 160 meters as on 80 meters, so that the output on 160 will not suffer from lack of a larger tuning capacitor. Additional output capacitance is also switched into the \(\pi\)-network to provide a \(50-\mathrm{hm}\) output on 160 .

\section*{Components}

Photo A shows the new components added, with each one next to the corresponding one removed from the SB-221. The new plate choke has an induc-
tance of \(200 \mu \mathrm{H}\) rather than the \(50-\mu \mathrm{H}\) original choke This is the Barker \& Williamson Model 801. It is space-wound over about one third of its length to avoid parallel resonances at the higher frequency bands and close-wound for the rest of its length for greater inductance. The B \& W filament choke, FC25 A , has about six times the inductance of the smaller Heath choke and is used to prevent the drive power from going back to the filament transformer or to ground. The plate tank coil is a B \& W 195-3, a vari-able-pitch coil using \#14 wire, \(21 / 2^{\prime \prime}\) in diameter, \(51 / 4^{\prime \prime}\) long. It is mounted on the front panel using the two holes that originally


Photo C. Bottom view of the amplifier with the larger filament choke installed. It solders into the same points that the original choke did.
held the Heathkit label. Cable clamps around the plastic rods of the coil support it. These are furnished with the coil.

\section*{Construction}

After taking off the cover and refamiliarizing yourself with the layout, remove the 3-500 tubes. To bypass the input circuit, connect a length of RG-58 from terminal 4 of the T-R relay directly to C32 at the tube sockets. Remove the coax cables that had been connected to these points and cut them off where they pass through the chassis into the grid compartment. Ground both ends of the braid of the new piece of cable.
If the stiff wire leads on the new filament choke are bent as in Photo A, the larger choke will fit, using the same solder points as the smaller choke (see Photo B). Make sure that the filament choke is close enough to the chassis that it will clear the bottom of the case.

Remove the rf plate choke (Heath \#45-61) by unsoldering both wires to it and unscrewing it from the spacer. Save this spacer to mount the new choke. Put a 6-32 nut on the long bolt sticking out from the parti-
tion to prevent it from falling loose, and cut the excess bolt off. Drill and tap one end of the \(3 / 8^{\prime \prime}\)-diameter spacer for \(1 / 4^{\prime \prime}-20\) threads and put a \(1 / 4^{\prime \prime}-20\) stud into that end. This will thread into the ceramic form of the new choke. This spacer is mounted on the opposite wall of the amplifier (Photo C), using an 8-32 screw through one of the perforations in the walt.

Remove both the \(80-20\) coil and the 15 -meter coil made from silver-plated tubing. Save this 15 -meter coil, it will be used in the modified version, tapped for 10 meters. Leave the fi ber standoffs that had held the old tank coil in place so that the screws holding them don't fall into the grid compartment.

Unsolder all of the wires and the capacitor from the rear deck of the bandswitch. By reaching down behind the panel with nee-dle-nose pliers, you can bend back a tab on the outer part of the detent layer. This lets the switch rotate through 12 positions rather than the original four. Since the input circuits are no longer utilized, the back wafer that switched the coil is all that need be changed. Remove it by


\section*{ORBIT is the Official Journal for the Radio Amateur Satellite Corporation.}

For a SAMPLE COPY please send \$2 to:

\author{
(AMSAT), P.O. Box 27, Washington, DC 20047.
}
loosening the bolts that hold it to the partition wall. The nuts will fall down into the grid compartment and must be recovered. Three new contacts must be
added, as shown in Photo D. This is not so difficult. Many switches have similar contacts. Drill six out and mount them in the holes already present in


Photo D. Front top view of the modified SB-221. The two screw heads above the capacitor knobs are the only outward change in the appearance of the amplifier. The 160 -meter position on the bandswitch is the one to the left of the 80 -meter position; it need not be marked. Similarly, the 10 -meter position is the one to the right of 15 meters.
the ceramic deck with \#2 hardware. One of the new contacts is for the extra loading capacitor for 160 .

The reworked switch deck is replaced, using the original hardware and spacers. Getting the nuts back on the bolts when they are almost hidden is a nasty job. Bend a piece of wire to hold the nut and get it started.

The new switch positions are shown in Photo D. No change was made to the switch labels on the front. There is no confusion, however; the 160 -meter position is the one to the left of 80 , and the 10 -meter position is to the right of 15 .

The Heathkit plastic nameplate is removed by prying off the Tinnerman nuts, leaving two holes to mount the new coil behind the front panel. Plastic cable clamps and small angle brackets are attached to the plastic ribs of the coil, as in Photo A. The 160 meter end of the tank coil is soldered to a lug attached to the front of the loading capacitor. There is room to remove the nut from the threaded rod there and put a solder lug under it. At the other end of this rod another solder lug is placed under the nut and a heavy wire run down to the 160 -meter switch terminal, where the output wire running to the T-R relay also is connected.

The 7 -turn 15 -meter coil is connected from the tuningcapacitor top plate to meet the main coil, as in Photo C. This involves bending the tubing at the ends and cutting some from the coil. Be sure to keep the approximate size and spacing the same.

The 10 -meter tap on the tubing coil is \(41 / 2\) turns from the tuning-capacitor end. The 15 -meter tap is now \(61 / 2\) turns in, not at the junction of the two coils. The tap for 20 meters is \(23 / 4\) turns from the junction, 40
meters is \(73 / 4\) turns from the junction ( 5 turns from the 20 -meter tap), and 80 meters is 4 turns from the 40 -meter tap. These taps are made with clips furnished with the tank coil. Connections between coil and bandswitch are made with \#14 solid copper wire, as in Photo C.

An additional \(500-\mathrm{pF}\), \(1-\mathrm{kV}\) output capacitor is soldered to the bandswitch. It is placed next to the original one for the 80 -meter band. The shorting rotor connects both into the output on 160, as shown in Photo D.

The tank-coil taps can be checked with a dipper before applying voltage. The tubes should be in place (but no power applied) since they will contribute to the capacity of the system and affect the 15 - and \(10-\) meter tuning. The 15 and \(10-\) meter bands should resonate with the main tuning capacitor near minimum, beyond the shaded area marked \(20-15\) on the panel. Small changes can be made by stretching or compressing the turns of the coil, and larger inductance variations by changing the location of the taps.

An improperly located coil connection will show up as inefficient operation on that band. If the inductance is too large or too small, the power out will be reduced for a given amount of drive. It is worth measuring the power into a dummy load to check on efficiency, rather than just being satisified with a resonance, a dip in the plate current.

A parts kit for this conversion is offered by Barker \& Williamson, 10 Canal Street, Bristol PA 19007, for \(\$ 49.95\). The K-160 consists of the Model 801 plate choke, FC-25A filament choke, 195-3 m-network inductor with taps and mounting clamps, and a 500-pF output capacitor.

Unlock all the potential of your Commodore 64 and VIC-20* with RUN.
Explore. . .Experiment. . .Enjoy . . . Beginner and expert alike will be taken beyond the manual to the limits of their abilities. Enter your own game programs. Construct a simple hardware add-on. Broaden your scope with unique applications. . .And. . . get a 13th issue FREE!

Enjoy key features like these:
- Games for fun \& strategy.
- Programming tips help you learn short cuts.
- Candid reviews help you make money-saving decisions.
- Programs to add to your library.
- Instructions \& tutorials to increase your skills.
- Hardware \& software modifications help your machine work smart.
- Unique applications broaden your scope.

Here's a system-specific magazine written with you in mind. Written by and for the reader to give time-saving, money-saving hints. You'll get instructions and tutorials to increase your skills, and candid reviews to help you make the right decisions. Most of all though, you'll have fun.

Send me a subscription to \(\boldsymbol{R U N}\) for the regular subscription price of only \(\$ 19.97\) per year. I understand that with payment enclosed or credit card order I will receive a FREE issue making a total of 13 issues for \(\$ 19.97\).
\(\square\) Check/MO \(\square\) MC \(\square\) AE \(\square\) VISA \(\square\) Bill me 519.97 for 12 issues
card \# exp. date \(\qquad\)
signature \(\qquad\)
name \(\qquad\)
address
city \(\qquad\)
\(\qquad\)

Canada \& Mexico \$22.97; Foreign Surface \$39.97, 1 year only, US funds drawn on US bank. Foreign airnail, please inquire. Please allow 6 to 8 weeks for delivery.

RUN • Box 954 • Farmingdale, NY 11737

\section*{The Next Step In Repeater Techunology.}


New "Sharp" Appearance-Brushed Aluminum Panel

\section*{THE NEW "INDUSTRY STANDARD"!}

The SCR2000X Microprocessor controlled repeater is the newest addition to the Spectrum Hi Tech Repeater Line. It combines the latest state of the art digital techniques with the best of Spectrum's highly refined RF technology to yield "The Ultimate Repeater"! Operating convenience and flexibility are emphasized without sacrificing traditional Spectrum reliability and ruggedness. Go with the world leader in Amateur Repeaters! Call or write today for details. Sold Factory Direct or through Export Reps. only.

\section*{STANDARD FEATURES:}
- Autopatch/Reverse Patch, W/O \& 1 Inhibit
- Dial Pulse Converter

Autodialer
- Phone Line \& "Over the Air" Command Modes, Virtually all functions may be turned On/Off Remotely.
- Touch Tone Control of 'Timeout', 'Hang Time', Patch Timeout, TX Inhibit/Reset, Patch \& Reverse Patch Inhibit/Reset, P.L. On/Off (w/optional P.L. board), etc.
- Up to 6 Auxiliary Functions. More with TTC300.
- Full 16 Digit Decoding with crystal Controlled Decoder IC
- Touch Tone Mute
- Unique Courtesy tone

틀 "Kerchunk Killer'
- Timeout Warning
- Automatic CW ID \& ID Command

들 Remote Programming of 3 Timers for 2 different timing cycles, or No Time Out
- Microprocessor Memory 'Battery Backup'
- Autopatch AGC for constant levels
- Local Status Indication via 12 Function panel LED Display
- Front Panel Touchtone Pad for Local Control

NEW-Improved: Rcvr., UHF Xmtr., Power Supply!
- Full Panel Metering: Rcvr. \& Xmtr. functions plus Voltages \& Currents
- 30-75 Watt VHF \& UHF Models
- 100-150 Watt Final Amps Available
- SC200X Controller \& Interface Boards also available

\section*{SCR770 Desktop/ Partable Repeater}

\section*{APPLICATIONS}

Ideal for low power local use Portable/Mobile at the scene of an Emergency
- Increase coverage at parades or other Public Service events
\(\qquad\) "Mountaintopping" with battery pack
Full Duplex Computer/Data Links Export Rural Telephone


\section*{Spectrum Repeater Baards \& Sub-Atssemblies}

VHF \& UHF Receiver Boards SCR 200-VHF SCR 450 UHF
Totally Advanced Design!
18 Pole Front End Fitr. + wide dynamic range-reduces overioad, spurious Resp. \& Intermod.
isens. 0.3 uV/12d8 SINAD typ.
Sel. 6 dB @ \(\pm 6.5 \mathrm{KHz}, 130 \mathrm{~dB} @ \pm 30 \mathrm{KHz}\). 18 Pole Crystal + 4 Pole Ceramic Fitrs.
's Meter', Discriminator \& Deviation Mtr. Outputs!
Exc. audio quality! Fast squelch! w/0.0005\% Crystal. ("Super Sharp" IF Fitr. also avail.)

Complete Recelver Assemblies Revr. Bd. mounted in shielded housing. Completely asmbld \& tested, w/F.T. caps. SO239 conn

As used in the SCR1000. Ready to drop into your system!
UHF Revr. Assy. Now Avallable w/Super Sharp FL-4 Helical Resonators. Greatly reduces IM \& "out of band" Interference!


\section*{SCAP Autopatch Board}

Provides all basic autopatch functions Secure 3 Digit Access; 1 Aux On-Off function, Audio AGC: Built-in timers; etc. Beautiful Audio! O/1 inhibit bd. also available
Writeicall for details and a data sheet

\section*{RPCM Board}

Used w/SCAP Doard to provide "Reverse Patch and Land Line Control of Repeatet includes land line "answering circuitry

Lightning Arrester For SCAP
- Gas Discharge Tube shunts phone line surges to ground
- Handles up to 20,000 Amps!
- The Best device available to protect Autopatch equipment from lightning damage. \(\$ 15.00+\mathrm{S} / \mathrm{H}\)


\section*{NEW! IMPROVED SCT410B TRANSMITTER ASSY.}

\section*{SCT110 VHF Xmtr/Exciter Board}
- 10 Wis. Output. \(100 \%\) Duty Cycie
- Infinite VSWR proot
- True FM for exc audio quality
- Designed specifically for continuous rptr ser vice. Very low in "white noise
- Spurious 70 dB . Harmonics 60 dB
- With \(.0005 \%\) xtal.
- BA-10 30 Wt. Amp board \& Heat Sink, 3 sec . L.P. Filter \& rel. pwr. sensor. BA75 75 Wt. unit also available.

SCT110 Transmitter Assembly
- SCT110 mounted in shielded housing
- Same as used on SCR1000
- Completely assmbld. w/F.T. caps, SO239 conn.
- 10,30 , or 75 WL. unit.

SCT 410B UHF Transmitter Bd. or Assy. - Similar to SCT110, 10 Wts. nom.
* © Now includes "on board" propor. tional Xtal Osc./Oven circuitry for very high stability!
- BA-40 40 W. UHF AMP. BD. \& HEAT SINK.


TTC300 TOUCH TONE CONTROLLER
- Uses new high quality Xtal Controlled Decoder IC, w/high immunity to falsing
- Decodes all 16 digits
- 3 ON/OFF Functions per Main Card. Easily expandable to any no. of functions w/ Expansion Cards.
- Field Programmable via plug-in Coded Cards
- 3 Latched ON/OFF Outputs, or 4 Pulsed Outputs, or a combination thereof.
- Transistor Switch outputs can directly trigger solid state circuitry or relays, etc. for any type of control function.
- Interfaceable to Microprocessor Controllers
- Low Power Consumption CMOS Technology. 5VDC Input.

For SCR1000 or SCR4000. Replaces Darlington Pass Tr. for improved reliability.

\section*{73 INTERNATIONAL}

Each month, 73 brings you ham-radio news from around the world. In this collection of reports from our foreign correspondents, we present the latest news in DX, contests, and events, as well as keep you abreast of the technical achievements of hams in other countries.

\section*{If you would like to contribute} to your country's column, write to your country's correspondent or to 73: Amateur Radio's Technical Journal, Pine Street, Peterborough NH 03458, USA, Attn: Perry Donham KK2Y.


\section*{AUSTRALIA}

JIm Joyce VK3YJ
44 Wren Street
Altona 3018
Victoria
Australia

\section*{ARE VKS BAD QSLERS?}

It has become noticeable lately from on-air contacts and correspondence that the VKs are getting a reputation of being bad QSLers. After looking at my log books over the years, I disagree, and feel, in fact, that the opposite is true. I will give an example later of why I feel this way.

\section*{WIA QSL Bureau}

The Wireless Institute of Australia maintains both Inward and outward QSL bureaus in all states, with the VK3 bureau being free of charge to all members of the Institute in VK3. (Other bureaus in Australia do charge for this service.) Nonmembers still can collect their cards free of charge from the bureau, but a fee of 10 cents per card is charged for all nonmembers' outward QSL cards. This is still a lot cheaper than by mail.
The VK3 bureau, over the last three years, has handied approximately 410,000

Inward cards and 320,000 outward cards. There is a total of 30,000 cards still uncollected at the bureau, and to remedy this, Inward QSL Manager Barbara Grey VK3BYK has tried for two years to contact all of their owners. Of the very few who bothered to reply, the comment was the same: "We don't want the cards; either send them back or destroy them."

These cards have now been sorted into alphabetical order by the Ballarat Radio Club and will be filed at the WIA club rooms for a further twelve months. If not collected by then, they will be sent back to the original sender with a notation on them stating that this person does not QSL

\section*{Our Bad Apples}

For example, one VK3 two-letter callsign has been heard on air saying, "I will QSL," but this station has over 500 QSL cards uncollected in the bureau. He quite blatantly states that he doesn't want them. A case of one bad apple giving the whole box a bad name.

A recent articie in one of our local radio magazines reported a request to the Federal Bureau of the WIA by a licensed member of the WIA to elther destroy or send back cards sent to his XYL-also an amateur but not a member of the WIA. The intimation is that she will receive cards direct only with the appropriate green stamps or IRCs for return of cards.
While I can sympathize with her as, being a semi-rare YL. DX station, her cards must be in the thousands per year and be a drain on her household budget, I can also sympathize with those countries who have amateurs on very low incomes who cannot afford to get green stamps or IRCs to send for direct QSLs and must use the cheapest method avaliable, the bureau, to confirm a new YL country.
So I would suggest that if you receive one of your cards back marked as a nonQSLer, don't blame all of us, just contact the offending station again on air and give them a good idea of what you think of people who say they will QSL but don't; they are damaging the image of all VK amateurs by their inconsiderate actions.

\section*{The SWL}

While I have no grievance against the vast majority of SWLs, I do object to receiving cards back to me via the bureau from an


SWL listing a three year-old contact with a station that perhaps lasted only one minute with "via the bureau" crossed out and a request for a card "direct to PO Box so and so." No way is a card going back direct to that station-not with the cost of direct QSLing these days.
One of the last batches of QSL cards by the bureau to me contained sixty cards. Thirty-five were SWLs of which three asked for direct QSL cards. Result: Thirty-two SWL cards went by the bureau, three went into the rubbish bin.

\section*{No Log Required}

The request by an SWL for confirmation of a contact with a station is going to be even harder in future because as of late 1983, the Department of Communications granted us the privilege of not having to keep log books except in the cases of emergency situations, club stations, or when directed to do so by the DOC.
This puts us in a Catch-22 situation where if we don't log every station we work, we can receive a card from an SWL for a confirmation of a contact that we have worked, but not logged. What do we do? Enter every contact, just to satisfy the many SWL listeners? Not log them and send cards back with "Sorry, OM, not in the log." even when it was a good contact?
So, If working a VK station, this makes it more important than ever to ask for a QSL. If you want a card, so that your callsign will be entered into the log book. Very few Australian amateurs object to a request for a QSL card to confirm a contact; it has been a common practice since the inception of amateur radio. However, I, for one, do not enter all my contacts. Unless a QSL is asked for during the contact, I assume a card is not required. It is only a common courtesy to ask, and, if not in the log, no card.
Who is in the wrong? Am I , for not logging you, or, you, for not asking, "Do you QSL?"

\section*{Are You at Fault?}

Going by the above, we do have some problems, but some overseas amateurs requiring a QSL card also have contributed to them by not doing the right thing when sending their cards. I will mention some of the problems we are having over here with your cards.
- Incorrect callsign on the cards; for example, VK3E--. The VK3 bureau has a lot of cards addressed this way. Probably a VK2E-- was meant since no E suffix has as yet been issued in VK3.
- How do you make your "V" in VK? The bureaus are getting a lot of cards that can be either VK3 or UK3. Much time can be lost by the unpaid QSL managers trying to sort out the problem. How many of your VK cards are at PO Box 88, Moscow?
- Undecipherable scrawis or hieroglyphics for the calisign that might look great on ancient parchments make the job of the person sorting thousands of cards at a time much harder. So please print callsigns in clear, precise letters and make sure you get your contact's callsign correct. With some of our current suffixes starting with phonetically similar letters (B-C-D-E-P-V) it pays to double check.

I notice in the listing of VHF contacts by the Columbla a contact with VK2PMN. I don't see how that can be as the P suffix denotes a Novice operator who, as such, cannot operate above 30 MHz . Was this a typical suffix mistake that also is being refiected by cards coming into our bureau?
However, let me state here and now that VK is not the only country with QSL problems!

Only 65\% Card Return
In 1978, with the 10 m band wide open virtually 24 hours a day, I had great fun with a 6element cubical quad, working all around the world at all hours of the day and night and averaging 600 contacts per month. Most of these were QSL via the bureau. Checking the logs for that year, in 1981, I was surprised at the blank spots still in the QSL-returned column. It worked out at only a \(65 \%\) return of cards.
Taking the price of QSL cards into ac count, that worked out at a yearly loss of around US\$200 for non-returned cards. Needless to say, my QSLing became more selective, to the point that now I QSL only on receipt of a card, either direct or by the bureau.

\section*{Pirates}

Are you sure you are actually working a llcensed amateur? The ease with which anybody can buy amateur transceivers over here, with no questions asked, is not funny It is soon to be stopped (we hopel). With today's large sale of CB rigs able to operate in the \(28-\mathrm{MHz}\) band plus an abundance of articles telling you how to convert the older CB sets to 28 MHz , it would pay you to make double sure that you are indeed working a licensed amateur. We do, like a few other countries, have our pirates.
One classic example involves the genuine call of Art Cooledge VK@AC. There are over 200 cards in the bureau for a person calling himself Bob and using this call. These cards will be going back to the sender, as Bob was a pirate. There are many other cards at the bureau that are, also quite obviously, from pirate operators.

Another case in point happened last year in VK3. Direct QSL cards were arriving at the home of an SK for contacts with him months after he died. As his wife was still living at the Calibook address, you will understand that this was upsetting her quite a bit. As her husband had a two-letter call and these are much sought after by other amateurs, her problems were solved by issuing her deceased husband's call to another licensed amateur to reactivate. As this particular amateur was well known on air, anybody eise using his new reissued call would be easily detected.
This change of call in VK is accomplished by a simple procedure. When an amateur becomes a silent key, his callsign cannot be reissued for a period of two years. However, if a member of his close family requires the callsign, it will either be reserved or reissued to them. If the family does not wish to keep the callsign, it is possible for another amateur to get written consent from the closest relative to the deceased to take up his old callisign before the two-year period expires.
This gives you another problem with QSLing, as, in the above case, it is possible to have two owners of the same callsign only a few months apart.
So, If the station you are working says his QTH is near Melbourne, for Instance, ask him his exact location, then look in a late Callbook to confirm his name and location before sending off that QSL card. I reiterate: Use a late Callbook because a lot of the two- and three-letter callsigns have been reissued over the last few years.

\section*{Direct OSLing}

Speaking of direct QSLing, although Australia is called "The Lucky Country," not all of us are millionaires. You will find the usual cross section of the population involved in amateur radio, including students, pensioners, handicapped operators llving on an invalid's pension, young marrieds with the usual mortgages and rearing children, etc. All of these people face the
common problem: The cost of QSL cards can be a noticeable drain on meager finances. Add to this the practice of some overseas operators who send unexpected cards direct airmail with no return postage included and request a card back the same way, which happens quite often, and we can be in a dilemma as to what to do. A letter to Europe airmail is AS.85 plus card and envelope. It works out at around US \(\$ 1.00\) per letter, and it is not much cheaper sending it by surface mail. One week I had five of these letters.

Do I pay US \(\$ 5.00\) out of my own pocket just to confirm contacts with a country they have probably worked many times before? Do I instead send the card back by the bureau, knowing it might take two years to reach them or that they may never get their card if they are not a member of their local bureau? The result of the latter could be more overseas amateurs saying that the VKs are lousy QSLers.

While this is not the full story of QSL problems, I hope it will partly explain that it is not all our fault and that where we are at fault we are trying to remedy the situation as quickly as possible.
The rest is up to you.


\section*{BRAZIL}

Carlos Vianna Carneiro PY1CC Rua Afonso Pena 49, Apt. 701 20270 Rio de Janeiro, RJ Brazil
Ivete Alves Monaco PY2ADI
Grupo de CW de Sao Paulo
Caixa Postal 15,098
01000 Sao Paulo, SP
Brazil
As Public Relations Chairman for Grupo CWSP, I would like to announce two awards.

Our CWSP Award is for all amateurs who have worked five members of our group (CW only) with valid contacts after October 15, 1976. Submit a list certified by an official radio club, with suffixes in alphabetical order, date, band, and report. (SWLs same rules.) Do not send cards. Fee, 10 IRCs. For endorsements (one for each ten PY2s up through 60), send one IRC and an SAE.
CWSP members are PY1DG and PY2s \(A C, A C H, A D I, A E S, ~ A P E, ~ A R X, ~ A S I, ~ A T L, ~\) BTR, BWD, BZD, CAR, CJW, CMS, CPU, CZX, DCP, DHP, DML, DRP, DY, EGM, EMM, FEO, FT, FWR, FWT, GCW, GPA, IAP, ICN, IEJ, JN, OE, RAN, RVO, SI, SPA, SUB, SV, SZA, TO, TR, TRD, TUO, UZV, WG, WR, and XB.
The Brazil CW Award (BRCW) is issued by us for any radio-amateur stations working at least 15 different Brazilian states and territories from Brazil, which stations already have earned all 6 endorsements for the CWSP Award.
de PY2ADI

\section*{BRAZILIAN PPC MEMBERS AND COUNTRIES AWARD}

As a special celebration during PPC's 20th year (March, 1984 to March, 1985), this oldest Brazilian CW group has just announced the PPCMC Award (CW mode only. It's a tribute to radio amateurs of all parts and to those who give their best towards CW development. The PPCMC Award combines all countries (ARRL. list) and PPC members. QSOs must have been made on and after January 1, 1980.

Issued by the Brazilian Picapau Carioca

Group, this award is available to all radio amateurs as a permanent competition.
Each ARRL country and each PPC member counts 1 point, only once, no matter which band, two way QSO.
Basic Award-Twoway QSOs completing 50 points, involving at least 40 different countries.
Endorsements-Two endorsements, 25 points each, until 100 points; from 100 points to 150 points, 5 endorsements, 10 points each; from 150 points on, endorse ments at any requested quantity, at will.

Honor Roll-Those reaching 200 points.
No QSLs needed. Send list (GCR) in suffix alphabetical order showing full details of QSL, verified and certified by a recognized amateur-radio society. Fee for the basic award is 5 IRCs accompanying applicant's QSL card with complete QTH information. For endorsements, send SAE and 1 IRC. Address PPC Certificate Manager, PO Box 2673, 20001 Rio de Janeiro RJ, Brazil.
de PY1CC


CHILE
Patricio Fernandez H. CE3GN PO Box 14781
Santiago
chile

\section*{WORLD'S HIGHEST 2M REPEATER}

For those of you who read our article in the June, 1983, issue of 73 , it may be of interest to know that the 2 -meter repeater installed on the top of El Plomo mountain at 5,500 meters above sea level worked perfectly for about 4 months until the antenna broke down due to the heavy winter winds. Nevertheless, the repeater systern continued to work (although the signal was extremely low) during all the winter season, and the repeater and solar panels suffered no damage.
Last summer, a group of hams climbed again to the top and repaired the antenna damage, replacing the old antenna with a very light and flexible whip which we hope will survive the coming winters.
By the way, we would like to hear from other hams around the worid, just to know if our repeater is still the highest.

\section*{WACE AWARD}

Radio Club de Chile continues to issue its WACE Award to all hams who send proof of contacts with each of the 10 Chilean zones. More details and information can be obtained by writing directly to: Awards Manager, Radio Club de Chile, Casilla 13630, Santiago de Chile.

\section*{RECIPROCAL LICENSING}

During our summer months especially, many hams from various parts of the world visit Chile and make use of our reciprocal Ilcense agreements. In fact, Chile has offlcial agreements with the following countries: Argentina, Brazil, Canada, Colombia, Ecuador, Israel, Uruguay, and the USA. Nonofficial but equally good treatment has also been given to hams from the Federal Republic of Germany, England, Panama, Spain, and Japan.

Chile is known for its skiling facilities during our winter months and for its trout fishing during summer on its many lakes and rivers south of Santiago.
During the past summer season, we en joyed the visits, among others, of DK2BI,


Patricio CE3GN (far right) and his wife, Ana Maria (centerl, with Lloyd and Iris Colvin, enjoy ing a barbeque at Patricio's QTH just before leaving for CEOZ

DKSWB, and DK6HH, who were here during early March, and also Lloyd and Iris Colvin of world fame, who at the time this is being written are still enjoying lobsters and DXing on Juan Fernandez Island. They also visited Easter Island for about 2 weeks and were able to make over 8,000 contacts during their stay on the island of the mysterious Mohals. We are sure that they will always remember their visit to CE land.

\section*{columbia}

Much has been written about Dr. Owen Garriott's flight and contacts from Columbia. Nevertheless, we would like to repeat the fact that only 2 South Americans were able to make it. The nice thing about it is that both of them are Chileans! Our congratulations go to Andres CE2AHD and ig nacio CE3CKE, who appeared on the official list of contacts.


Abelardo (Lalo) Santos V. HK3EQ
PO Box 88937
Bogota 8
Colombia

\section*{COLOMBIAN INDEPENDENCE CONTEST}

The Colombian Radio Amateur League (LCRA), founded in 1933, will sponsor the CID 1984 Contest, running from Saturday, July 21, at 0000 GMT till Sunday, July 22, at 2300 GMT.

The Colombian Independence CW and Voice Contest will include the A category: single operator/single band, voice only, CW only, or mixed; B category: single operatori multi-band, either voice or CW only or mixed; C category: multi-operator but with single station, multi-band voice, CW only, or mixed operation; and the D category: multi-operator, multi-transmitter, multiband, either voice or CW only or mixed.
There is also a single-band category for operators using 14 MHz against those operating on 7 MHz , etc. The bands of operation will be \(1.8,3.5,7,14,21\), and 28 MHz . The contest call will be, for voice, "CO HK CONTEST," and for CW, "CQ HK TEST."
The QSO exchange for non-HK stations for voice will be composed of the signal report followed by three (3) digits starting from 001. For CW, the exchange is the RST report plus three (3) digits beginning with 001 as in the voice modality.

For HK stations, there will be a special procedure which includes the signal report, the number 174 (indicating the 174th Colombian Independence anniversary cele bration), and the QSO sequential number The same will apply to the CW OSOs, name ly , RST, the number 174, and the QSO number.

The scoring for non-HK stations will be: for working HK contest stations, five (5) points, working non-HK stations which are outside their own country, three (3) points, and working stations of their own countries, one (1) point.
For HK stations, working non-HK sta tions earns five (5) points and working other HK stations earns three (3) points only. For the combination of different countries contacted on each band as well as QSOs with different HK districts (there are 10) worked on each band, the usual multipliers will apply.
The total number of QSOs multiplied by the total of countries contacted and the different HK zones contacted in the different bands will give the definite numbers, the final score.
The log entries should include the time in UTC, callsign of station worked, report given, report received, multiplier, and the points corresponding to the QSO. Separate \(\log\) sheets should be used for each band.
The multipliers should be indicated/applied only for the first QSO on each band. Finally, a summary sheet must be attached to each entry indicating the total points, category, name and address, list of operators in the case of multi-operator stations (if applicable), plus the usual contest declaration. The submissions not including a summary sheet will be considered only as check logs.
Sole conditions of entry for participation are that each participant should communicate with at least ten (10) HK stations on voice or five (5) HK stations on CW for acceptance by the Contest Committee and must submit written proof of a total of fifty (50) QSOs, ten (10) of them with HK stations on voice or five (5) on CW to qualify for any prize. Should the contester wish to work in the mixed category, he will need to contact only five (5) voice and five (5) CW HK stations. One contact per band with the same station is acceptable; crossband or cross-mode QSOs are not valid.
Violation of the amateur-radio international as well as country's regulations or the contest rules, the lack of ethics, socalled "phantom QSOs," excessive duplications in the total number of QSOs-all will be reasons for disqualification by the

LCRA Executive Committee, and their decision will not be subject to appeal.
Logs should be mailed by August 30, 1984. Those received after December 30, 1984, will not be considered but will be gladly used as check logs. The entries must be addressed to: LCRA, Contests, Logs and Awards Department, PO Box 584, Bogota, Colombia, South America.


CYPRUS
Aris Kaponides 5BAJE
PO Box 1723
Limassol
Cyprus

\section*{NEWS FROM CYPRUS}

On March 10, 1984, the Cyprus Amateur Radio Society (CARS) held its annual general meeting and a new central committee was elected: Totos Theodossiou 5B4AP, President; Aris Kaponides 5B4JE, General Secretary, and Pantelis Lytrides 5B4CF, General Treasurer. Members are Thanos Apostolides 5B4CR, Christoforos Demetriou 5B4E, Sotos Miltiadou 584JX, Andreas Pavilides 5B3AC, George Kourtellis 5B4DY (Nicosia), Stelios loannou 5B4AH (Famagusta), Nicos Hadjimiltis 5B4CV (Limassol), Andreas Christolorou 5B4JR (Paphos), Erricos Lanitis 5B4GJ (Larnaca),

Glafkos Kariolou 5B4MM (Kyrenia).
A new UHF repeater was bought by CARS and soon it will be operational. At the moment it is being tested by the repeater technical manager, 5B4AH, and then a suitable site will be found.
Cyprus was represented in the CQ WPX Contest by four stations: 5B4MF, 5B4ES, 584 LP , and 584EP.

OM Andreas 5B4LP operated solely on 80 m , and he claims that he has broken the continental record on this band. OM Marcos 5B4EP operated on 160 m only with good results also. 5B4ES (the Nicosia English School club station) operated multi-operator/multi-band under the guidance of Dr. Larry Day 5B4LD.
During the last couple of months, the regular 5B4 DXers operated on all the HF bands. 5B4EP, during the mornings, was on 160 m . On \(80 \mathrm{~m}, 584 \mathrm{LP}, 584 \mathrm{MD}\), and 5B4JE were showing up most evenings, and on \(40 \mathrm{~m}, 5 \mathrm{~B} 4 \mathrm{JE}\) was working with a new delta loop antenna with the company of Roberto I2VRN (the strongest signal on this band from Europe). Also, several 5B4s were operating on \(20 \mathrm{~m}, 15 \mathrm{~m}\), and 10 m . On the 10 m FM mode, regular operators were 5B4MD, 5B4LP, 5B4MF, and 5B4JE.

Being a very small country with a handful of amateurs active on the bands, it is difficult to find news for publication, sol am going to describe some interesting amateurs on the island. Here is a short portrait of OM Nicos Hadjimiltis 5B4CV, who is also a neighbor and a very good friend of mine.
Nicos got his ticket in 1976; he is an engineer with a broadcasting station, specializing in antenna construction and erection.


Nicos 584CV (left) with visiting friend DF3MG.


5B4CV doing some antenna work.

Nicos has been operating regularly on all bands and modes. He is a great home constructor, and among his constructions are an HF linear, a couple of antenna tuners (one of which is remotely controlled), power supplies, a TV camera, and other gadgets. His latest project is a Robot 400 converter for SSTV.
His is the only station in Cyprus operating now on RTTY and SSTV. Nicos is also the president of the Limassol CARS group and is one of the main helpers in running the Limassol club station; he always is prompt to help fellow amateurs.


\section*{CZECHOSLOVAKIA}

Rudolf Karaba, OK3KFO ARC
Komenskeho 1477
95501 Topal'cany
Czechoslovakia
Miroslav Joachim OK1WI
Bocnil 123
14100 Praha 4-Sporilov
Czechoslovakia
Radio amateurs here, as of July, are licensed to work 1.8 and 10.1 MHz On 1.8 MHz are those licensed for 15 W input maximum. 160 meters is divided by mode. CW on \(1.81-1.90 \mathrm{MHz}\), and CW and SSB on \(1.90-1.95 \mathrm{MHz}\) On 10.1 MHz are amateurs licensed to work CW and RTTY, with RTTY on the last 10 MHz of the band. As of January, 1985, 18.1 and 24.9 MHz will open. Journal Funkamateur (number 711983) brought information about the USSR. in 33 thousand club stations are half a million having an interest in an amateur activity, with 2150 champions active on internal USSR OSOs and 58 champions active on international QSOs.
Number \(8 / 1983\) Journal reported results of the first SNERA competition in the USSR. (SNERA contributes to scientific perceptions of polar radiances and their influence on UHF.) The winner was UA3MBJ with 1716 points; second was UR2RQT with 1618 points; UR2RIW had 1239 points. The best club station was UK9CAM with 365 points, and one SWL, UA3-142-198, had 221 points.
Every year, at least one world record in the \(10-\mathrm{GHz}\) band is the aim of Nicola IOSNY, Perrugia, Italy. Last year, in July, Nicola was in the Ceuta (EA9) and was reached as callsign IOSNY/EA9, in location XVO4c, by station WWECU/T9, Sicily, in location GY64c, a distance of 1621 kilometers, for a world record in the \(10-\mathrm{GHz}\) band. Nicola repeated his contact with station I0NLKJ IT9 of that same location. On the same day, three hours later at 1912 UTC, Nicola sur mounted that world record by contacting station Pietro 10YLNE9 on Ustica Island (north of Sicily), location GY26b, a distance of 1663 kilometers.
Nicola also reached a new European record on 1296 MHz with his contact with station 18TUS/8. Operator Salvatore was worked in south Italy at location IZA1h. The distance was 1914 kilometers, beating the old European record of 1577 kilometers be tween OK2BFH/P and G3AUS on October 30, 1982.

Thanks for information and letters from W2HAE, W4NBZ, and WA0HWH, but I cannot send back letters-l am very QRL
de RK, OK3KFO

\section*{MARCH, 1984}

Traditionally, the month of March is devoted to the activities of YL operators in

OK. This is in connection with the interna tional Day of Women, March 8 , celebrated in OK as well as in all socialist countries.
The March issue of Amaterske Radio (usually designated as \(A A\) ) brings the story of the first YL operator in Czechoslovakia. She was Jarmila Hermanova from Telc in Moravia, and during the period 1929 to 1931, she worked under the callsign OK2AJ. The first Moravian hams, OK2AG and OK2AC, initiated her into amateur radio.

Daughter of the director of a local power plant, she was successful at the exam in 1931 and was offered a bouquet of roses by the president of the examination commission (Ministry of P and T), Dr. Burda. In 1933, her callsign was changed to OK1YL Her equipment was confiscated on March 18, 1939, during the Nazi occupation. She passed away in 1971, in Zirovnice.
The Radio Amateur's Messenger for February, 1984, brings more news concerning YL operators. In fact, since the end of 1983, Jozina Zahoutova OK1FDL has been the president of the Central Radio Club. Her husband and their two children are also active hams. They live in Pribram. Let me here send best wishes of peace and happiness to all YL ops from OK land, where we have grown from one YL in 1929 to over 150 today.
de OK1WI


\section*{DOMINICAN REPUBLIC}
M. F. (Tim) Pimentel HIBMFP

PO Box 2191
Santo Domingo
Dominican Republic

\section*{THE TWINS AGAIN}

Radio Club Dominicano has just elected a new directing board headed by Cesar Dessangles HI8CO, twin brother of Ernesto HI8CW (former RCD president in 1977). They are the sons of Roberto Dessangles HI8RD who was himself president in 1976.
The great work done by the twins in 1976 helping their father, and then in 1977 during Emesto's presidency, makes us anticipate a successful performance in 1984.
The advantage of the twins, when either one of them occupies the presidency, is that RCD really has two presidents in one, sharing the work and keeping the club and its membership constantly progressive.
Anyone who doesn't know them well will find it difficult to tell one from the other-and there you can be talking to the wrong one, who's not the president, to deal with some club subject, but it doesn't matter. . . since either will do. Nevertheless, if you want to make sure, just lift up his shirt and you'll find on Cesar's abdomen a scar that Emesto doesn't have.
The twins are popular in Dominican ham radio, and when they stay away from radio equipment, it's just due to their professional work as architect-engineers which occasionally takes them to other cities around the island.
Just as in 1976-77 the Dessangles' directing board developed a team working plan that was remarkable, a replay is now expected, with the help of the other members of the board and of all the membership in Radio Club Dominicano, Inc.- the most prestigious institution of Dominican Republic ham radio.
Other board members are Eduardo Hued HIBEJH, vice-president; Charlie Catheline HI8CCB, secretary; Tony Lake HIBGAL, treasurer, and Waldo Pons HIBWPC, Wil-


\section*{Exceptional Performance in a Great New Design. The All-New HW-9 Deluxe QRP CW Transceiver.}

\section*{Setting the competitive standard} in QRP CW has been our tradition through two generations of Transceivers. Now that tradition for excellence in performance, price and value brings to a new generation Heathkit Transceiver state-ot-the-art microelectronics and lightweight portabiity-

Designed for broadband coverage of 250 kHz of CW on \(80,40,20\) and 15 meters and expandable to the 30 . 17, 12 (WARC bands) and 10 meters, the HW-9 brings greater versatility, reliability and ease of use to the field.

The HW-9 eliminates the necessity to fine ture each band. Its wideband front end uses a double balanced mixer and 4-pole crystal filter to
pull in wide dynamic range signals. Solid state T:R switching provides for full break-in on any band. And the automatic AGC provides superior receiver performance and audio response.
The unit features single conversion in the main signat path greatly reducing spurious responses while attaining outstanding image rejection. A full four watts of RF output power (three watts on 10 meters) is available on transmit. RIT (Receiver Incremental Tuning) permits tuning the receiver 1 kHz above or below the transmit frequency. And the tuning dial is calibrated in 5 kHz increments for easy identification of frequency.

Rugged and lightweight, the thiW-9 is ideal for portable operation. Transcever can be powered from batteries, a lighter socket, solar power units or \(120 / 240\) VAC with the HWA-9 compatible power supply.


\section*{FREE CATALOG!}

Complete specifications on the HW-9 and other Ham products are available in the new Heathkit Catalog.
Write: Heath Company, Dept. 011-194
Benton Harbor, M1 49022 Or visit your local Heathkit Electronic Center:

\section*{There's more for the Ham at Heath.}

See our complete line of CW aids including the UltraPro * CW Keyboard. HM-9 HF/VHF watt meter and HFT-9 Antenna Tuner.
Order toll-free MasterCard and Visa: 800-253-0570.



From left to right: Cesar HIBCQ, Tim HIBMFP, and Emesto HIBCW.
liam Read HIBWRE, Frank Caraballo HIBFCN, Osvaldo Castillo HIBOCB, and Winston Vargas HIBkW.
Immediate plans are for the contests of the Republic Restoration and the Radio Club Dominicano Anniversary. Dates will be given in the near future, as well as information on CW classes and equipment operation procedures for new ham-radio operators.
The twins and the board would like to set up new antennas for the club, organize a work laboratory, and, of course, as a wellestablished tradition, organize the popular DXpeditions to Saona Island in zone H12, which always gives rise to much activity and great fun.
I want to thank our readers for all the letters and notes on the 73 international sec. tion. I have answered them personally, trying to help them out.
Soon I hope to have an interesting column about the important reasons why HI QSLs are either not getting here on time or just don't get here at all!


Hans J. Schalk DJ88T
Hammarskjold-Aing 174
D 6000 Frankfurt 50
Federal Republlc of Germany
Ralf Beyer DV3NW
Opferkamp 14
3300 Braunschwelg
Federal Republic of Germany

\section*{OCWA IN DL}

In April, 1983, the managing board of the Quarter Century Wireless Association (OCWA) elected Jean Wolff LX1JW to be a member of the Hall of Fame. Jean is the fourth QCWA member and the first European to be thus honored. One has to consider that only one member out of 10,000 QCWAers is chosen per year. For the German chapter and all the radio amateurs in Europe, a very good success.
Together with OOTC, SOWP, and the promoting association, "Foerderverein Amateurfunkmuseum e.V." (Society for Promotion of an Amateur-Radio Museum), we managed a stand at the "Ham Radio 1983" (largest national amateur-radio fair) in Friedrichshaten/Bodensee. Many visitors showed great interest in our stand and did
quite a lot of eyeball QSOs. Saturday night, our meeting took place in the administration bullding. We met again a week later, June 24, 1983, in Waldrach, in the area of Trier, and on Sunday we had an enjoyable trip to Luxembourg, Including a sightseeing tour, LX1JW being our tour guide.
After the sightseeing, we drank a bit of champagne with LX1JW in his QTH-about 100 people were participating in this "small" party. We were very interested in the station equipment and admired the 21 antennas. After having a nice lunch and after a visit to a wine coop, we took a beautiful trip on a steamship on the Moselle under excellent weather conditions. We returned to Waldrach and spent the evening with interesting conversations.

Our guests from the USA were: Charies W4SVB with his XYL Peg, Bill KDAZY with his XYL from Chapter 107, Gene W5EJT, with his XYL. Ruth, and K5OPT from Chapter 37. W4SVB presented to the German chapter a nice plaque from Chapter 107. After a sightseeing tour to Trier the next day, we returned to our homes.
On September 6, 1983, about 25 amateurs and their XYLs met at the GTH of DL7AC. LX1JW was honored to recelve a plaque from W5KL, vice-president of QCWA. The event was recorded by the broadcast station, "Deutschlandfunk." Later we did QSY to a restaurant, where we spent the whole night.

When the vote to the OCWA board in the USA took place, DL3ME was reelected as director. Out of 15 directors, he was voted into the 4th position. The votes in the German chapter are also finished. The previous managing board was confirmed. The German chapter now starts its seventh year.

\section*{70-CM MOONBOUNCE (EME)}

On June 13, 1964, just 20 years ago, a group of radio amateurs around HB9RG happened to do the very first \(70-\mathrm{cm}\) transatlantic QSO with KP4. The 1000 -foot parabolle reflector, gain at \(70-\mathrm{cm}, 50 \mathrm{~dB}\), which was used by KP4BPZ, had led to this spectacular success. The group (DL9GU, DL3NQ, DJ4AU, DJ3EN) utilized "only" 500 Watts rf , a 5 m dish, and an rx with tubes ( 7 dB). The signals: gain up to 15 dB signal-tonoise ratio. For the group this surely was a great success.

One year later, on July 3, 1965, DJ4AU with his 80 element group antenna, \(n x\) input with EC88 and 4CX250 PA-was capable of exchanging 559 reports via the moon with KP4BPZ. Also the first SSB QSOs were worked. Such well-known calls as DL3YBA ( \(4 \times 22\)-element yagis) participated in this action.

On July 24, 1965, KP4BPZ was worked again in CW and SSB by DL stations DL61Q and DLIEI. Here the equipment was reletively simple also-a 36 element group, rx input with 4168 and "only" 200 Watts rt.
Some years have passed now, and with better recelvers ( \(G a A s F E I\) ) it has become quite a lot easier working EME successfully on 432 MHz . Nowadays, almost 20 radio amateurs in DL are active in this mode. In 1983, the opportunity existed for almost everybody to work via moonbounce.
Radio astronomy was "born" back in 1933, on April 27. Working with International radio communications, Karl Jansky (1905-1950) found a disturbing noise recelved by the experimental antenna. Jansky came to the conclusion that this noise came from space. The radio emissions of our Milky Way systern were discovered. In memory of Janksy, the president of AMSATUSA, W3IMI, and KBHUH put into operation an antenna of the Greenbank Radio Telescope on \(432-\mathrm{MHz}\) EME. After a short echo test, the first station was reached on May 13, 1983-DJ9DL in CW with a 559 report at 1910 UTC. This was followed by DFTVX at 1950 UTC, also with 559 on both sides.

For Europe the moon now set, and the next QSO in DL took place on May 14. Jan DL9KR exchanged 57 in SSB with K8HUH at 1202 UTC. Then the QSOs increased rapIdly; 1240-DJ8QL 559/579 in CW, 1300DF9CY 449/449, 1334-DF3RU 559/579, 1344-DF0AS \(55 / 56\) in SSB, 1347-DJ5VI 55/57, 1355-DL6NAA 55/55, 1506-DC9RH 44/44, 1653-DJ6MB 559/559 in CW, 1658DF7KB 559/559 (his very first EME QSO), 1920-DL1BP \(43 / 53\) in SSB, 2017-DJTYP RO/RO. On May 15, DF9CY started at 1330 with 449/559, DL6WU at 1432 with 449/469, and DL9KR made an SSB demonstration for visitors at KBHUH around 1450. Then, 1616-DK5AI \(549 / 559\) in CW, 1710-DK1PZ 449/449, 1723-DL2CJ 449/449, 2037DK3YC 339/419, 2109-DF3EE 549/419, and for the last DL station, DJ9BV 239/RO.

In this list some well-known calls are missing, but on the other side, some amateurs worked their first EME QSO with relatively simple equipment. DF3EE: only 4 antennas and 250 Watts, DJ7UP: a 21 element Tonna and 400 Watts rf , and JA0CC: 4 antennas and only 40 Watts.
It was suggested that the information about the NRAO-KBHUH 432 EME test was recelved only by insiders. Otherwise, certainly much more activity would have taken place. The station equipment of KBHUH , a mirror of the interferometer with a diameter of 43 meters and a wideband cross dipole ( \(250-500 \mathrm{MHz}\) ) in the focus of the mirror, was used for antennas. The focus is located 18 m away from the mirror itself. Also, the 150 -Watt transistorized PA and the GaAsFET preamplifier are instailed here; these were controlled by different sets, such as MM432/28, IC451, IC720, or Drake R4B. Their own echoes had been heard 59.
In the time period of May 13 to 16, 1983, 132 different stations were worked in 250 QSOs. One time Africa, 6 times Asia, 67 tirmes Europe, 54 times North America, 1 time South America, and 3 times Oceania. Besides, the "WAC \(432 \mathrm{MHz}^{\text {" could be }}\) worked during these 35 hours.

\section*{OJQMA IN RTTY}

Market Reef was QRV in RTTY for several days in June, 1983. OP Kee OHONA reported: Maerkets Fyr (Market Reet) is situated in the Baltic Sea between Sweden and the Aland Islands. The reef measures about 85 by 310 meters and is about 3 meters above sea level. Three "cottages" were placed on the bare rock a depository for wood and oil, another for engines and tanks
for oll and gas, and finally a small house with six rooms and a kitchen.
That year (1983) the station consisted of a Drake TR-7/RV-7, an Alpha 374, and a "Telereader." Antennas used. a TH3MK3 for 20 meters on a 15 m -high, solid-concrete mast, a 2 element beam for 40 m , dipoles for 80 and 160 m , and a GPA for \(40 / 20 / 15\) and 10 meters.

Some hints now for ops and visitors to Market Reet: Every licensed visitor can get a transmitting permission if the "Alands Lotsfoerdeining" (pilotage service) agrees with the tour to Market Reef. This agree ment includes the providing of food. It's only a 25 -kilometer trip between Aland and the Reef, but sometimes it's very hard to land on the rocky coast. Last year we had to wait 4 days to come through; this time it was OK the first day. If you want further information, please contact Karl-Erik Eriksson, SF-22430 Saltvilk, Finland. That's the QSL address, too.
de DJ3BT

\section*{ATOMIC CLOCKS}

Can you think of a moderately-priced clock in your ham shack which shows local time accurate to 1 ms , date and day of the week, and which automatically adapts to the changes of summeriwinter time and leap years? Which synchronizes itself within 2 minutes after a power break? And which has a long-term stability of 1 second In 300,000 years?
This is no dream for German radio amateurs anymore since a whole range of appropriate clocks is on the market. Prices range from \(300-400\) DM (115-150 US dollars) for complete units. Examples are the Renkforce atomicolock system ACS-77. the DCFT7 atomic clock made by SchwilleElektronik (PO Box 801609, 8000 Muenchen 80), and the Hopl atomic clock 4300 (distributed by Conrad Elektronik, PO Box 1180, 8452 Hirschau).
In addition, the radio amateur can take advantage of another feature of these clocks. All of them have a receiver which picks up the required time signals on a frequency of 77.5 kHz . This transmission is controlled by the Physikalisch Technische Bundesanstalt in Braunschweig, Germany, which is an institution comparable to the National Bureau of Standards in other countries. The emission on 77.5 kHz has a frequency stability of 0.001 ppm within a period of 10 seconds and a much higher stability on the order of 0.000001 ppm for extended periods of time.
It is relatively easy to synchronize a 10 MHz crystal oscillator with this 77.5 kHz signal. Tests have shown that by this technique, a low-cost \(10-\mathrm{MHz}\) reference frequency signal can be generated with an accuracy of at least 0.001 ppm . It can be used as a solid basis for accurate frequency synthesizers, for frequency dividers to be used for transceiver callibration, for the synchronization of the crystal oscillator in frequency counters to Improve their accuracy and long-term stability, and for numerous other applications. (Construction articles for the DCF77-controlled clock appeared in Reference 1 below and for a DCF77-controlled \(10-\mathrm{MHz}\) frequency standard in Ref. erence 2.)
All these features are made possible by a special service of the PTB. According to the definition that 1 second equals \(9,192,631,770\) periods of a specific radiation of the nucleons of 133 Cs , PTB utilizes this standard in its atomic clock CS1, which generates highly accurate time and frequency signals. The time signals are encoded and transmitted by station DCF77 near Frankfurt/Main on 77.5 kHz . Both the time signals and the transmitter frequency are controlled by CS1. The transmission of
it has features never before available in one handheld, it's made in the USA and it's priced right!

\section*{COMPARE TENNESSEE TECHNOLOGY WITH THE OTHERS... \\ Do their handhelds have memory lockeut?}

Exclusive memory lockout on the TEN-TEC 2591 allows scanner to temporarily bypass channels for quick lockout of busy frequencies yet retain them in memory for normal operation on demand.

\section*{Do theirs store transmit offset?}

The 10 memories of the 2591 allow stored offset for easiest operation. And memory channel 0 accepts any non-standard offset.
Do theirs offer selectable SKIP or HOLD?
When scanning with the 2591, choose HOLD to stop and stay on a busy frequency. Choose SKIP to stop for several seconds and continue.
Do theirs offer modifiable Band Scan without complete reprogramming?
With the 2591 you can scan any section of the band with user defined upper and lower limits in steps of 5 , \(10,15,25\), or 30 kHz . Change step size, upper and lower limits independently. Manual Scan also, up or down, in 5 kHz steps.

\section*{Do theirs have Quick-Release NI-CAD Battery Pack?}

The 2591 battery pack slides off easily, yet is secure in use, has a heavy duty 450 mAH rating at 8.4 v , and the 2591 has capacitive memory retention to permit pack changing without reprogramming.
THE TEN-TEC 2591 HAS ALL THE RIGHT FEATURES...
- Memory Scanner scans only programmed channels and has user selectable HOLD or SKIP • Selectable 2.5 Watts or 300 Milliwatts power, top panel switched • Extended Frequency Coverage-143.5 to
148.995 MHz . Covers full Amateur Band plus some CAP and MARS frequencies. - 4-Digit LCD Readout with Switchable Back Light - large, easy-to-read digits, selectable for frequency or memory channel number.
- Key-Pad Frequency and Function Control - 16 key dual tone encoder
- Dual Function LED-shows battery status and transmit mode. - Electret Microphone plus separate speaker for superior audio • Compact, Lightweight,

Complete-easy to handle and rugged. Standard equipment includes flexible antenna with BNC connector, AC charger, belt clip, connectors for mike and speaker. Options include: adaptor pack for +12 VDC mobile operation, speaker/ mike, 25 watt power amplifier, leather case, desk charger, subaudible tone module, and spare NI-CAD pack.

DESIGNED AND MANUFACTURED IN TENNESSEE and it carries the famous TEN-TEC 1 year warranty. See your dealer for the best in 2 meter FM-the TEN-TEC 2591. Or write for information to TEN-TEC, Inc., Sevierville, TN 37862.

DCF77 can be heard In an area of about 600 kilometers around Frankfurt/Main, i.e., in most parts of Germany.
The signals of DCF77 can be picked up by a simple loop or ferrite antenna. After filtering and amplification, they are decoded to obtain the date and time information which can be displayed. Furthermore, the carrier of DCF77 can be amplified and utilized directly to synchronize other signal generators as discussed earlier. If DCF77 cannot be heard, a very similar but more commonly-available technique to produce precise reference signals on the basis of AM broadcast transmissions is described in Reference 3.
The German radio amateurs are only a small but nevertheless grateful portion of all consumers of the DCF77 time and frequency signals. In the meantime, PTB controls by means of DCF77 the clocks and transmission frequencies of broadcast and TV stations, the time announcements on the telephone, the clocks of railway stations, and meteorological services, to name a few. Altogether, the atomic clock and the time and frequency signals derived from it play an important but often unnoticed role in the lives of almost everyone here. For ham radio, however, I think it is a particular challenge to make even better use of it in the future.
de DJ3NW

\section*{References}
1. Mueller, \(\mathbf{O}\)., "Einfacher, batteriebetriebener Messempfaenger fuer DCF77," CQDL Magazine, August, 1979, pp. 359-363. 2. Schneider, M., Gusek, B., "DCF77-gesteuerte Zeitbasis mit geregeltem Empfaenger," CQ-DL Magazine, July, 1980, pp. 308-310.
3. Beyer, R., "More Stable than a Rock," 73, July, 1983, pp. 32-40.


FINLAND
Radiomatoorikerho Kuopion Seitoset ry Box 142
70101 Kuopio 10
Finland
Location NW19 H, Kuopio-not exactly in the middle of the world but almost in the middle of Finland-is the spot where the 25th summer happening of the Finnish Radio Amateurs Association, HAMSSI 84, will take place July 19-22, 1984. The happening will be organized by Kuopion Seitoset, the local club for radio amateurs-which will be 30 years old this year.
HAMSSI 84 will be a happening for the whole family, and the organizers are expecting participants from several countries. The program consists of, among other things, the Nordic Championship of radio orientation, pileup contest, a photograph exhibition which is composed of the harvest of a contest on the subject "Radio Amateurs," lectures on various subjects such as "Satellites and Radio Amateurs," DX dinner, YL meeting, old-timers meeting, and the biggest flea market in Finland. The members of the family have also been taken into consideration by arranging a cruise by ship, city sight-seeing tours, and, especially for children, there are puppet shows, pony riding, games, and playing. A detailed program will be sent when requested.
The event will take place in Rauhalahti, an area which is situated only 5 km to the south of the center of Kuopio. In the area
there is a new modern camping site with beaches and saunas on the shore of Lake Kallavesi, a high-class hotel, and a group of buildings belonging to a mansion which will serve as the center of the whole summer event.
The town of Kuopio is situated in the largest lake district of Europe. There are 76,000 inhabitants in the town, which is the center of tourism, administration, and culture for the whole eastern part of Finland. There are lots of things to see and experience in Kuopio. The beating heart of Kuo pio is the marketplace-a lively meeting place of international tourism. There are five interesting museums in the town; the Finnish Orthodox Church Museum is the only one of its kind in western Europe. There are eleven hotels, two summer hotels, and two youth hostels in Kuopio. The town also is the center of Finnish inlake boat traffic: There are eight passenger ships departing from the harbor of Kuopio daily. Everyone surely can find something to his taste!

Radio amateurs throughout the world now have, within the framework of their hobby, an excellent opportunity to come to Finland to take part in an international camp. It is organized in the middle of summer when Finnish nature is at its best: The sun hardly sets during the nighttime, the district is, to a great extent, uninhabited, the tens of thousands of lakes inveigle you into cruising, and the green forests invite you to rove on paths. You have an excellent opportunity to get yourself acquainted with this beautiful Scandinavian country, its capital, Helsinki, and the hills of Lapland to the north of the Arctic circle, before or after the camp.

The boat and flight connections from Europe to Finland are good. Those participants who are coming from further away are advised to collect small groups and make use of the advantageous group prices of the airway companies. Contact your own club in order to be able to come to Kuopio. There is room at the camping site, but it is wise to make all other reservations for accommodation, as well as the reservations for flights and ships, in good time.

Hamconvention topics and activities will include Operating VHFNHF in Modern Environments, Towards Gigahertz, Antennas, DX Operations Today, a Contest Forum, SSTVIATVIRTTY, the DX Dinner, Nordic and Finnish Championship in Foxhunting and YOU too, CW competition: Amateurs against Defense Forces, Police, and Association of Finnish Radio Telegraphists, Electric Security in Ham Radio, New Technology used in Ham-Radio Equipment, and Amateurs and the Microcomputer.

We have a foreign-visitor manager who will be very glad to help and guide you during your visit to HAMSSI 84, and main topics will be interpreted in English.

Kuopio is about 450 km northeast of Hel sinki with good rail, road, and air connections. Accommodations can be arranged at the first-class Rauhalahti hotel or the campsite nearby. The Rauhalahti campsite is situated about 5 km from the center of the town. It is modern and well equipped: cafe, kiosk, beach, 4 saunas, rowing boats, modern shower and washrooms, and parking areas for cars and caravans.

Campsite reservation: Kuopio Tourist Service, Haapaniemenkatu 17, SF 70100 Kuopio, Finland, Tel. +358-71-114101, Telex 42163 ktour sf.
Hotel reservation (preferably before May 30, 1984): Hotel Rauhalahti, Katiskaniementie 2, SF 70700 Kuoplo, Finland, Tel. + 35871.311700, Telex 42242 rauha sf.

Further information: Mr. Joxa Hartikainen, OH 700 , Kauppakatu 45, SF 70100 Kuo-
pio, Finiand, Tel. \(+358-71-124311\), Telex 42138 carls sf.


Jeff Maynard G4EJA
10 Churchfields
Widnes WAB 9RP
Cheshire
England
One of the most rewarding spin-offs from writing a column such as this is the recelpt of letters and cards from readers. Since writing for 73 , I have received all sorts of re quests and snippets of information not only from readers in the United States, but also from Africa, Asia, and Australia. Usually I try to put together a personal reply and write directly to the correspondent. A recent QSL card, however, prompted me to put together this particular column.

Ron Johnson WA5RON of Silver Greek, Texas, wrote asking for information about our 4 -meter \((70-\mathrm{MHz})\) allocation. I had not previously used this as a topic because I did not think anyone would be interested in a VHF band to which they did not have access. Ron's letter, though, suggested that US hams would find details of 4 meters of interest and he asked a number of pertinent questions.
The 4-meter band is spelled out in the UK license as follows. The band coverage is \(70.025-70.5 \mathrm{MHz}\) with usage being on a secondary basis (some military systems use 70 MHz and have priority at all times). The maximum allowable power is 50 Watts dc input (or, in Department of Trade and industry terminology, "133.33 Watts Radio Frequency Peak Envelope Power").
Allowable modes on 4 meters are AM (including CW, of course), SSB, and FM. AIthough 70 MHz is classed as a VHF band, only class A license holders have access. VHF-only class B licensees (i.e., those who have not passed a code test) cannot use any band below 144 MHz . Needless to say, this restriction is viewed by some as rather pointless-its major impact is to reduce the number of potential users of the band.

As with all VHF bands in IARU Region One (Europe and Africa), there is a band plan for use of 4 meters (like the others, it is a voluntary plan but, nevertheless, is mostly adhered to). The plan seeks to separate the non-compatible modes (i.e., SSB and FM) whilst giving everyone a fair share of the available spectrum.
The 4 -meter band plan is as follows: 70.025-Beacons only
70.075-CW only
70.150-SSB and CW only
70.200 - SBB calling
70.260-All modes
70.300-RTTY calling
70.400 -FM simplex
\(70.450-\) FM calling
70.500 -end of band

Current \(70-\mathrm{MHz}\) beacons with power and beam heading are:
GB3CTC \((70.300)-40 \mathrm{~W}, 45^{\circ}\)
GB3WHA ( 70.040 )- \(16 \mathrm{~W}, 315^{\circ}\)
GB3BUX (70.080)-20 W, Omni
GB3ANG ( 70.060 )- \(100 \mathrm{~W}, 160^{\circ}\)
There are currently no repeaters operating in the \(70-\mathrm{MHz}\) band.
There are only two other countries with allocations in the 4 -meter region. These are Gibraltar (ZB2) and Eire (El). The opportunities for DX are correspondingly rare, therefore, although there have been reports of crossband contacts ( \(70 / 144 \mathrm{MHz}, 70 / 28\)

MHz , and, recently, \(70 / 50 \mathrm{MHz}\) ) with Faroes (TF), Madeira (CT2), and Sweden (SM).

Despite low occupancy rates, 70 MHz does boast some of the less usual propagation modes with meteor scatter, auroral, and sporadic-E all featuring. Incidentally, the record distance for the last-mentioned mode is 745 km . Sporadic-E is also responsible for the frequent appearance in the UK of beacons ZB2VHF and E14RFF ( 70.130 MHz).

Perhaps the most endearing feature of the 4 -meter band is its quietness and lack of crowding relative to 2 meters. This also can mean long periods when CQ calls remain unanswered.

There is little commercial equipment available for 70 MHz , with those few advertised items being of UK origin. (I have never seen any Japanese 4 -meter gear advertised). Metalfayre of Dover produces 4 -meter antennas with a 3 -element version ( 7 dB gain) available at \(\$ 40.00\) and a 5 -element version (9 dB gain) available at \(\$ 64.00\).

Wood and Douglas produces a range of \(70-\mathrm{MHz}\) modules that can form the basis of a home-brew rig. These include a \(1.5 \cdot \mathrm{~W}\) transmitter ( \(\$ 50.00\) assembled, \(\$ 30.00\) kit), an FM receiver \(\$ \$ 90.00\) assembled, \(\$ 62.00\) kit), and a couple of preamplifiers.

It is unlikely that 4 -meter occupancy will increase significantly until the band is opened to class B license holders or more countries adopt an allocation in this part of the spectrum. Neither of these seems likely at present.

An interesting aside has just come to my attention via the RSGB hotline news service (a telephone answering machine at RSGB headquarters). British Telecom has just closed down its cable television service in Milton Keynes because they were unable to prevent egress of a \(144-\mathrm{MHz}\) signal. The Department of Trade and Industry will not permit the service to reopen until a new carrier frequency is implemented. Well, well!


GREECE
Manos Darkadakis SV1IW
Box 23501
Athens 11210
Greece
Now that the summer's here, maybe it is time for planning your annual vacation. Well, if blue sky, clear sea, and long sandy beaches appeal to you, then Greece is the place for you. You may also keep in mind that Greece has a lot to offer to a radio amateur, such as four separate DXCC countries to work from. These countries are mainland Greece (SV), Crete (SV9), Dodecanese Islands (SV5), and Mt. Athos (SVIA). Even if we have to leave the last one (hard to obtain a license), there are still the three to work from.
Things are much better now than they used to be a few years ago, and people have started to understand a bit more about amateur radio. There are many places such as hotels, bungalows, etc., where the owners allow an antenna to be erected and also will provide any help needed. I remember once, four years ago, while on vacation on the island of Cos (Dodecanese Islands), two people were fighting about who would have the privilege of having our antenna on top of his house!
So, do consider Greece as a possible place for your next vacation and don't forget to bring along your amateur gear, un-

\section*{At Last.}

A microthin, synthesized, programmable, sub-audible tone encoder that fits inside the ICOM IC-2AT.

Need we say more?
less you have to choose between the radio and the XYL.

By the way, don't be surprised if you hear on the air a \(\mathrm{J4}\) prefix instead of the regular SV. Greece is issuing this prefix on special occasions, like contests, celebrations, etc.

Finally, we have two more countries that now have a reciprocal agreement with Greece. These are Sweden and the Federal Republic of Germany which, along with Cyprus, the USA, and Canada, make a total of five.


\section*{INDIA}

Miss R. Subha
3 Thiru-VF-Ka Road
PB Na. 725
Madras 600006
India

\section*{THE GOLD RUSH}

DXpeditions still pay-especially when they are next door. Dxpeditions have always had their own special kind of charmnot just the spirit of adventure, but also the fragrance of greenbacks. With a large number of affluent amateurs looking for more contacts to complete their singleband/multiband DXCC, a number of standardized methods to promote DXpeditions have evolved over the past two decades.

It began with the loan of equipment, money, and manpower to the local amateurs. One or two of the sponsors, mainly from the US, would try to join in as members, although the leader would be an indian. The bearns were given as a gift after the event because they would cost more than their original cost to take back. The QSL. manager to the expedition was generally one of the sponsors-so that's where the greenbacks ultimately landed.

With the natives getting wiser, they began organizing their own expeditions with equipment donated by foreign sponsoring groups. The ostensible purpose was to give the worid contacts with a rare country. The resulting greenbacks now came into their hands and mostly covered their costs, but did not compensate for all the backaches and tribulations of the travel.

The latest revolution in equipment design has now made it possible for expeditions to be more costeffective by making multiband/multi-operator, round-theclock operation possible with simple handcarried power sources. Indians have not
been too slow in catching up with this advantage.
Two reglons of India that have enjoyed separate country status for quite a long time are the Andaman-Nicobar Isiands and the Laccadive islands. They have always been targets for these promoters. And, luckily for country-hunters, that status has continued long after these islands became integral parts of VU-land. There was a move to do away with special callsigns for these areas, but the Federation of Amateur Radio Societies of India (FARSI) President M. V. Chauhan VU2MV pointed out to the government the need to continue special callsigns for these areas-advice which obviously was heeded.

Late in 1983, with barely a few weeks to go, the government decided to celebrate WCY with a general permission to all comers to operate for a 15 -day period up to De cernber 31, 1983, from the Laccadive islands, 250 miles off the west coast of India. Every station would use VUTWCY suffixed by his own call letters. The first team of two men and a YL. left promptly and claimed over 5000 contacts in CWISSB modes. A one-man expedition followed before the year was out. Bowing to pressures, the Wireless Planning and Coordination Wing of the Ministry of Communications (India's FCC) extended the deadline to March 31 , 1984, paving the way for one more team to raise the tally by a further 5000 contacts.
The dollars and IRCs have begun rolling in, and each team has begun responding to the QSLs that are flooding in. When the gold rush is over, it will be time for the expeditioners to reckon how worthwhile the trek to the west was!


\section*{IRAQ}

Herbert Perkins WA2JRV
268 Sagamore Drive Rochester NY 14617

During my last trip to Baghdad, I was privileged to be a guest at Y11BGD (Scientific Center, Box 5864, Baghdad) and to take photographs. I have fortunately been able to visit the station several times and I want others to understand some of the problems faced by the club in Baghdad.
To guarantee a QSL card, you must send three IRCs dated after 1 July 1981. The date is very important because ones issued prior to 1 July 1981 are not valid in Iraq. A self-addressed envelope and of course your card should also be sent.

The letter to Y11BGD should be addressed to the operator but should not have a callsign in the address. Do not send any money, it will not get to the club.

The club promises that any QSL cards received will be acknowledged, but everyone needs to understand that over 500 cards a month are received, of which \(50 \%\) have IRCs and a return envelope, \(20 \%\) have only IRCs, and \(30 \%\) have no IRCs and no envelope. The club presently has over 2000 IRCs that are not valid in traq and cannot be used to defray the cost of QSLing.

The club is supported entirely by the 6 operators, and just the cost of postage for a one-year period is staggering. As a last re-


Majied at the club station.
sort, the club will send QSLs to the respective bureaus in each country, but this process can sometimes take up to 12 months to complete.
You might also be interested to know where all the club equipment comes from. The Drake C tine was donated by JY1, His Majesty King Hussein of the Hashemite Kingdom of Jordan. The Atlas 210 was donated by the Radio Amateur Society of Yugoslavia. The Yaesu FT-101E was donated by JA1BK, the keyer by DL6QW, and the triband antenna and rotator were donated by the Northern California DX Association through OH2BH and the Radio Amateur Society of Finland.
The special call of YIIBIF was used November 3-20 to celebrate the Baghdad international Trade Fair.
JY9IU/HB9AIU and I assisted in setting up the station. Over 2000 contacts were made, and most QSLs should be answered by now.

YI1BGD is usually on the Arablan Knight Net at 0500 GMT two days a week and, if possible, every morning at 0500 to 0700 GMT on the Rare DX Net headed by JY3ZH. If time and operators permit, they are also on from 1500 to 1700 GMT Monday and Wednesday.


\section*{ITALY}

Giancarlo Martelli 10XXR
Via Bevignani 18
00162 Rome
Italy

\section*{THE TTALLAN AFFAIR}

I excuse myself with the readers not being able to write from italy last month due to several reasons, the main of which is the effort spent with discussions and actions with other fellows directed to defend our rights and to restore our privileges at the same level as the other European countries.

I have already explained what happened here in Italy: fines and license suspensions for amateurs who were found outside the borders of an ancient and outdated law and regulation. So much has happened during the last two months on this matter, and the situation, although improved, is still fluid. I will not now tell the story, which seems to be still susceptible to further development.

Nevertheless, the most important thing
Continued on page 102


From the left: Walter Hediger, Herb Perkins, and Saad (operator at YI1BGD) repairing a dead L4B power supply.


Walter and Saad locating the problem-bad diodes.


\section*{DIGITAL AUDIO MAGAZINE:}

\section*{For the new age in sound reproduction!}

Digital Audio brings you news of the most significant breakthrough in sound recording since Edison recited 'Mary Had A Little Lamb" into the horn of his prototype phonograph more than a century ago.
\(\square\) Informative equipment profilesCritical Compact Disc reviews
\(\square\) Maintenance tips
\(\square\) Regular columns
\(\square\) Expert technical advice
\(\square\) Product updates and reports
\(\square\) Special, in-depth feature articles
\(\square\) Industry news flashes
and much, much more.

Digital Audio. Your new magazine for the new age in sound reproduction.
Sound incredible?
That's the idea.
Order Digital Audio now and receive a FREE issue with your first year's subscription-a total of 13 issues of Digital Audio for \(\$ 19.97\)-a savings of over \(47 \%\) off the newsstand price!

If you don't want to cut up this magazine, just send us the requested information on a plain sheet of paper. For faster service call TOLL FREE 1-800-227-1053. In NH, dial 1-924-9261.

Be one of the first to say YES! to Digital Audio!
YES, it does sound incredible.
Send me my FREE issue and start my one | year subscription to Digital Audio Magazine \({ }^{\text {m" }}\) for \$19.97.
\squareCHECKMO \squareMC \squareVISA \squareAE \squareBILLME
\squareCHECKMO \squareMC \squareVISA \squareAE \squareBILLME
Card \# \(\qquad\) Exp. date \(\qquad\)
Signature \(\qquad\)
| Name
\(\left\{\begin{array}{l}\left.\text { Address } \quad \begin{array}{l} \\ \text { City } \quad \text { State ___Zip_____ }\end{array}\right]\end{array}\right.\)

\section*{FOR FASTER SERVICE} call Toll-Free 1-800-227-1053
Digital Audio Magazine \({ }^{\text {Tw }}\)
PO Box 976 * Farmingdale, NY 11737 Please allow \(6-8\) weeks for delivery.
747406

300 WATT ANTENNA TUNER HAS SWR/WATTMETER, ANTENNA SWITCH, BALUN. MATCHES VIRTUALLY EVERYTHING FROM 1.8 TO 30 MHz .

MFJ's fastest selling tuner packs in plenty of new features!
- Now Styling! Brushed aluminum front. All metal cabinet.
- New SWR/Wattmeter! More accurate. Switch selectable 300/30 watt ranges. Read forward/reflected power
- New Antenna Switch! Front panel mounted. Select 2 coax lines, direct or through tuner, random wire/balanced line or tuner bypass for dummy load.
- New airwound inductor! Larger more efficient 12 position airwound inductor gives lower losses and more watts out. Run up to 300 watts RF power output. Matches everything from 1.8 to 30 MHz : dipoles, inverted vee, random wires, verticals, mobile whips, beams, balanced and coax lines. Built-in \(4: 1\) balun for balanced lines, 1000 V capacitor spacing. Black. \(11 \times 3 \times 7\) Inches Works with all solid state or tube rigs. Easy to use, anywhere

\section*{RTTY/ASCII/CW COMPUTER INTERFACE MFJ-1224\$99.95}


Send and recelve computerized RTTY/ASCII/ CW with nearly any personal computer (VIC-20, Apple, TRS-80C, Atari, T1-99, Commodore 64, etc.). Use Kantronics or most other RTTY/CW software. Copies both mark and space, any shift (including \(170,425,850 \mathrm{~Hz}\) ) and any speed ( \(5-100\) WPM RTTY/CW, 300 baud ASCII). Sharp 8 pole active filter for CW and 170 Hz shift. Sends 170, 850 Hz shift. Normal/Reverse switch eliminates retuning. Automatic noise limiter. Kantronics compatible socket plus exclusive general purpose socket. \(8 \times 11 / 4 \times 6\) in. \(12-15\) VDC or 110 VAC with adapter, MFJ-1312, \$9.95.

\section*{RX NOISE BRIDGE}

Maximize your antenna performance!


Tolls wher to \(\$ 59.95 \mathrm{MFJ}-202 \mathrm{~B}\) Tells whether to shorien or lengthen antenna for minimum SWR. Measure resonant frequency, radiation resistance and reactance.
New Features: individually calibrated resistance scale, expanded capacitance range ( \(\pm 150 \mathrm{pf}\) ). Built-in range extender for measurements beyond scale readings. 1-100 MHz. Comprehensive manual. Use 9 V battery, \(2 \times 4 \times 4 \mathrm{in}\).

\section*{INDOOR TUNED ACTIVE ANTENNA}
"World Grabber" rivals or exceeds reception of outside long wires! Unique tuned Active Antenna minimizes intermod, improves select ivity, reduces noise outside tuned band, even functions as preselector with external antennas. Covers \(0.3-30 \mathrm{MHz}\). Telescoping antenna. Tune, Band, Gain, On-off bypass controls. \(6 \times 2 \times 6\) in. Uses 9 V battery, 9-18 VDC or 110 VAC with adapter MFJ-1312, \$9.95.

\(\$ 79.95\) mFJ 1020

\section*{POLICE/FIRE/WEATHER} 2 M HANDHELD CONVERTER
Turn your synthesized scanning \(\$ 39.95\) 2 meter handheld into a hot Police/ \(=\) MFJ Fire/Weather band scanner! \(144-148 \mathrm{MHz}\) handhelds receive Police/Fire on 154 158 MHz with direct frequency readout. Hear NOAA maritime coastal plus more on \(160-164 \mathrm{MHz}\). Converter mounts between handheld and rubber ducky. Feedthru allows simultaneous scanning of both 2 meters and Police/Fire bands. No
 missed calls. Crystal controlled. Bypass/Off switch allows transmitting (up to 5 watts). Use AAA battery. \(21 / 4 \times 1 \frac{1}{2} \times 11 / 2\) in. BNC connectors.

a deluxe MFJ Keyer in a compaciconfiguration that fits right on the Bencher lambic paddle! MFJ Keyer - small in size, big in features. Curtis 8044-B IC, adjustable weight and tone, front panel volume and speed controls ( \(8-50\) WPM). Builtin dot-dash memories. Speaker, sidetone, and push button selection of semi-automatic/tune or automatic modes. Solid state keying. Bencher paddle is fully adjustable; heavy steel base with non-skid feet. Uses 9 V battery or 110 VAC with optional adapter, MFJ-1305, \$9.95.

\section*{VHF SWR/WATTMETER}

Low cost

\section*{MFJ-812 \$29.95}

VHF SWR/
Wattmater! Read SWR ( 14 to 170 MHz ) and forward/ reflected power

at 2 meters. Has 30 and 300 watts scales. Also read relative field strength. \(4 \times 2 \times 3\) in.

\section*{1 KW DUMMY LOAD \\ Tune up fast, extend life of finals, reduce QRM! Rated 1 KW CW or 2KW PEP for 10 min utes. Half rating for 20 minutes, continuous at 200 W CW, 400 W PEP. VSWR under 1.2 to 30 \(\mathrm{MHz}, 1.5\) to 300 MHz . Oil contains no PCB. \\  Carrying handie. \(71 / 2 \times 6^{3 / 4}\) in.}

\section*{24/12 HOUR CLOCK/ID TIMER MFJ-103 \\ \(\$ 34.95\) \\ Switch to 24 hour GMT or 12 hour format! \\  maintains time during power outage, ID timer alerts every 9 minutes after reset. Switchable seconds readout. Elapsed timer. Just start clock from zero and note time of event up to 24 hours. Bright blue \(6^{\prime \prime}\) digits. Alarm with snooze function. Synchronizable with WWV. Lock function prevents mis-setting, Power out, alarm on indicators. Black. \(5 \times 2 \times 3 \mathrm{in}\). \(110 \mathrm{VAC}, 60 \mathrm{~Hz}\).}

\section*{DUAL TUNABLE SSB/CW FILTER MFJ-752B \$89.95}


Dual filters give unmatched performancel The primary filter lets you peak, notch, low pass or high pass with extra steep skirts. Auxiliary filter gives 70 db notch, 40 Hz peak. Both filters tune from 300 to 3000 Hz with variable bandwidth from 40 Hz to nearly flat. Constant output as bandwidth is varied; linear frequency control. Switchable noise limiter for impulse noise. Simulated stereo sound for CW lets ears and mind reject QRM. Inputs for 2 rigs. Plugs into phone jack. Two watts for speaker. Off bypasses filter. 9-18 VDC or 110 VAC with optional adapter, MFJ-1312, \$9.95.

> ORDER ANY PRODUCT FROM MFJ AND TRY IT-NO OBLIGATION. IF NOT DELIGHTED, RETURN WITHIN 30 DAYS FOR PROMPT REFUND (LESS SHIPPING).
> - One year unconditional guarantee - Made in USA.
> - Add \(\$ 4.00\) each shipping/handling - Call or write for free catalog, over 100 products.


MFJ ENTERPRISES, INC. -9 Box 494, Mississippl State, MS 39762

TO ORDER OR FOR YOUR NEAREST
DEALER, CALL TOLL-FREE
800-647-1800. Call 601-323-5869
in Miss, and outside continental USA
Telex 53-4590 MFJ STKV

\section*{VISA \({ }^{-}\)} vispme Martecerd MasterCard MFJ-1224, MFJ-1225 or MFJ-1228 from MFJ. Send/receive Baudot, ASCII, CW. Type ahead buffer. 24 hour clock. Supports VIC printer. Menu Driven. MFJ-1224/1225 cable. On tape. Available separately for \$29.95.


FREE MFJ RTTY/ASCII/CW Software INCLUDES MFJ-1228, SOFTWARE ON TAPE. ADD VIC-20 OR C-64 AND RIG TO ENJOY COMPUTERIZED RTTY/ASCII/CW. ORDER MFJ-1228/MFJ1264 FOR VIC-20, MFJ-1228/MFJ-1265 FOR C-64.
Most versatlle RTTY/ ASCII/AMTOR/CW inter face cartridge avallable for VIC-20 and Commodore 64. Gives you more features, more performance, more value for your money than any other interface cartridge available.
Same interface carrtridge works for both VIC-20 and Commodore 64. Plugs into user's port.
Choose from wide variety of RTTY/ASCII/CW. even AMTOR software. Not marrled to one on-board sottware package. Use MFJ, Kantronics, AEA plus other software cartridge, tape or disk.
850 Hz and 170 Hz shifts on recelve and transmit.
Has mark and space outputs for scope tuning.
Normal/Reverse switch eliminates retuning.
True dual channel mark and spaces active filters and automatic threshold correction gives good copy when one tone is obliterated by QRM or selective fading.
Easy, positive tuning with twin LED Indicators.
Narrow 800 Hz active CW filter. Automatic PTT. Exar 2208 sine generator for AFSK output.
Shialdod XCVR AFSK/PTT Interface cablo provided. Plus or minus CW keyed output. FSK out.
Powered by computer (few ma.), no power adapter to buy or extra wire to dangle or pick up/radiate RFI. Glass apoxy PCB. Aluminum enclosure. \(4^{1 / 2 x 41 / 2 x 1}\)

\section*{UNIVERSAL SWL RECEIVE}

ONLY COMPUTER INTERFACE FOR RTTY/ASCII/AMTOR/CW

MFJ-1225
\$ 6995


FREE MFJ RTTY /ASCII/CW Software TAPE AND CABLE FOR VIC-20 OR C-64. ORDER MFJ-1225/ MFJ-1264 FOR VIC-20 OR MFJ-1225/MFJ-1265 FOR C-64.

Use your personal computer and communications receiver to receive commercial, military and amateur RTTY/ASCII/AMTOR/CW traffic.
Plugs between recelver and VIC-20, Apple, TRS80C, Atarl, TI-99, Commodore 64 and most other personal computers. Requires appropriate software.

Use MFJ, Kantronics, AEA and other RTTY/ ASCII/AMTOR/CW software.
Coples all shifts and all speeds. Twin LED Indicators makes tuning easy, positive. Normal/Reverse switch ellminates tuning for Inverted RTTY. Speaker out jack. Includes cable to interface MFJ-1224 to VIC-20

\section*{UNIVERSAL RTTY/ASCII/AMTOR/ CW COMPUTER INTERFACE}

Lets you send and receive computerized RTTY/ASCII/AMTOR/CW. Copies all shifts and all speeds. Copies on both mark and space. Sharp 8 pole active filter for 170 Hz shift and CW. Plugs between your rig and VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64 or other personal computers. Uses MFJ, Kantronics, AEA software and other RTTY/CW software.


> FREE MFJ RTIT/ASCII/CW Software
> MFJ-1224 COMPLETE PACKAGE INCLUDES MFJ-1224, SOFTWARE ON TAPE, CABLES, YOU NEED ONLY VIC-20 OR C-64 AND RIG TO ENJOY COMPUTERIZED RTTY/ASCII/CW. ORDER MFJ-1224/MFJ-1264 FOR VIC-20. MFJ-1224/MFJ-1265 FOR C-64.

New MFJ-1224 RTTY/ASCII/AMTOR/CW Computer Interface lets you use your personal computer as a computerized full featured RTTY/ASCII/ AMTOR/CW station for sending and receiving. Plugs between rig and VIC-20, Apple, TRS-80C, Atarl, TI-99, Commodore 64 and most others.
Use MFJ software for VIC-20, Commodore 64 and Kantronics for Apple, TRS-80C, Atari, TI-99 and most other software for RTTY/ASCII/AMTOR/CW. Easy, positive tuning with twin LED Indicators.
Copy any shift ( \(170,425,850 \mathrm{~Hz}\) and all other shifts) and any speed ( \(5-100\) WPM RTTY/CW and up to 300 baud ASCII).

Coples on both mark and space, not mark only or space only, to improve copy under adverse conditions. Sharp 8 pole 170 Hz shift/CW active filter gives good copy under crowded, fading and weak slgnal conditions. Automatic noise limiter suppress static crashes for better copy.
Normal/Reverse switch eliminates retuning. +250 VDC loop output drives RTTY machine. Speaker jack.

\section*{SUPER RTTY FILTER}


Super RTTY
 filter greatly
Improves copy under
crowded, fading and weak signal conditions.Improves any RTTY receiving system. 8 pole bandpass active filter for 170 Hz shift (2125/2295 Hz mark/space). 200 or 400 Hz bandwidths. Automatic noise limiter. Audio in, speaker out Jacks. On/off/bypass switch. "ON" LED. 12 VDC or 110 VAC with optional AC adapter, MFJ-1312, \(\$ 9.95 .3 \times 4 \times 1\) inch aluminum cabinet.
or Commodore \(64.41 / 2 \times 11 / 4 \times 41 / 4\) Inches. 12-15 VDC or 110 VAC with optional adapter, MFJ-1312, \$9.95.

Automatic tracking coples drifting signal.
Exar 2206 sine generator gives phase continuous AFSK tones. Standard 2125 Hz mark and 2295/2975 Hz space. Microphone line: AFSK out, AFSK ground, PTT out and PTT ground.
FSK keying output. Plus and minus CW keying CW transmit LED. External CW key jack.
Kantronics compatible socket.
Exclusive general purpose sockot allows interfacing to nearly any personal computer with most appropriate software. Avaliable TTL lines: RTTY demod out, CW demod out. CW-ID input, +5 VDC, ground. All signal lines are buffered and can be inverted using an internal DIP switch.
Use Galfo software with Apple, RAK with VIC-20, Kantronics with TRS-80C, TT-99, N4EU with TRS-80 III, IV. Some computers with some software may require some external components.
Metal cabinet. Brushed alum, front. \(8 \times 11 / 4 \times 6\) in. \(12-15\) VDC or 110 VAC with adapter, MFJ-1312, \(\$ 9.95\). MFJ-1223, 529.95 , Rs-232 adoptor for MFJ-122S.

\section*{CW INTERFACE CARTRIDGE} FOR VIC-20/C-64

High porformance CW Interface cartridge. Gives excellent performance

\(39^{95}\)der weak, crowded, noisy condilions. Works for both VIC-20 and Commodore 64. Plugs into user's port.

4 pole 100 Hz bandwidth setive filter. 800 Hz center frequency. 3 pole active lowpass post detection filter. Exclusive automatic tracking comparator.
Plus and minus CW keying. Audio in, speaker out lacks. Powered by computer.
Includes Basic listing of CW transmit/receive program. Available on cassette tape, MFJ-1252(VIC-20) or MFJ-1253(C-64), \(\$ 4.95\) and on software cartridge, MFJ-1254 (VIC-20) or MFJ-1255 (C-64), \$19.95.

You can also use Kantronics, AEA other software.
Also copy RTTY with single tone detection.

ORDER ANY PRODUCT FROM MFJ AND TRY IT-NO OBLIGATION. IF NOT DELIGHTED, RETURN WITHIN 30 DAYS FOR PROMPT REFUND (LESS SHIPPING). - One year unconditional guarantee - Made in USA. - Add \(\$ 4.00\) each shipping/handiling - Call or write for free catalog, wer 100 produets.


MFJ ENTERPRISES, INC. -9 Box 494, Mississippl State, MS 39762

TO ORDER OR FOR YOUR NEAREST DEALER, CALL TOLL-FREE 800-647-1800. Call 601-323-5869 in Miss. and outside continental USA Telex 53-4590 MFJ STKV


\section*{Random VIC}

\section*{Code－loving Commodore addicts asked for this． Ye shall receive．}

\author{
Eugene Morgan WB7RLX \\ 1311 Cross Street \\ Ogden UT 84404
}

For those of you who don＇t know who or what the VIC－20 is，it is the low－ cost micro from Commo dore，the makers of the Pet microcomputer．The VIC－20 is built around the 6502 chip and comes from the factory with 5 K of memory，of which 3583 bytes are RAM． The VIC－20 can be expand－ ed to 32 K by the addition of memory expanders．The memory－expander cartridges can be plugged into the back of the VIC through the expan－ sion port．They come in 3 K ， 8 K ，and 16 K sizes and can be used alone or all together with a mother board to give you a total of 32 K ．

The VIC also has inter－ face cartridges which can be plugged into the back of the user port．The VIC will inter－ face through an RS－232 car－ tridge，an IEEE－488 car－ tridge，or through a phone modem．I have used the VIC phone modem to plug into one of the many computer services and it works very well．The phone modem comes with the necessary software to turn the VIC into a terminal．As of yet，I have not used the VIC for RTTY or ASCII over the ham bands．

Data or program storage can be saved on the VIC floppy disk or the VIC cas－ sette drive．Also available for the VIC－20 is the VIC printer．It can be used to list programs，or the contents of
the screen can be sent to the printer．

The VIC comes with all the necessary cord and fil－ ters so that the home TV can be used for the video dis－ play，or a color monitor can
be used with no external interfacing．The screen size is 22 columns by 22 rows which sometimes can be an inconvenience．The Commodore people say there is a cartridge，the

Program listing．

\footnotetext{
1 PRINT＂－JNWNWMOODE PRACTICE PROGRAM＂
2 PRINT＂MWG＂SPC（9）＂B＇T＂：PRINTSPC（4）＂MWEUGENE MORGRN＂：PRINT＂MOMO（C）COPYRIGHT 198
3 FURT＝1T0200日： NEXT
4 POKE36878，15：GOTO19：REM TURN ON SOUND
5 POKEA，B：FORT \(=1\) TOZ \％：NEXT ：POKEA，\(Q:\) FORT \(=1\) TOT\％： NEXT ：RETURN：REM DAH
6 POKEA，B：FORT \(=1\) TOT\％：NEXT：POKEA， 0 ：FORT \(=1\) TOT\％：NEXT：RETURN：REM DIT
7 FORT \(=1\) TOS\％： HEXT：RETURN
19 PRINT＂I sTO STOP PROGRAM HITE SANY KEYE＂：PRINT＂MCBE SURE TO TURN UP SOUND＂＂
20 PRINT＂MOMNHHAT SPEED？＂：PRINT＂5．．．WPM＂：PRINT＂10．．WPM＂：PRINT＂15．，WPM＂：PRINT＂20． ．WFM＂
1 PRINT＂TR5．．WFM＂：PRINT＂36．．WPM＂：PRINT＂35．．WPM＂
\(22 \mathrm{~A}=36875: \mathrm{B}=240:\) REM PITCH OF TONE
25 INPUTW\％：REM SPEED
26 IFW \(\%=5\) THENT \(\%=189\) ：G0TO40
27 IFW\％\(=10\) THENT \(\%=90:\) G0TO49
28 IFW \(\%=15\) THENT \(\%=68:\) GOTO49
29 IFW\％\(=2\) QTHENT \(\%=45:\) GOTO4の
39 IFW \(\%=25\) THENT \(2=40:\) G0TO40
31 IFW \(\%=3\) OTHENT \(\%=34:\) GOTO4
32 IFW\％\(=35\) THENT\％\(=28:\) ： 0 TO40

\(49 \mathrm{v} \%=0: \mathrm{N} \%=1\)
50 FORT \(=1\) TOT\％： NEXT
51 gosube50
60 IFA \(\ddagger="\) 月＂THENGOSUB6：GOSUB5 ：GOTO150
61 IFR\＄\(=\)＂B＂THENGOSUB5：GOSUB6 ：GOSUBE ：GOSUB6 ：GOT0150
62 IFA年＝＂C＂THENGOSUB5：GOSUBE：GOSUB5：GOSUBE：GOTO150
63 IFA\％＝＂I＂THENGOSUB5：30SUB6：GOSUB6： 90 T0150
64 IFA \({ }^{\text {s }}=\)＂E＂THENGOSUB6：GOTO150
65 IFA \(\$=\)＂F＂THENGOSUB6：GOSUBE ：GOSUB5 ：GOSUBE ：GOTO150
66 IFF\＄＝＂G＂THENGOSUB5：GOSUB5 ：GOSUB6：G0TO159
67 IFA末＝＂H＂THENSOSUB6：GOSUB6：GOSUB6：G0SUB6：GOT0150
68 IFA \(=" I "\) THENGOSUB6：GOSUB6：GOTO150
69 IFA\＄＝＂J＂THENGOSUR6：GOSUB5：GOSUR5：G08UB5：GOTO150
70 IFA \({ }^{(20}=\)＂K＂THENGOSURS ：GOSUB6：GOSUB5：GOTO150
7i TFA来＝＂L＂THENGOSUB6：GOSUB5：GOSUB6：G0SUB6：GOTO150
72 IFA \(=\)＂M＂THENGOSUB5：GOSUB5： \(60 T 0150\)
73 IFP\＄＝＂N＂THENGOSUB5：GOSUB6：G0TO150
74 IFAs＝＂0＂THENGOSUB5：GOSUP5：GOSURS：BOTO150
75 IFA \(\$=\)＂P＂THENGOSUBE ：GOSUB5：GOSUPS ：G0SUB6：GOTO150
76 IFR客＝＂Q＂THENGOSUB5：GOSUB5：GOSUB6：G0SUB5：GOTO15Q
77 IFA \(\$=\)＂R＂THENGOSUB6：GOSUB5：GOSUB6： 6010150
}

Victerm－40，that gives the VIC a 40 by 22 screen．As of this writing，I have not used it．

The VIC－20 can be pro－ grammed in Basic or ma－ chine language．It is very easy to mix Basic and ma－ chine language together in a program by the use of a sim－ ple command，SYS．

\section*{The Program}

I chose Basic for the ran－ dom code－practice program because it would be easy to adapt to other computers and also because speed of execution was not an impor－ tant factor．No memory ex－ pansion is needed to run this program．If you are using expansion cartridges，they should be switched off or re－ moved．This program takes only 2227 bytes．

The code－practice pro－ gram sends a random code at whatever speed you se－
lect．You will be prompted for a sending speed from 5 wpm to 35 wpm in steps of 5 ．The code sound is made at the same time as the let－ ter is printed on the screen． Printing the symbol at the same time as it is sounded can be very helpful when try－ ing to associate the symbol with the sound．

If you prefer，you can blank out the screen so that you cannot see the symbols being printed until you stop the program．The method for doing this is as follows．

First，when you reach the part of the program that asks you for a speed，type in your selection－but before you press RETURN，change the cursor to white．This is done by pressing the CTRL key and 2 key together．This will make the cursor disap－ pear．Now all symbols will be printed the same color as
the screen．In order to see what has been printed on the screen，you must stop the program by pressing any key；then hit the RUN STOP key．Then POKE 36879,8 and the screen will turn back and you will see what has been printed．

To rerun the program， press the RUN STOP key and the RESTORE key to－ gether．This will change the screen back to white and go back to the first of the pro－ gram．

The way the program is set to run is as follows．First， the program gives my infor－ mation．By pressing any key you move into the program． You will be prompted for a speed．A menu will be printed on the screen for your selection．Enter your choice and press RETURN． The screen will clear and you will hear a code and the
symbols will appear on the screen in groups of five．Be sure to turn the volume on．

When you have copied enough，just press any key． The code will stop and you will be asked if you would like to select a new speed．If you do，then just press any key．The screen will clear and you will again be given a selection from 5 wpm to 35 wpm ．

The first part of the pro－ gram，lines 1－3，deals with my information．Line 4 sets the volume on the VIC； 15 is as high as you can go．Lines 5－7 are the Gosubs．I placed the Gosubs at the beginning of the program as a memory－ crunch procedure to con－ serve memory．It would have taken more memory and more typing time if I had used three－digit num－ bers．

Line 19 is an instruction prompt for halting the pro－ gram．Lines 20 and 21 print the speed menu．Line 25 asks for your choice．Line 22 sets the pitch of the sounds． You can change the pitch of the Dah and Dit by POKEing 36875 to any value from 128 to 255 ．

Lines 26 through 32 set the length of T\％．T\％is used to set the lengths of the Dit，Dah，and the spaces． You can change the speeds by changing the value of T\％．Line 40 sets the length of the Dah and Z\％．Z\％is three times longer than T\％． This will make the Dahs three times longer than the Dits．Line 40 also sets the value of \(S \%\) which is the length of the space between words．S\％is four times longer than T\％．

Line 50 is the space be－ tween each symbol．Lines 60 through 109 are the symbols with the Cosubs to get each Dah and Dit．Line 100 is the blank space between the groups．Line 150 tells the VIC to go back and count to T\％and delay between sym－ bols．Line 850 looks to see if
```

78 IFA\&="S"THENGOSUBE:GOSUPE:GOSUBE: GOTO150
79 IFA = "T"THENGOSURS:GOTO159

```

```

81 IFR\&="\"THENGOSUBE: GOSUBE:GOSUBE :GOSUB5:GOTD150
82 IFR\$="W"THENGOSUPG:GOSUP5:GOSUP5:G0T0150
83 IFAF="""THENGOSUR5:GOSUR6:GOSUP6: GOSUB5:GOTO150
84 IFA="="Y"THENGOSUPS: GOSUEE:GOSUB5:GOSUB5:GOTO150
85 TFA*="Z"THEMGOSUP5:GOSUB5:GOSURE:GOSUB6: GOTO159
86 IFA\pm="1"THENGOSURE:GOSUPS:GOSUP5:GOSUB5:GOSUB5:G0SUB5:G0TO159

```


```

99 IFA4="4"THENGOSUB6: GOSUP6 :GOSUBE:GOSUB6: GOSUP5 :GOTO150
99 TFAF="5"THENGOSURG:GOSURE:GOSUBE:GOSUBE GOSURE GOTO150
91 IFA*="6"THENGOSUB5:G0SUBE :GOSUB6:GOSUBG:GOSUB6: GOTO150

```




```

104 IFF\$ =CHR\&(32)THENFORT =1T05%: NEXT :G0TO159
101 IFA\$=", "THENGOSUB6: GOSUB5:GOSUBG:GOSUBS:GOSUE6:GOSUB5:GOTO150
192 TFR\&=", "THENGOSUB5 GOSUB5:GOSURE GOSUBE:GOSUB5: GOSUB5:GOTO150
193 IFA\&="?"THEMGOSUBE:GOSUBE:GOSUB5:GOSUB5:GOSUBE:GOSUEE:GOTO15G

```

```

107 IFR末=";"THENGOSUB5: GOSUE6: GOSUB5:GOSUE6 GOSUB5: GOSUE6:G0T0150
198 IFF音=">"THEHGOSUPS: gOSUBE:GOSUB6: GOSUR5:GOSUBE:GOT0159
199 IFA*="-"THENGOSUBE:GOSUEG:G0SUEG:GOSUEE:GOSUB6:g0SUE5:G0TO15G
150 60T050
859 GETL麦:IFL\&="THEN9@日
855 IFL
"@"THEN120日
990 x=INT<RWII(1)*9日) +1

```

```

902 IF%=5ИTHEN9ดИ
303 IF %=61THENGOM
90̆4 IFX=62THENSMG
905 IFX=64THEN90N
907 4%=0%+1:N%=N%%+1
GGE IFV%=6THEN: }=32:V%=
909 IFN%=309THEN130日
950 A = =CHR$(X): PRINTA$; RETURN
1200 PRINT" RGTOP"":PRINT"{TO SELECT A NEM SPEEI":PRINT"IHIT RNY' KEY.""
1205 GETJ生:IFJ害=""THEN1295
121060T019
130日 PRINT"MS"SPC(16)"** STOP ***":PRINT" FRESS RN4' KEY TO"SPC(9)"CONTINUE.G"
1305 GETE韦:IFE末=""THEN1305
131060T040

```
REATIY.
a key has been pressed. If one hasn't been pressed, then the program goes to line 900, at which point a random number between 1 and 90 is generated.

Lines 901 to 905 take care of the numbers that we can't use in our program. Line 907 keeps track of the number of symbols printed since the last space. Line 908 tells the VIC what to do after it has printed five symbols. Line 950 turns our random number into a symbol and then sends the VIC back to line 60 where it will look for the symbol it has just printed. The program will stay in this loop until a key is pressed. If a key is pressed, line 850 will send the VIC to line 1200 where it will stop the code and print an instruction prompt. Line 1205 will wait for you to press a key. If a key is pressed, the VIC will go to line 19. At line 19, the VIC will start the routine to get a new speed.

I have used the randomcode program for almost a month now and have improved my speed by ten words a minute. I hope that you will find the practice as helpful as I have. I haven't used this program on any prospective hams yet, but I have made several code tapes from this program and given them to some of my ham friends. So if your friend doesn't have a VIC, he can take advantage of yours.

I have also made other programs for the VIC-20 for use by the amateur-radio operator. The Ham Log is a program that will keep track of your QSOs by call and state or country. Information can be recalled by typing in a call or a state or a country. Any data can be listed for each station you work. Such data could include the operator's name, address, phone, frequency, rig and antenna, or any inter-
esting tidbit you wish. Data can be updated without any hassle.

\section*{Antenna Program}

Another very useful program is the antenna-design program. All you do is input the type of antenna and its frequency. I have built some of the antennas and found them to work very well. This program could be very useful to the ham who likes to build his own.

\section*{Programming Can Be Fun}

I have a very good time experimenting with the VIC. Sometimes it can be frustrating when something you thought would work doesn't and nothing you try will work. You have to scrap the idea and try the same thing from another angle. Then when it does work, it can be very satisfying.

The VIC is, at last, a computer that most people can
afford (under \$300) and it can get you started in the world of computers. At first, the programs can look very strange with all the Gosubs and Gotos, the POKEs and PEEKs, and all of the other computer jargon. But it will surprise you how fast you can pick it up, and you will be writing your own programs in no time at all.

If you are a ham who just doesn't think that you could use a computer, then I am here to tell you that there are many uses for one in the ham shack even if you never use it on the air. I am sure that after you get the hang of programming-and you don't need to be an ex-pert-you will find many other uses for it around the house. One word of caution: it can be addicting!

If you have any questions or some problems with the random code-practice program, please let me know.

\section*{STACKMy ON THE SAVINGS} Kantronics
 interface II \(\$ 239.00\) Interface II is the new transceiver to computer interface designed for use with Kantronics solt ware. X-Y scope and dual interface outputs tor make and HF connections interface II compatibl interface with almost any shack

\section*{The Spider Antenna -ORDER DIRECT \\ NOW! A State-of-the-Art Antenna for State-of-the-Art TransceiversWhy Settle for Anything Else!}

E HAVE NO DEALER

At last there is a mobile antenna that is truly a fit companion for today's solid state, no-tune transceivers.

Once the Spidertm 4-Band Antenna is tuned for \(10,15,20\) and 40 meters, all you have to do is turn the band switch on the transceiver-the antenna follows by itself

Write or call now for full information on this, the top of the line in mobile antennas.

\section*{MULTI-BAND ANTENNAS}

7131 OWENSMOUTH AVENUE, SUITE 463 C CANOGA PARK, CALIF, 91303 TELEPHONE: (818) 341-5460

2. METER BASE ANTENNAS


2 METER MOBILE ANTENNAS
AVANTI AP \(151.3 G\) MAGNET MOUUNT............ 27.95
CUSHCRAFT AMS-147 MS
 2 METER AMPLIFIERS


\section*{HF Radios}


ROTORS \& CABLE



ANTENNA SWITCHES \& SWR/WATTMETERS


POWER SUPFLIES BY MACO

\section*{2006
2010
2012 AMP SURGE, GAMP INT. AURE, 1 AAMP INP CONT
2020
\(24 A M P\)
2030
\(36 A M P\)
SURGE, \(20 A M P\) INT 2030 SGAMP SURGE JOAMP INT., 18AMP CONT. 105.00
4030 SOAMP CONTINUOUS HEAVY' DUTY P/S...160.00} ANTENINA TUNERS

MFJ-900 ECONO TUNER \(1,8-30 M H Z\) ZOOWATTS. 39.95
 MFJ-941C ANTENNA TUNER/SWR METER 1: 4BAL. 75.95
MILLER CNA1OO1A AUTOMATIC TUNER \(200 \mathrm{~B} . . .294 .95\)
TENTEC 277 200W TUNER SWR BRIDGE....... 130.00 COMPUTER ACCESSORIES

KANTRONICS HAMTEXT FOR COMMODDRE 64.....88. 85
KANTRONICS HAMTEXT FDR VIC-20..............82.95 KANTRONICS HAMTEXT FOR VIC-20..............82. 9 . 95
 CLOSEDUTS-PRICES GOOD WHILE SUPPLY LASTS DEBCO ACCS1 AC QUICK CHARGER FOR S-1.... 35.00 DEBCO DCE2400 DC QUICK CHARGER TR- 2400 HY-GAIN \(66-\) BS \(6 M 6\) ELEMENT BEAM.
HY-GAIN \(5 D B O 10-8 O M\) TRAP DOUBLET. HY-GAIN SDBO \(10-80 M\) TRAP DDUBLE
INNERSPACE 20 AMP POWER SUPPLY. KENWOOD ST- 1 DESK CHARGER FOR TR- 24000 ,
SWAN HFMZOO HF MOBILE SWR/WATTMETER SWAN HFM200 HF MOBILE SWR/WATTMETER.
TRAC TE133 ELECTRONIC KEYER TRAL TEIS3 ELECTRONIC KEYER.
VJ PRODIICTS \(9 O H-P A ~ 2 M ~ 9 O W ~ F M / S S B ~ A M P . . . ~\) VJ PRODULTS \(160 \mathrm{~L}-\mathrm{PA}\) 2M 2 MW FM/SSB AMP:.107 \(160 \mathrm{FM} / \mathrm{SSB}\) AMP. 233.00

COD Available
I

\footnotetext{
Hours: 8:30 a.m. to \(5: 00\) p.m. Monday thru Friday 9:00 a.m. to 2:00 p.m. Saturday - CST Prices subject to change without notice.
}

\section*{Amateur \\ Equipment, Accessories \& Antennas. Export Anywhere 2317 Vance Jackson Rd. San Antonio TX 78213}

CALL FRANK WD5GZU JOE KA5ROO OR STEVEN KA5SWI FOR QUOTES OR STEVEN KASSWI FOR QUOTES
ON OTHER RELATED PRODUCTS ON OTHER
FOB ORIGIN.
(512) 733-0334
(Toll free number 800-531-5405)

\section*{TOUCH TONE \({ }^{\text {m }}\) CONTROL}

OUR NEW CS-16 DUAL PASSWORD DECODER BOARD IS THE FINAL SOLUTION TO REPEATER CONTROL SECURITY

- 16 latched on/off functions
- Open collector (can drive relays directly) and logic outputs for each function.
- Two separately programmable three digit passwords allow hierarchy control
- Primary password can access all 16 functions
- Secondary password can access 8 functions
- A primary password command can enable/disable secondary password control
- Can be strapped to operate wižhout passwords
- Adjustable pre-amp accommodates 10MV-2V input
- Retransmission of control tones can be eliminated by use of either open collector or data strobe logic outputs
- Power up reset
- XTAL controlled tone decoder
- Operates from 10 VDC to 25VDC Reverse polarity protected
- Standard \(41 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}\) glass board with 44 pin gold plated edge connector. Holes permit hard mounting
- Comes complete with manual and mating connector
- 30 day return privilege
- Limited six month warranty

CALL OR WRITE FOR BROCHURE
ANOTHER QUALITY PRODUCT FROM
Torrance, CA 90505
Phone (213) 373-6803

\(-7\)Connect Systems Incorporated Torrance CA 90505 Phone (213) 373-6803

\title{
SOCIAL EVENTS
}

Listings in this column are provided free of charge on a space-available basis. The following information should be included in every announcement sponsor, event, date. time, place, city, state, admisston charge (it any), features, talk-in frequencies, and the name of whom to contact for furtherinformation. Announcements must be received by 73 Magazine by the first of the month, two months prior to the month in which the event takes place. Mail to Editorial Offices, 73 Mag azine, Pine St, Peterborough NH 03458.

\section*{MAPLE RIDGE BC CAN \\ JUN 30 -JUL 1}

The Maple Ridge ARC will host Hamfest ' 84 on June 30-July 1, 1984, at the Maple Ridge Fairgrounds, 30 miles east of Vancouver. The registration fee is \(\$ 5.00\) for hams and \(\$ 2.00\) for non-hams over 12 years old. Features will include a swap and shop, commercial displays, bunny hunts, and ladies' and children's programs. Food and camper space with electricity will: be available. Talk in on 146.201.80 and 146.34/.94. For more information or pre registration ( \(20 \%\) off gate fee), contact Maple Ridge ARC, Box 292, Maple Ridge BC V \(2 \times 7\) G2

\section*{OVERLAND PARK KS JUL 4-7}

The Mobile Amateur Radio Awards Club, Inc., will hold their annual convention from Wednesday to Saturday, July 4-7, 1984, at the Holiday Inn in Overland Park KS. There will be a pienic for early arrivals on Wednes: day evening, and on Thursday there will be area tours and a dinner theater. On Friday
there will be antenna and computer forums, and on Saturday morning the annual business meeting will be held. The hospitality suite will be open during the entire convention. For more information, send an SASE to R. L. Dyson K0AYO, R1, Box 230 M, De Sota KS 66018 .

\section*{MAHOPAC NY JUL. 7}

The Putnam Emergency Amateur Repeater League (PEARL) will hold lits 3rd annual hamfest on Saturday, July 7, 1984, from 9:00 am to 4:00 pm, at St John's School Monsignor O'Brien Boulevard, Mahopac NY. General admission is \(\$ 1.00\), indoor tables are \(\$ 5.00\) each, and outdoor tailgating is \(\$ 4.00\). Talk-in on \(144.535 / 145.135\) and 146.52. For advance registration and more information, contact Frank Konecnik WB2PTP, RD1, 244 C, Carmel NY 10512.

\section*{FARIBAULT MN JUL 7}

The Faribault Amateur Radio Club will hold its 3rd annual swapfest on Saturday, July 7, 1984, from 9:00 am to 3:00 prn, at Rice County Fairgrounds, Faribault MN. Tables are available only by reservation before July 1st. Talk-in on 146.191.79. For more information, contact Mike Ferguson NODGG at (507)-744:5145 after 5:00 pm.

\section*{OAK CREEK WI}

JUL 7
The South Milwaukee Amateur Radio Club will hold its annual swapfest on Satur day. July 7, 1984, from 7:00 am to approximately \(5: 00 \mathrm{pm}\), at the American Legion

\section*{HAM HELP}

I need a schematic and manual for my Tempo FMH-2, two-meter HT, 1 also need a good (unbroken) battery tray for same. Please advise of your costs when replying. Thank you.

Randy W. White KB4ALH
506 Robinhood Drive Seneca SC 29678

Twenty years ago, I read an article on how to convert a TV to an oscilloscope. I have three old B\&W TVs which l'd like to convert to some type of test equipment, but I don't know how. Can anybody help?

\section*{Guy Milne W2BPN \\ 32 Stag Trail \\ Fairfield NJ 07006}

1 am in desperate need of a \(58 \mathrm{PP4}, 5 \mathrm{BP} 1\), or equivalent CRT for my Elico model 425 oscillosiope Any information on where I can find or purchase che would be greatly appreciated.

\section*{Ira Linderman PO Box 229 \\ Commack NY 11725}

I need copies of several pages from the manual for the AN/USM 281A oscilloscope (military version of the Hewlett-Packard HP180). I also need some pages from the
service manual for the Motorola Mocorn 10.
John Tobin KF4WG 6726 Cocos Drive Orlando FL 32807

I need a schematic or service manual for the Com-Data model 301F2 modern and the Com-Data model 201F4-13 modem. I am also trying to find a current address for Jim Labo K0OST/ex-WB8IDD.

\section*{John Hackman WB4VVA \\ 5290 East Valley Road \\ Mount Pleasant M1 48858}

I am looking for the service manual for the NCX-3, or schematics for the power supply for the NCX-3 (by National).

Dennis Bosley WA1URS
186 Hickam Drive
Loring AFB ME 04751
(207)-328-4432

Anyone interested in the Chaverim, an organization formed to promote a closer relationship among Jewish radio amateurs and their friends, please contact me.

Claire Kuperman KA3DNJ
1934 Devereaux Avenue
Philadelphia PA 19149

Post \#434, 9327 South Shepard Avenue, Oak Creek Wi 53154. Admission is \(\$ 3.00\) per person and includes a "Happy Hour" with free beverages. Parking, a picnic area, hot and cold sandwiches, and liquid refreshments will be available. There will be free overnight camping. Talk-in on 146.94 MHz FM. For more details, including a local map, write South Milwaukee Amateur Radio Club, PO Box 102, South Milwaukee WI 53172.

\section*{INDIANAPOLIS IN \\ JUL 7-8}

The State ARRL Convention and the Indianapolis Hamfest will be held on Saturday and Sunday, July 7-8, 1984, at the Marion County Fairgrounds at the southeastern in tersection of \(1-74\) and 1-465. Gate tickets are \(\$ 4.00\) and entitle you to free parking and all activities. Flea-market and commercial vendors may set up at 8:00 am on Saturday, July 7 th. Security will be provided Saturday night and Sunday, and free camper facilities and hookups will be available on the grounds. The commercial building will be open to the public at 8:00 am on Sunday, July 8 th. There will be technical forums all day Sunday, and professional food service will be provided. For further information, contact Indianapolis Hamfest, Box 11086, Indianapolis IN 46201.

\section*{ALEXANDER NY \\ \section*{JUL 8}}

The Genesee Radio Amateurs, Inc., will hold the Batavia Hamfest on Sunday, July 8, 1984, from 7:00 am to 5:00 pm, at the Alex ander Firemen's Grounds, Rte. 98, Alexander NY. Admission is \(\$ 3.00\) in advance before June 22, 1984, and \(\$ 4.00\) at the door. The commercial exhibit area will open at 9:00 am and there will be hot-air-balloon rides. Activities will include breakfast at 6:00 am, a CW contest, OM and YL programs, a .52 check-in contest, a flea market, a chicken barbecue, and free camping (electricity is \(\$ 2.00\) ). Talk-in on 6.52 and \(4.71 /\) 5.31 (W2RCX). For further information, contact GRAM, PO Box 572, Batavia NY 14020.

\section*{BOWLING GREEN OH}

JUL 8
The 20th annual Wood County Ham-A. Rama will be held on Sunday, July 8, 1984, beginning at \(8: 00 \mathrm{am}\), at the Wood County Fairgrounds, Bowling Green OH . Admission and parking are free. Trunk sales and food will be available. Advance table rentals are \(\$ 5.00\) and are for dealers only. Saturday will be available for setups until 8:00 pm . Talk-in on .52. For more information or dealer rentals, send an SASE to Wood County ARC, clo Craig Henderson, Box 366, Luckey OH 43443.

\section*{SHEBOYGAN WI \\ JUL. 14}

The fifth annual Sheboygan County Amateur Radio Club Lakeshore Swapfest and Brat Fry will be held on July 14, 1984, from 10:00 am to \(4: 00 \mathrm{pm}\), at the Wilson Town Hall, south of Sheboygan WI. Tables are free and camping is available at Terry Andre State Park. For a flyer and other information, write Julian E. Jetzer KR9S, 6400 Hawthorn Road, Sheboygan WI 53081, or phone (414)-457-3366 after 5:00 pm CDT.

\section*{MILTON ONT CAN JUL 14}

The Burlington Amateur Radio Club will host the tenth annual Ontario Hamfest on July 14, 1984, from 7:00 am to \(4: 00 \mathrm{pm}\), at the fairgrounds in Milton ONT. Tickets are \(\$ 2.50\) in advance and \(\$ 4.00\) at the gate. Weekend camping, free parking, and free flea-market tables will be available. Features will include indoor commercial dis-
plays as well as the traditional events. Talkin on .21/.81 (club repeater). For more details, contact BARC, PO Box 836, Burlington ONT L7R 3Y7, Canada.

\section*{EAU CLAIRE WI}

JUL 14
The Eau Claire Amateur Radio Club will hold its annual hamfest on Saturday, July 14, 1984, from 8:00 am to \(4: 00 \mathrm{pm}\), at the \(4-\mathrm{H}\) buildings in Eau Claire WI. Tickets are \(\$ 2.00\) in advance and \(\$ 3.00\) at the door; tables and coffee are free. Talk-in on . \(31 / .91\) and .52 simplex. For more information and tickets, send an SASE to Gene Lieberg KA9DWH, 2840 Saturn Avenue, Eau Claire WI 54703.

\section*{AUGUSTA NJ}

JUL 14
The Sussex County ARC will sponsor SCARC ' 84 on Saturday, July 14, 1984, beginning at 8:00 am, at the Sussex County Fairgrounds, Plains Road, off Rte. 206, Augusta NJ. Admission is \(\$ 2.00\). Indoor tables are \(\$ 5.00\) in advance and \(\$ 6.00\) at the door; tailgate space is \(\$ 4.00\) in advance and \(\$ 5.00\) at the gate. There will be food and refreshments and plenty of free parking. Talkin on .90130 and .52 simplex. For further information, write Donald R. Stickle K2OX, Weldon Road, RD \#4, Lake Hopatcong NJ 07849, or phone (201)-663-0677.

\section*{POUGHKEEPSIE NY}

JUL 14
The ARRL Mt. Beacon Hamfest will be held on Saturday, July 14, 1984 from 8:00 am to \(3: 00 \mathrm{pm}\), at the Arlington Senior High School, Poughkeepsie/Lagrange, Dutchess County NY. Admission is \(\$ 2.00\) (XYL and your children will be admitted free), tailgating is \(\$ 3.00\) (includes one free admission), and a table space is \(\$ 4.00\) (includes one free table and admission). Hot food, beverages, and free parking will be available. There will be an auction beginning at \(2: 00 \mathrm{pm}\). Talk-in on 146.371.97 and 146.52. For more information, contact Art Holmes WA2TIF, 2 Straub Drive, Pleasant Valley NY 12569, (914)-6352614, or Walt Sutkowski K2DPL, 61 Robin Road, Poughkeepsie NY 12601, (914)-4625133.

\section*{MANCHESTER NH}

JUL 14
The New Hampshire FM Association will sponsor an amateur-radio/electronics flea market on Saturday, July 14, 1984, beginning at 9:00 am, at the Manchester Municipal Airport. The rain date will be July 15, 1984. General admission is \(\$ 1.00\) per person and sellers' admission is \(\$ 5.00\) (bring your own table or tailgate). Commercial displays are welcome. Refreshments will be available. Talk-in on 146.52 FM. For further information, contact Dick DesRosiers W1KGZ at (603)-668-8880 and for pre-registration or more information, write Doug Aiken K1WPM, 30 Meadowglen Drive, Manchester NH 03103, or phone (603)-622-0831.

\section*{CHARLESTON SC \\ JUL 14-15}

The Charleston Amateur Radio Society will hold its annual hamfest on July 14-15, 1984, at the Omar Shrine Temple. Talk-in on 146.191.79. For further information, write Hamfest Committee, PO Box 70341, Charleston Heights SC 29405.

\section*{BOISSEVAIN MAN CAN}

\section*{JUL 14-15}

The 21st annual International Hamfest will be held on July 14-15, 1984, at the International Peace Garden between Dunseith ND and Boissevain MAN. Activities
will include transmitter hunts, mobile judging, and a CW contest. Excellent camping facilities will be available. For more information, contact William W. Bosch WDQEMY or Stanley E. Kittelson WDaDAJ, Box H, Dickinson ND 58601.

\section*{LOUISVILLE OH}

JUL 15
The Tusco Amateur Radio Club (W8ZX) and the Canton Amateur Radio Club (W8AL) will present the 10th annual Hall of Fame Hamfest on Sunday, July 15, 1984, at the Nimishillen Grange, 6461 Easton Street, Louisville OH. Admission is \(\$ 2.50\) in advance and \(\$ 3.00\) at the gate. Tables are for rent on a reserved basis. Talk-in on 146.52.52 and 147.71/.12. For reservations or more information, write Butch Lebold WA8SHP, 10877 Hazelview Avenue, Alliance OH 44601 , or phone (216)-821-8794.

\section*{WASHINGTON MO}

JUL 15
The 22nd annual Zero-Beaters ARC Hamfest will be held on July 15, 1984, from 9:00 am to \(3: 00 \mathrm{pm}\), at the Washington MO Fairgrounds. There is no admission charge. Advance reservations for fleamarket spaces under the pavilion are limited and advance reservations are advised. There will be a candy scramble, a gigantic traders' row, sandwiches, dinners, and other refreshments. Talk-in on 147.24/.84 and 146.52 . For further information, write Zero-Beaters ARC, Box 24, Dutzow MO 63342.

\section*{EDGEWATER PARK NJ}

JUL 15
The West Jersey Radio Amateurs will hold their 6th annual hamfest on Sunday,

July 15, 1984, from 9:00 am to 3:00 pm, rain or shine, at the Super 130 Drive-In Theatre, Route 130, Edgewater Park NJ (2 miles south of Burlington, 8 miles north of Palmyra). Registration is \(\$ 3.00\) (seilers must bring their own tables). Setup for vendors only is at \(7: 00\) am. Talk-in on \(147.75 / 15\), 144.87/.47, and 146.52. For more information or advance tickets, send an SASE to Mary Lou Shontz N2CLX, 107 Spruce Lane, Route 16, Mount Holly NJ 08060, or phone (609)-267-3063.

\section*{LAPORTE IN}

JUL 15
The combined LaPorte-Michigan City Amateur Radio Clubs will sponsor their Summer Hamfest on Sunday, July 15, 1984, from 8:00 am to \(2: 00 \mathrm{pm}\), at the LaPorte County Fairgrounds, State Road 2, west of LaPorte IN. The donation is \(\$ 3.00\) at the gate. Good food, cold drinks, and paved outdoor parking will be available. For reservations for indoor tables (40e/foot), write PO Box 30 , LaPorte \(\operatorname{IN}\) 46350.

\section*{KUOPIO, FINLAND JUL 19-22}

The Amateur Radio Club of Kuopio will hold the annual hamfest of the Finnish Amateur Radio League (SRAL) on July 19-22, 1984, in Rauhalahti. Activities will include SRAL forums, technical and DX talks, indoor and outdoor programs, and special events for ladies and children. For further information, contact Joxa Hartikainen OH700, Kauppakatu 45, SF 70100 Kuopio, Finland.

\section*{GLACIER PARK MT}

JUL 20-22
The Great Falls Area ARC will present
the 50th annual Glacier-Waterton International Hamfest on July 20-22, 1984, at Three Forks Campground on the southern edge of Glacier National Park. Pre-registration is \(\$ 8.50\) and includes Saturdaynight dinner (bring own meat and utensils) and Sunday-morning breakfast. Talk-in on .52 and 341.94 . For more information, send an SASE to Shirley Smith KC7OA, 1822 14th Avenue South, Great Falls MT 59405.

\section*{TORONTO ONT CAN \\ JUL 20-22}

The Ontario DX Association will sponsor the ANARC 1984 Convention on July 20-22, 1984, at the Ramada Renaissance Hotel in Toronto. Registration is \(\$ 20.00\) per person. Activities will include seminars on radio listening, displays from manufacturers of hobby equipment, forums with broadcasters from around the world, and a Saturday-evening banquet. The banquet fee is \(\$ 25.00\) per person. For registration information and a schedule of activities, send a self-addressed envelope and a first-class stamp (do not affix the stamp to the envelope) to ANARCON '84, PO Box 232, Station Z, Toronto, Ontario, Canada M5N 2Z4.

\section*{WELLINGTON OH \\ JUL 21}

The Northern Ohio Amateur Radio Society will hold its 7th annual ARRL-approved NOARFEST on July 21, 1984, from 8:00 am to \(4: 00 \mathrm{pm}\), at the Lorain County Fairgrounds, Wellington OH . Donations are \(\$ 3.00\) in advance and \(\$ 3.50\) at the gate. Children under 12 will be admitted free. There will be a huge blacktopped flea-market area and parking is \(\$ 1.00\) per car space. Flea-market setup is from 6:00 am
to 8:00 am. Indoor exhibit spaces with an 8 -foot table are \(\$ 8.00\) each. Send check for advance registration to John Paul Jones WABCAE, 4612 Timberview Drive, Lorain OH 44052, or phone (216)-282-4256. Campers may park overnight Friday at no charge but no hookups will be available. Talk-in on 144.55/145.15 and 146.52. For admission tickets, write NOARFEST, PO Box 354, Lorain OH 44052.

\section*{PETOSKEY MI}

JUL 21
The Straits Area ARC will hold its annual swap shop and computer demonstration on July 21, 1984, from 9:00 am to 2:00 pm, in the 4.H Building at the Emmet County Fairgrounds. Admission is \(\$ 2.50\) and tables are \(\$ 3.00\) each; setups are at 8:00 am. RV camping will be available nearby. Talk-in on 146.67 and .52. For more detalls, write Irene Stein KABNKS, 4487 Robinson Road, Pellston MI 49769, or phone (616) 539-8986.

\section*{CROSSVILLE TN \\ JUL 21-22}

The Cookeville Repeater Association and the Plateau ARC will hold the annual Crossville Hamfest on July 21-22, 1984, at the Cumberland County Community Complex, Highway 70N, Crossville TN. Talk-in on 147.69/.09 and 147.931.33. For further information, contact PARC, PO Box 2621, Crossville TN 38555.

\section*{PALMYRAIL \\ JUL 21-22}

The Quad-Co. Amateur Radio Club will sponsor the 27 th annual hamfest of the Breakfast Club on July 21-22, 1984, at Terry Park, \(1 / 6\) of a mile east of Palmyra IL. Camping facilities will be open from Friday afternoon until Monday morning. There will be

\section*{ATTENTION SUBSCRIBERS}

We occasionally make our mailing list available to other companies or organizations with products or services which we feel might be of interest to you. If you prefer that your name be deleted from such a list, please fill out the coupon below or affix a copy of your mailing label and mail it to:

\section*{C.W. Communications/Peterborough 73: Amateur Radio's Technical Journal PO Box 931 \\ Farmingdale, NY 11737}

games, contests, golfing, fishing, and gear swapping, and on Saturday night, dancing and movies. Bring your own basket lunch; sandwiches and soft drinks will be available. Talk-in on 3973 kHz from noon Saturday to 11:00 am Sunday. For more information, write Hamfest, c/o Quad-Co. ARC, 602-D East Walnut, Chatham IL 62629.

\section*{EUGENE OR JUL 21-22}

The 9 th annual Lane County Ham Fair will be held on July 21-22, 1984, at the Oregon National Guard Armory, 2515 Centennial (across from Autzen Stadium), Eugene OR. Doors will open at 8:00 am both days. Registration and swap tables are \(\$ 5.00\) each. Because of limited space, a nonrefundable reservation is required for swap tables (maximum: 2). In addition to swap tables, features will include a 2 -meter bunny hunt, technical seminars, computer demonstrations, license exams, bingo, a kiddie korner, and women's activities. There will be an all-day snack bar, free parking for RVs (no hookups), and a Saturday pot-luck supper at 6:00 pm. Talk-in on \(146.28 / .88,147.86 / .26\), and on .52/.52. For advance tickets or table reservations, send a check payable to Lane County Ham Fair and an SASE to Tom Temby WB7WPU, Treasurer, 3227 Crocker Road, Eugene OR 97404, or phone (503)-689-1761. Ticket packets may also be picked up at the pre-registration table at the Ham Fair.

\section*{OKLAHOMA CITY OK} JUL 21-22

The Central Oklahoma Radio Amateurs will host Ham Holiday and the State ARRL Convention on July 21-22, 1984, at the Lin-
coln Plaza Inn and Conference Center, 4445 Lincoln Boulevard, Oklahoma City OK 73105. Pre-registration (before July 6th) is \(\$ 8\); at the door, tickets are \(\$ 10\). The Satur-day-evening banquet ticket is \(\$ 14.00\) and the Sunday QCWA breakfast is \(\$ 7.20\). Fleamarket tables are \(\$ 5.00\) each in advance and, if available, \(\$ 8.00\) each at the door. In addition to these activities, there will be programs, special-interest events, unlimited free parking for cars and self-contained RVs, the flea market on Saturday, and dealer displays on Saturday and Sunday. For reservations, write CORA, PO Box 44091, Oklahoma City OK 73144. For a special hotel rate of \(\$ 47.00\) (plus tax) for a double, call (800)-522-8034 (Oklahoma) or (800)-654-8419 (out of state).

\section*{WHEELING WV JUL 22}

The Triple States Radio Amateur Club will hold its 6 th annual Wheeling WV Hamfest on Sunday, July 22, 1984, from 9:00 am to \(4: 00 \mathrm{pm}\), at Wheeling Park. Admission is \(\$ 3.00\) and children 12 and under will be admitted free. Dealers are welcome and tables are available. There will be a flea market and auctions, all under cover. Refreshments and free parking will be avail able. Talk-in on 146.31/.91 and 147.75/.15. For a four-page brochure with more information and a map, contact TSRAC, Box 240, RD 1, Adena OH 43901, or phone (614)-546-3930.

\section*{BEAVERTON OR JUL 27-29}

The Willamette Valley DX Club will hold the 1984 DX Convention on July 27-29, 1984, at the Greenwood Inn, Beaverton

OR. For further information, write Bob Herndon W7XN, 607 Andover Place, Portland OR 97202, or phone (503)-232-2740.

\section*{HOUGHTON MI JUL 28}

The Copper Country Radio Amateur Association will host the 1984 Upper Peninsula Hamfest on July 28, 1984, at the Memorial Union Cafeteria on the campus of Michigan Technological University, Houghton MI. For further information, write Howard Junkin N8FHF, Co-Chairman, UP Hamfest, 106 West South Street, Houghton MI 49931, or phone (906)-4824630.

\section*{GLENWOOD SPRINGS CO JUL 28}

The Ski Country ARC will hold its third annual swapfest, in conjunction with the CCARC meeting, on July 28, 1984, from 9:00 am to \(3: 30 \mathrm{pm}\), at the CMC building, 1402 Blake, Glenwood Springs CO. Full tables are \(\$ 5.00\) and half tables are \(\$ 3.00\). There will be guest speakers and demonstrations. Talk-in on 146.07/.67. For further information, contact Bob Ludtke K9MWM, 1001 Grand Avenue, Glenwood Springs CO 81601, or phone (303)-945-5966.

\section*{ASHEVILLE NC JUL 28-29}

The Western North Carolina Hamfest and Computer Fair will be held on July 28-29, 1984, at the Buncombe County Fireman's Association Training Center in West Buncombe County, near Asheville. There will be large indoor areas with dealers' tables ( \(\$ 5.00\) each per day), an out-
door flea market, and spaces for self-contained vehicles (no hookups). For more information or reservations, contact Ed Erwin WW4O, PO Box 835, 120 Clayton Road, Arden NC 28704.

\section*{WEST FRIENDSHIP MD} JUL 29
The Baltimore Radio Amateur Television Society (BRATS) will present the BRATS Maryland Hamfest and Computerfest on Sunday July 29, 1984, at the Howard County Fairgrounds, Route 144 at Route 32, adjacent to Interstate 70, West Friendship MD, about 15 miles west of the Baltimore Beltway (695). Table sales are by advance reservation only; Indoor tables along the wall with ac are \(\$ 20.00\) each and indoor tables in the center of the floor without ac are \(\$ 10.00\) each. Quantity discounts and booths are available. There will be plenty of outdoor tailgating and RV hookups will be available. Dealer setups begin Saturday at 2:00 pm with overnight security provided. Talk-in on 146.76 \((-600), 147.03(+600)\), and .52 simplex. For table reservations and more information, write BRATS, PO Box 5915, Baltimore MD 21208, or call Mayer Zimmerman W3GXK at (301)-655-7812.

\section*{NASHVILLE TN \\ JUL 29}

The Radio Amateur Transmitting Society will hold the sixth annual Nashville Ham and Computer Fest on Sunday, July 29, 1984, from \(8: 00\) am to \(3: 30 \mathrm{pm}\), at the Nashville Municipal Auditorium at the intersection of James Robertson Parkway and Gay Street in downtown Nashville TN. There will be no admission charge and

\section*{द5TEHELECTRONICS}


\section*{APPLE USERS}

Antenna
Design Software

\section*{26 PROGRAMS BY KZLF TO HELP DESIGN} AND TUNE YOUR ANTENA \& FEED LINES

DIPOLES, VERTICALS, QUADS, LODPS FEED LINE LENGTHS, LOSSES \& SWR PROPABATION \& DESIEN OF COMPONENTS + MUCH MORE. FOR NOVICE \& EXPERT. CQVERS HF - UHF. APPLE II+ AND II

> \$15.09 check or M.O.

INCLUDES DISK, MANUAL \& PQSTAGE
Smith Software Systems
3767 Cold Spriniq Creamery Fid. Doylastomn, PA 18901

tables will be available for \(\$ 5.00\). For furthe information, send an SASE to Willie Porter KB4BLL, 4907 Idaho Avenue, Nashville TN 37209.

\section*{POMONA CA AUG 4}

The Tri-County Amateur Radio Association will hold its annual hamfest on Saturday, August 4, 1984, from 8:00 am to 4:00 pm, at Palomares Park Recreation Hall, 491 E. Arrow Highway (the north side of Arrow Highway at Orange Grove, between Towne and Garey), Pomona CA. Admission is a \(\$ 1.00\) donation. Swap tables ( \(21 / 2\) \(\times 8^{\prime}\) ) are a \(\$ 5.00\) donation per table and the hall will open at 7:00 am for setup only. Tables are limited and must be reserved in advance (no personal tables will be allowed inside or outside the hall). Food, drink, and free parking will be available. Features will include awards, programs, and VCR tapes; and examinations will be given, if possible, for Novice, Technician, General, and Advance class licenses. Talk-in on 146.025 +. For advance registration, make checks payable to TCARA and send with an SASE to Joe Lyddon WB6UFX, 6879 Sard Street, Alta Loma CA 91701.

\section*{TRAIL BC CAN AUG 4}

The Beaver Valley Amateur Radio Club will hold a swapfest on August 4, 1984, beginning at 10:00 am, at the Cominco Arena, Trail BC. Talk-in on \(146.84 / .24\). For further information and reservations for table space, please contact BVARC, clo 3798 Woodland Drive, Trail BC V1R 2 V7.

\section*{JACKSONVILLE FL} AUG 4-5

Six amateur radio clubs of the greater Jacksonville area will sponsor the eleventh annual Greater Jacksonville Hamfest on August 4-5, 1984, at the Orange Park Kennel Club, US 17 South near 1-295. Registration is \(\$ 4.00\); swap tables are \(\$ 9.00\) for one day or \(\$ 15.00\) for the weekend. (All proceeds go to the promotion of amateur radio.) Saturday hours are 8:00 am to 5:00 pm and Sunday hours are 9:00 am to 3:00 pm. Features will include a large swap-table area, forums and programs, exhibitors, and plenty of free parking. Special discounts and promotions are available to exhibitors contracting for space before July 15th. For registrations, swap tables, special hotel rates, and more information, write Mike Parnin N4EPD, 6716 Diane Road, Jacksonville FL 32211.

\section*{ANGOLA IN AUG 5}

The Steuben County Radio Amateurs will present the 26th annual FM Picnic and Hamfest on Sunday, August 5, 1984, at Crooked Lake, Angola IN. Admission is \(\$ 2.50\). Features will include picnic-style BBQ chicken, inside tables for exhibitors and vendors, a large electronics flea market, and overnight camping (fee charged by County Park). Talk-In on 146.52 and 147.81/.21.

\section*{AUSTIN TX \\ AUG 10-12}

The Austin Amateur Radio Club and the Austin Repeater Organization will sponsor Austin Summerfest ' 84 on August 10-12, 1984, at the Austin Marriott Hotel, Interstate 35 at Highway 290. Admission is \(\$ 5.00\) in advance (deadline: July 31st) and \(\$ 7.00\) at the door. Swapfest tables are available on a first-come, first-served basis, but each seller may reserve tables in advance (limit 2) for \(\$ 1.00\) each and claim
them by 10:00 am Saturday. Activities will include a \(20-\mathrm{kHz} 2\)-meter band-plan forum, a packet-radio discussion and demonstration, a transmitter hunt, and a full schedule of ladies' programs. Admission to the ladies' events is \$4.00. Talk-in on 146.34/.94. For more information, write Austin Summerfest '84, PO Box 13473, Austin TX 78711.

\section*{TACOMA WA \\ AUG 11-12}

The Radio Club of Tacoma (W7DK) will present Hamfair 1984 on August 11-12, 1984, at Olsen Auditorium on the campus of Pacific Lutheran University. Registration is \(\$ 5.00\) and trailer and dormitory space will be avallable on campus at reasonable rates. Advance registration is available for the Saturday-night banquet, commercial space, and flea-market tables. Talk-in on 147.88/.28 (W7DK). For additional information and advance registration, please contact Grace Teitzel AD7S, 701 South 120th, Tacoma WA 98444.

\section*{CHARLOTTE VT AUG 11-12}

The annual BARC International Hamfest will be held on Saturday and Sunday, August 11-12, 1984, at the Old Lantern Campgrounds, Charlotte VT. Tickets are \(\$ 4.00\) for both days and heterodynes under 12 will be admitted free. Flea-market space is \(\$ 2.00\) and indoor space is \(\$ 5.00\). Overnight camping will be available and features will include the Can-Am tug-ofwar. Talk-in on .34/.94, .01/.61, and .52 sim-
plex. For additional information, contact Roger Farley WA1OZE, President, Burling. ton ARC, PO Box 312, Burlington VT 05402.

\section*{CANYON TX AUG 11-12}

The Panhandle Amateur Radio Club, Inc., will hold its annual hamfest on Saturday and Sunday, August 11-12, 1984 in the Student Activities Center, West Texas State University, Canyon TX. Doors will open at 8:00 am each day with plenty of free tables and space for all. Registration per person is \(\$ 5.00\) in advance and \(\$ 6.00\) at the door. Features will include a swapfest, commercial distributors, meetings, and a ladies program. Talk-in on 146.94 and 3.933 MHz . For more information on pre-registration, motels, and RV camps, contact the PARC, PO Box 10221, Amarillo TX 79116, or Jim Ogle WB5UDX at (806)-359-1002.

\section*{WARRINGTON PA AUG 12}

The Mid-Atlantic Amateur Radio Club will hold its annual hamfest on Sunday, August 12, 1984, from 9:00 am to 4:00 pm, rain or shine, at the Bucks County DriveIn, Route 611, Warrington PA 5 miles north of the Willow Grove exit of the Pennsylvania Turnpike). Admission is \(\$ 3.00\) with \(\$ 2.00\) additional for each tailgate space (bring your own table). Ample parking and refreshments will be avallable. Talk-in on 47.66/.06 (WB3JOE/R) or 146.52. For further information, write MARC, PO Box

552, Villanova PA 19085, or call Bob Josuweit WA3PZO at (215)-449-9727.

\section*{WILLOW SPRINGS IL}

AUG 12
The 50th annual Hamfesters' Hamfest will be held on Sunday, August 12, 1984, at Santa Fe Park, 91 st and Wolf Road, Willow Springs IL (southwest of Chicago). Tickets are \(\$ 3.00\) in advance and \(\$ 4.00\) at the gate. There will be an exhibitor's pavilion and the famous swappers' row. Talk-in on 146.52. For advance tickets, send a check or money order to Hamfesters, PO Box 42792, Chicago IL 60642.

\section*{GEORGETOWN KY AUG 12}

The Bluegrass Amateur Radio Society will sponsor the Central Kentucky ARRL Hamfest on Sunday, August 12, 1984, from 8:00 am to \(5: 00 \mathrm{pm}\), at Scott County High School, Lonlick Road and US Route 25 , Georgetown KY (off 1-75/64). Tickets are \(\$ 3.50\) in advance and \(\$ 4.00\) at the gate. There is no charge for outside flea-market space. Features will include technical forums, awards, and exhibits in a/c facilities, For more information or tickets, write Edward B. Bono WA4ONE, PO Box 4411, Lex ington KY 40504

\section*{HAVRE MT AUG 17-19}

The Northcentral Montana Hamfest wil be held on August 17-19, 1984, in Beaver Creek Park at Marden's Campground, 28 miles south of Havre MT

\section*{NTROOUCCMG TME MOST POWERFUL LOGGMG PAOGMM EVER FOR THE C.SA}

\section*{"Contender Plus II"}

FEATURES: 2000 Entries per single sided disk 19 items per entry): Two or dual disk option: Auto or manual time/date logging: Auto or manual band/ mode logging: Edit/update features: forward/reverse scan fully menu driven: complete log review. Print complete log to printer: pring dup sheet to the screen or printer: Print QSL labels auto/manual: Print QSL cards auto/manual: WAS summary and report to screen or printer: DXCC summary and report to screen or printer. Faster than basic. Detailed user manual.
Contender Plus II : ONLY \(\$ 34.95\)
CONTENDER PLUS (without DXCC) \(\$ 29.95\) CONTENDER \(\$ 19.95\) (without WAS DXCC and two drive option) DEMO Disk \(\$ 3.50\).
for FREE Fact Sheet or to order writt:
CRUMTRONICS
SOFTWARE DIVISION
P.0. \(80 \times 6187\)

FT. WAYNE, IN 46896

- Covers 100 to 185 MHz in 1 kHz steps with thumbwheel dial - Accuracy 1 part per 10 million at all frequencies • Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate - Spurs and noise at least 60 dB below carrier • RF output adjustable from \(5-500 \mathrm{mV}\) at 50 ohms • Operates on 12 Vdc @ \(1 / 2\) Amp • Avail able for immediate delivery • \(\$ 349.95\) plus shipping - Add-on Accessories available to extend freq range, add infinite resolution, voice and sub-audible tones, AM, precision 120 dB calibrated attenuator - Call for details - Dealers wanted worldwide.

\section*{VANGUARD LABS -311 196.23 Jamaica Ave. Holisis NY 111423 Phone: (212) 468-2720}


\section*{UP YOUR ERP}

For HT owners operating inside a vehicle and wanting increased T/R range, RF PRODUCTS has the low cost solution.
Remove your BNC antenna from the HT and mount on the RF PRODUCTS BNC magnet mount, install the magne mount on the roof top and connect the BNC co-ax connector
The magnet mount (part no, 199-445) has 10 feet of smal (5/32") co-ax with BNC connector attached and is priced at \(\$ 15.95\) (including shipping by UPS to 48 states). TO ORDER - send \(\$ 15.95\) money order or cashiers check only

Fla. residents add 5\% tax, for air UPS add \(\$ 1.50\)

The RF PRODUCTS Magnet Mounts are one of the few magnetic antenna mounts available that can be repaired should the co-ax cable be damaged. The co-ax cable connector includes a shrink tubing strain relief for long life at the connector/cable flex point (an RF PRODUCTS exclusive on all cable assemblies).
Eight other models available with three each choice of antenna connectors, co-ax types and transceiver connectors (BNC. 1-1/8-18, 5/16-24 \& RG-122U, RG-58AU, mini 8X \& BNC, PL-259, type N).

\section*{CIRCUITS}

Do you have a technique, modification, or easy-to-duplicate circuit that your fellow readers might be interested in? If so, send us a concise description of it (under two pages, double-spaced) and include a clear diagram or schematic if needed.

In exchange for these technical gems, 73 offers you the choice of a book from the Radio Bookshop, to be sent upon publication. Submit your idea (and book choice) to: Circuits, Editorial Offices, 73 Magazine, Peterborough NH 03458. Submissions not selected for publication will be returned if an SASE is enclosed.


ANOTHER HEAT CONTROL FOR A SOLDERING IRON: This control uses a solid-state dimmer switch. These high-low rotary dimmer switches will control resistance loads of up to 600 Watts. Wire one up with a fuse in a small utility box and you will have an infinite heat control for soldering. Incidentally, if you use a dimmer switch rated at 600 Watts, it can also be used as a speed control for your 3/8-inch electric drill.-E. A. Rowe WTPWQ, Chelan WA.


PERMANENT POWER FOR THE IC-25A/H: Here's a way to keep your memory without having to worry whether you left the radio on. Add a third connection in the power plug as shown. Connect this to a continuous 12-V source through a suitable resistance to drop it to 9 V (I used a 1 k trimmer adjusted to 670 Ohms). Connect the normal power lead of the radio to an appropriately-switched 12-V source, and the memory will receive power even when the radio is turned off.-Virginia Smith KA6NVB, San Diego CA.


A GARAGE-DOOR OPENER CAN DO MORE: You can make the spare channels on a garagedoor opener with the circuit shown here. Anything you want can be turned on or off, as long as it is within the amperage capability of the relay. One part, the latching relay, can be found at Heath (part \#273-3). The transformer to operate it is part \#273-4.-James Smith K5PTC, Irving TX.



Fig. 1. Mechanical details.

MULTIPLE PLUG ADAPTER: After years of struggling to find the right adapter for the right piece of gear, I built one that handles many types of connections. I took a small hinged-lid box, like the boxes that small bandages come in, and mounted a phone plug on one end. Then I added a variety of different sockets on the sides of the box. I included BNC and RCA connectors, pin jacks, small sockets, and banana jacks. Now I save a lot of time when servicing and test-ing.-Wm. Bruce Cameron WA4UZM, Temple Terrace FL.


Fig. 2. Charger schematic.
STAND-UP CHARGER FOR YAESU HTs: Inexpensive Radio Shack parts can be used to make a charger for the Yaesu FT-208R transceiver. Small screws (such as 6-32 MS) are threaded through both boxes (RS \#270-230) using the drilling dimensions shown in Fig. 1. Matching spring material is threaded onto both screws to make contact with the charging buttons on the bottom of the FT-208R. Experiment to get the best contact, then add rubber padding to the top box to obtain a snug fit. The charging circuit in Fig. 2 will drop the normal charging current about 10 mA , from 45 mA to 35 mA , which will increase the total charging time. J1 is RS \#274-292, R1 is RS \#271-007, and LED1 is RS \#276-069. The LED will glow only when proper contact is made with the bottom contacts of the HT.-David F. Miller K9POX, Niles IL.

\title{
BARTER 'N'BUY
}

Individual (non-commercial)
\(15 e\) per word
Commercial
50 e per word
Prepayment by check or money order is required with your ad. No discounts or commissions are available. Please make your payment to 73. Rates for multiple insertions are available on request.
Advertising must pertain to amateur radio products or services. No special layouts or positions are possible. All advertising copy must be submitted type written (double-spaced) and must include full name and address. Copy limited to 100 words, maximum. Count only words in text. Address, free

73 cannot verify advertising claims and cannot be held responsible for claims made by the advertiser. Liability will be limited to making any necessary correction in the next available issue.
Copy must be received in Peterborough by the 5 th of the second month pre ceding the cover date.

MOBILE IGNITION SHIELDING. Free literature. Estes Engineering, 930 Marine Drive, Port Angeles WA 98362. BNB006

COMPUTER OWNERS! Super new MFJ 1224 CWIRTTYIASCII terminal units. Send/receive CWIRTTY/VIC-20 and Commodore 64 software. Full-featured, disk or cassette. Kantronics, too. Low prices, speedy delivery. Hundreds sold internationally. SASE for details and catalog of Commodore, Atari, PET, ZX-81, TI, TRS-80 software and accessories. Amateur Accessories, 6 Harvest Court, RD 7, Dept. BB, Flemington NJ 08822. Telephone 201)-782-1551, 6:30-10:30 Eastern time. BNB019

WANTED: Cash paid for used SPEED RADAR EQUIPMENT. Write or call: Brian R. Esterman, PO Box 8141, Northfield IL 60093; (312)-251-8901. BNB030

MILITARY TECHNICAL MANUALS for old and obsolete equipment. 60-page catalog, \(\$ 3.00\). Military Technical Manual Service, 2266 Senasac Ave., Long Beach CA 90815. BNB045

WANTED-your unused Teletype TM repair parts. High prices paid! Send SASE for list of Teletypewriter parts and supplies. TYPETRONICS, Box 8873, Fort Lauderdale FL 33310; (305)-583-1340 after 9:00 pm. N4TT. BNB052

WANTED; Pre-1950 TV sets and old TV GUIDE magazines. W3CRH, Box 20-S, Macomb IL 61455; (309)-833-1809. BNB066

1984 WIRE \& CABLE prices cut!l! Call or write for latest listings. Certified Communications, "The CB to 10 Meter People," 4138 So. Ferris, Fremont MI 49412; (616)-924-4561. BNB073

EMERGENCY COMMUNICATIONS-An Organizational and Operational Handbook, by K3PUR. A complete reference guide for ARES/RACES and other public service groups, as reviewed in December '83 QST and January '84 CQ. \(\$ 9.95\) plus \(\$ 1.50\) P/H to: FDW Arts, 1394 Oid Quincy Lane, Reston VA 22090 (VA residents, add 4\% tax). BNB089

DX HEADING MAPS for Boston, NYC, Philadelphia, Baltimore, Detroit, Atlanta, Chicago, New Orleans, St. Louis, Dallas, LA. \(11^{*} \times 17^{*}, \$ 1.75 \mathrm{pp} .22^{*} \times 34^{*}, \$ 5.95\) pp. Specify city. Massey, PO Box 397, Hainesport NJ 08036; (609)-261-2952. BNB094

STATE-OF-THE-ART, rugged, low-profile antenna systems. Helical designs from
3.5 to 50 MHz . DDRRs from 144 to 450 MHZ Refer to 73 magazine reviews in OC . tober and November, 1982. Com-Rad industries, 25 Imson Street, Buffalo NY 14210; (716)-773-1445. BNB096
anti-static dust covers by cover Craft Corporation. Amateur radio, computers, printers, disk drives, VCRs. New or older models. Over 1,000 designs in stock and over \(1,000,000\) in use. Call or write for brochure. Birch Hill Sales, PO Box \(234, \mathrm{Pe}\) terborough NH 03458; (603)-924-7959. BNB097

FIND OUT what else you can hear on your general-coverage transceiver or receiver. Complete information on major North American radio-listening clubs. Send 256 and SASE, Association of North American Radio Clubs, 1500 Bunbury Drive, Whittier CA 90601. BNB099

\section*{MAGICOM RF SPEECH PROCESSORS-} Add 6 dB of average output with genuine if clipping in your transmitter's i-f stage. Custom engineered for Kenwood TS-120, TS-130, TS-430, TS-520, TS-530, TS-820; Drake T-4X, TR-7; Yaesu FT-102. Excellent speech quality, simple installation, affordable prices! SASE for data and cost. Magicom, PO Box 6552A, Bellevue WA 98007. BNB101

ELECTRONIC AVOCATIONS \({ }^{\text {TM }}\). Nonprofit service promoting radio hobbies. SASE. Arnold Timm, 2308 Garfield \#304, Minneapolis MN 55405. BNB106

FM SERVICE MANUALS-RCA, GE, MOtorola, Aerotron, Alpha, Johnson, Kaar, DuMont, others. Reasonable. Send exact model and description. T. McLaughlin, PO Box 411, Mango FL 33550 . BNB110

REPAIR, alignment, calibration. Collins written estimates, \(\$ 25\); non-Collins, \(\$ 50\). K1MAN, (207)-495-2215. BNB117

IMRA-International Mission Radio Association helps missionaries by supplying equipment and running a net for them daily except Sunday, \(14,280 \mathrm{MHz}, 1900-2000\) GMT. Br. Bernard Frey, 1 Pryer Manor Rd., Larchmont NY 10538. BNB123

WANTED: Model 8010 remote vfo for Tempo 2020 xevr. Call collect ( 913 )-267-1575 or Compuserve E-mail user no. 71336,1270 . Will pay all shipping charges. Tim Gorman WA0LYJ, 3758 Humboldt, Topeka KS 66609. BNB125

ICOM AND KENWOOD OWNERS! You are definitely missing out if you do not receive our very informative newsletters! Free information! Send SASE (2 stamps) to inter-
national Radio, Inc., 364 Kilpatrick Ave., Port St. Lucie FL 33452. BNB129

BUY-SELL-TRADE twice monthly publication! SASE for FREE issue. The Ham Boneyard, 364 Kilpatrick Ave., Port St. Lucie FL 33452. BNB130

WANTED: Collins KW-1 transmitter. Paul Kluwe KB8Q, Box 84, Manchester MI 48158. BNB147

GROUND RADIALS WORK-Solve your vertical antenna problems with the fantastic ground plane one (GP-1), A \(10^{\circ}\)-diameter, 24 -point cast-aluminum bus that fits any \(2^{\text {"-diameter or smaller mast. Ra- }}\) dial problems solved for only \(\$ 24.95\). Send an SASE for photos and brochure. Lance Johnson Engineering, PO Box 7363, Kansas City MO 64116. BNB148

CDE ROTOR OWNERS-You need a "D-Lay-5!" This easy-to-install circuit protects the rotor from damage caused by accidental braking. Works with the Ham II, Ham III, Ham IV, and Tailtwister models. Provides a five-second safety factor in your rotor brake. Incredible value at \(\$ 19,95\). Postage paid worldwide. Lance Johnson Engineering, PO Box 7363, Kansas City, MO 64116. BNB149

ELECTRON TUBES: Receiving, transmitting, microwave...all types available. Large stock. Next-day delivery in most cases. Daily Electronics, 14126 Willow Lane, Westminister CA 92683; (714)-8941368. BNB150

JOHNSON \(6 \& 2\), \$35. Johnson Matchbox, \$25. RCA mobile test set, \$15. CRT test set, \(\$ 10\). Knight tube tester, \(\$ 15\), K6KZT, 2255 Alexander, Los Osos CA 93402. BNB151

WANTED: copy of service manual and schematic for Fairchild TV Camera TC. 177RL. Will pay for copying. L. Ferguson WBOPXQ, Route 1, Brady NE 69132. BNB152

SCIENCE SOFTWARE for VIC-20 and PC-2. Radio astronomy, moonbounce, amateur satellites, etc. David Eagle, 7952 W. Quarto Dr., Littleton CO 80123; (303)-972-4020. BNB153

TEST EQUIPMENT. Measurements 920 deviation meter- \(\$ 325\). Measurements 801A FM sig gen- \(\$ 400\). Measurements 560 FM sig gen- \(\$ 250\). Marconi TF1066A AM/FM, \(10-470-\mathrm{MHz}\) sig gen- \(\$ 350\). Simpson 160 VOM-\$25. Systron-Donner \(1037 / 129215-\mathrm{GHz}\) counter- \(\$ 500\). SASE for list. Brian Whitney, 2490 Madison Ave., Yuma AZ 85364; (602)-726-8753, eves, wknds, BNB154

WANTED-Gilfer Associates GAR-7 fre quency counter for Yaesu FRG-7 receiver. Also, frequency counter for Heathkit HW-101, George Ellison, Rt. 1, Box 146-B, Eatonville WA 98328. BNB155

HW-101 OWNERS! Put RIT in your trans ceiver for under \(\$ 10\). Plans, \(\$ 6\). B. Bennett, Box 201, Alexandria Bay NY 13607. BNB156

BEAT the over-priced antenna market. We manufacture antennas and kits, and stock a wide variety of \(6061-\mathrm{T} 6.058\)-wall aluminum tubing. Use our concept and only your imagination will be the limit. Write Antenna Dimensions, PO Box 340, Germanton, NC 27019. BNB157

WANTED: pre-1950 bugs and pre-1925 wireless keys for my collection. Neal

McEwan K5RW, 1128 Midway, Richardson TX 75081; (214)-234-1653. BNB158

FREE CATALOG-computer supplies. Control Data SS/DD, \$21; DS/DD, \$31. Dy. san SS/DD, \$30; DS/DD, \$40. Ribbons: MX80, \$7.50; MX100, \$14; Okidata 82-92, \$2.50; Okidata 84, \$5.00; Diablo Hytype II \(\mathrm{m} / \mathrm{s}, \$ 4.40\); Diablo Hytype II nylon, \(\$ 4.80\); NEC Spinwriter m/s \(\$ 4.75\); 6 -outlet surge and spike power strip, \(\$ 49.95\). Shipping, \(\$ 3.00\). Mastercard/Visa-include number and expiration date, OUTPRINT, 44 Forrest Road, Randolph NY 07869. BNB159
"ELECTRONIC BONANZA." Icom, Sony, Kenwood, Yaesu, Uniden, Panasonic, Bearcat, Regency, MFJ, CBs, antennas, coax, CW/RTTY decoders, marine, much more!! Free UPS shipping and insurance to 48 states. 25 -page picture catalog \(\$ 1.00\) (refundable). Galaxy Electronics, Box 1202--, 67 Eber Ave, Akron OH 44309 (216) \(376-2402,9: 00-5: 00\) EST. BNB160

DIGITAL AUTOMATIC DISPLAYS for FT 101s, TS-520s, Collins, Drake, Swan, Heath, and others. Six \(1 / 2^{\prime \prime}\) digits. Write for information. Grand Systerns, Dept. A, PO Box 3377, Blaine WA 98230; (604)-530 4551. BNB161

RADIO SHACK dealer, large computer dis counts. Ben Dickerson K3DQU, Box 520G Starke FL 32091; (904)-964-7474. BNB162

SHAKEOUT. . Sudden unemployment? Retirement? Security alarm systems eas ily learned. Business-residential installations... easy, enjoyable, fascinating, extremely profitable, rewarding work. Age not important. Information that could secure, improve your future, \(\$ 2.00\). Security Electronics International, PO Box 1456-W Grand Rapids MI 49501. BNB163

C-64 AND VIC-20 ham software: new con-test-II program, call-name-QTH log program, ham formulas program, much more, LSASE for list. Specify computer. Walt KA9GLB, 4880 N. 49 th St., Dept. 7, Milwaukee WI 53218. BNB164

THE BIG ONE for Indiana, the WABVZY repeater serves at least 46 counties from nearly 1500 feet above sea level at Fairland. Try the "Mighty 525" (144.65 in/145.25 out) on your next trip through the central half of Indiana. Transients, repeater DXers, and aeronautical mobiles all welcome. Full autopatch privileges, covering 102 greater Indianapolis exchanges, available for the rest of 1984 for \$12. Donations sincerely appreciated. Send to: Bob Hawkins, WABVZY, Box 19255, Indianapolis IN 46219. BNB165

QSLs AND RUBBER STAMPS. Top Quality. QSL samples and stamp information, 50 c . Ebbert Graphics, D-7, Box 70, Westerville OH 43081. BNB166

COMMODORE 64 CW INSTRUCTOR PROGRAM. Generates CW on TV speaker. Random code, keyboard input, or pre recorded "CW tests." Character speed and spacing set independently. Designed for classes and increasing code speed. \(\$ 15.00\), diskette or cassette (specify). Dennis Olver N7BCU, 20909 S. Ferguson Rd., Oregon City OR 97045. BNB167

FOR RENT: "Ham-Home," northern Virginia, five miles southwest of Pentagon, three bedrooms, "family room," 50 -foot telephone pole, tribander, 14 -el two-meter, \(40 / 80\)-meter dipole, \(1 / 2\) acre, fenced yard. Available August ' 84. K1CTK/4. Use Callbook address. Phone (703)-379-7437 evenings. BNB168

\title{
W2NSD/1 \\ NEVER SAY DIE \\ editorial by Wayne Green
}

\section*{from page 8}
have about 500 high schools that have ham clubs today. In Japan, there are over 5,200 high schools with ham clubs. And in Japan, when they have a club... how many of you have ever seen a copy of the Japanese \(C Q\) ham radio magazine? Runs six or seven hundred pages a month with about a hundred pages of club activities with pictures of maybe 50 to three or four hundred people in the group all having a whale of a time. Every month. It's like Dayton every week.
So I hope to do something about that. What I would like to do eventually is to encourage every high school in the United States to have a period of their school-one period during school hours-set aside for a high-tech hobby club, amateur radio, computer, astronomy, whatever.
If you make it after school, you run into two problems which are not surmountable. Number one is busing. Number two is overtime pay for teachers. If it's after school, the unions require that they get overtime and that's not in the school budget.

So let's make the club during school hours. And l'll bet you if we do that, that we can get virtually every ham club in the country to volunteer somebody to go in and help those students learn and know more about amateur radio. I know that I can get the computerclub people to go in and help with the computer clubs.

The rules and regulations. I don't know how many of you have read 97 recently. Not many, I'll bet. But right there up front, 97.0 gives reasons why amateur radio is a service. One reason is to supply communications in case of an emergency. Another reason is to invent and pioneer new technology. Another reason is international friendship.

I'd like to just speak briefly on that [97]. I don't know how many of you operate 20 meters and
have listened to the pileups . . the list operation on the contests. As far as international friendship is concerned: hardy, har, har, har. [Guffaws.]

Inventing and pioneering new technologies. About 20 years ago, we were pretty good at that. We invented and pioneered single sideband. We invented and pioneered narrowband FM. And, as they say, what have you done for us lately? Not much.

Unfortunately, most of the pioneering, most of the inventing, is done by youngsters. And we have stopped having youngsters coming into the hobby.

Our country has lost over one million engineers and technicians that would have come into the industry by way of amateur-radio-starting. And that's why we are not designing or building very much electronic equipment or that has a lot to do with it.

I hope we can reverse that. Have you seen any military equipment lately? It's all highspeed digital. How many people here are on high-speed digital? Thank you. We have one person here who might be of value to the military. No, forty years ago when we had a war you read about it in the papers; 80 percent of the hams volunteered and went into the military. And we were of value.
But we are so hopelessly out of touch with electronic technology today and unfortunately such a high percentage of us are in our \(50 \mathrm{~s}, 60 \mathrm{~s}\), and 70 s , and 80 s that we're really not of much value to the country any more as a supply of trained operators. [Grumbling.]
That leaves us with emergency communications. The replies that were sent to the FCC by about a hundred ARRL clubs on the no-code proposal were very clear. And they said in essence (and I would say they said very clearly) that we need Morse code because it's the only means of communication of last resort. When everything else fails, you have Morse code.
I would like to see somebody
convert a transistor radio for CW. I would like to see somebody take an HT and dust it off after the atomic attack and try to make it work on Morse code. Because that's what we're going to have, mobile rigs and HTs.

Yes, 30 years ago when you had tube radios, you could wire something up and make a Morse-code transmitter out of it. And we have all those people that used to be able to do that commenting on the no-code license. I look and see what Japan has done with that and the supply of Japanese licensed amateurs increasing from 18,000 to one and a quarter million at the same time that we went from 285,000 to 400,000 .

And (unfortunately) they are the best operators in the world. For those who say you must have Morse-code skill in order to be a good operator, I've never seen any correlation.

Now, I don't know if no-code would work in this country or not and would make a difference and would encourage people to get into amateur radio. But I think it's worth a try.

If Morse code is that important and if that is what we are going to have to depend upon when the atom bombs fall (for communication), I don't see any other choice but to make sure that every amateur is very, very good at Morse code. You don't really have any choice.

You've got to be good at it because you're going to have to handle millions of messages. You're going to have to handle an incredible amount of messages.

I've just made a note of a few of them. You've got to handle traffic about radiation and where the detectors are, military communications, law and order communications, food, water, shelter, clothing, medical help, medical supplies, evacuation, toilet facilities, power, getting equipment around where it is needed, travel communications, and so forth.

You've got an enormous amount of things you're going to have to handle.

Anybody who has done emergency communications knows what I am talking about. You are immediately overloaded enormously and hams have to work 36 hours at a time without stopping and they still fall way be-
hind on trying to keep up with minor emergencies. And we're talking about-now-when the chips are down. We're talking about being able to supply emergency communications in case of nuclear attack. And we can't plan for anything less.

We have painted ourselves into a corner that we can't get out of on that. There is no way that we can provide even a fraction of what is needed. And we have stopped ourselves from essentially being able to do anything about it.

What could we do? We could start working toward high-speed digital communications with little units maybe a third the size of the Model 100, where you can write messages. And we can have our repeaters so they relay them automatically, as I said before. And all of this, if we have enough hams, will be done very inexpensively, will be done with single chips.

Think of the communications facility we would have if you could pick virtually anybody that you wanted to talk with and write a message to him and have it automatically delivered. It would be a different kind of amateur radio.

If we tuned 15 meters and every time you came across a signal, the call letter flashed on your transceiver on a little readout because he's sending his call automatically on a subcarrier at high speed....and it would read out and you could tune, you could have, you could punch in on your keyboard, the prefix that you're looking for. You could work all 350 countries in alphabetical order [chuck-les]-in a day, if there's a few DXpeditions out there. And at the DXpedition, all you have to do is send the box and have an automatic flip-up antenna at the post office. [Guffaws.] And have a little chip in there that prints out the awards certificate when you contact the station automatically. [Guffaws.]
Well, I joke about it, but it isn't that far off. We could do that. And indeed, if we don't have a system that can handle that quantity of communications and do it automatically and not insist on having a skilled operator present, we're not going to be able to provide the communications that are needed.
Now, it's up to us to design equipment, to buy it, make it
work, and have it ready, but it should be capable of being operated by anybody.

\section*{Questions}

Just one comment: Sixty million is kind of Mickey Mouse, isn't it? I don't know, it seems kinda good. [Guffaws.] I haven't had any emotional problems with it. [More.] I guess the main people who have had emotional prob-
lems with it are the people around me because I haven't changed much. I still live in a one-room apartment over my office and everybody says, "Gee, you're so wealthy, you should have an estate and everything like that." It isn't that bad. Yeah?
Yeah, you talked about in one of your editorials about liking all these gadgets. I just wonder
how you fit them all in?
Well, fortunately the gadgets that I like are all very small. And it's not that much of a problem. Everything is, you know, they're all small. I'm a gadget fanat-ic-but, very few large gadgets. Yes?
You're still the owner of 76 , aren't you?
Pardon me?
You still own 76?

73 ? No, I sold 73 . I am still the publisher and president of the corporation but it is owned by IDG. And we changed the name of it to CW Communications in honor of Morse Code. [Guffaws.] You notice my little key up here. [Gold lapel pin.]
. I thank you all very much for coming. If you have any further questions, come up here and ask them. [Applause.]


\author{
Fox Tango Filters
}

Your rig - old or new - is no better than its i.f. filter.

\section*{TOP PERFORMANCE}

Fox Tango Filters contain eight specially treated discrete quartz crystals, unlike miniature ceramic or monolithic corner-cutting designs. Give your set new life with a Fox Tango implant or transplant. It's a lot cheaper than buying a new rig with features you don't need and probably won't use!

\section*{VARIETY}

Fox Tango stocks superior CW, SSB, and AM filters for practically all Yaesu, Kenwood, and Heath models. Also for Drake R-4C, 7 -line; Collins 75 S3-B/C, and some ICOM's. More than \(80 \%\) of our filters sell for \(\$ 60\). Most are designed for easy drop-in installation. For the others, complete instructions and all needed parts are included in the price.

\section*{INFORMATION}

Tell us the make and model of your set. You'll get the complete information on FT filters to fill optional spots, replace your present tired or inferior stock units or supplement them with Fox Tango Filter-Cascading kits. If you phone you can order at the same time; we accept VISA/ MC or ship C.O.D.Order direct or ask your favorite Dealer.

GO FOX-TANGO - to be SURE! Ask the ham who has one.

\section*{FOX TANGO CORPORATION}

Box 15944, Dept. S
West Palm Beach, FL 33416
Telephone: (305) 683-9587 Dealer inquiries invited.

\section*{MICROWAVE PREAMPLIFIERS}

Ampire 1690N:
- 1.6 to 1.8 GHz
- 25 dB gain
- 3.0 dB noise figure
- N connectors standard
- Use on GOES \& METEOSAT systems

Ampire 2001:
- 2.0 to 2.6 GHz
- 20 dB gain
- 3.5 dB noise figure
- BNC connectors standard
- DC \& RF cables included
- Use with microwave TV converters

Ampire 1690N ....................... \({ }^{\text {s }} 139^{\text {ss }}\)
Ampire 2001 . . . . . . . . . . . . . . . . . . . . .s \({ }^{\text {s }} 129^{95}\)
Ampire 2001N . . . . . . . . . . . . . . . . . \({ }^{s} 149^{95}\) Shipping: USA ...s \(2^{\circ 00}\) Foreign ... \({ }^{s} 10^{00}\)
Data Service Company
3110 Evelyn Street Roseville, MN 55113 \(-346\) 612-636-9469 \(\infty\) visr


COMPLETE, whth 90 ft RG58U-52 ohm feedilne, and
PL259 connector, insulators, 30 ft . 300 lb . test dacron end supports, connector, insulators, 30 ft 300 lb . test dacron end static discharge - molded, sealed, weatherproof, resonant traps
1" \(^{\prime \prime} 6^{\prime \prime}\) - you just switch to band desired for excellent worldwide 1"X6" - you just switch to band desired for excellent worldwide
operation - transmltting and recelvingl LowSWR over all bands -Tuners usually NOT NEEDEDI Can Lie used as inverted V's -Tuners usuall slosers - in attics, on bulling tops or narrow lots. The ONLY AN-
TENNA YOU WILL EVER NEED FOR ALL BANDS. WITH TENNA YOU WILL EVER NEED FOR ALL BANDS- W
ANY TRANSCEIVER - NEW - NO BALUNS NEEDEDI
ANY TRANSCEIVER - NEW - NO BALUNS NEEDEDI
\(80-40-20-15-10 .-2\) trap - 104 ft . -Model \(998 B U C\). \(\$ 99.95\) 80-40-20-15-10-2 2 trap - 104 ft . Model 1001BUC. . \(\$ 98.95\) 20-15-10 meter - 2 trap - 26ft.- Model 1007BUC. . \(\$ 97.95\)
SEND FULL PRICE FOR POSTPAID INSURED. DEL. IN USA. (Canada is \(\$ 5.00\) extra for postage - clerical - customs etc.) or
order using VISA - MASTER CARD - AMER. EXPRESS. Give number and ex. date. Ph 1-308-236-5333 9AM - 6PM week days. We shtp in 2-3 days. ALL PRICES MAY INCREASE ORDER NOWI All antennas guaranteed for 1 year. 10 day money back trial if returned in new condition! Made in USA. FREE INFO, AVAILABLE ONLY FROM
\begin{tabular}{lll} 
Dept. AT- 7 & WESTERN ELECTRONICS & Kearney, Nebraska, 68847 \\
\hline
\end{tabular}


\title{
CONTESTS
}

Robert Baker WB2GFE 15 Windsor Dr. Atco NJ 08004

\section*{VENEZUELAN INDEPENDENCE WORLDWIDE CONTEST} SSB
Starts: 0000 GMT July 7 Ends: 2400 GMT July 8 CW
Starts: 0000 GMT July 28 Ends: \(\mathbf{2 4 0 0}\) GMT July 29
The Radio Club of Venezolano invites all amateurs to participate in the 22nd year of the Venezuelan Independence Worldwide Contest. Use all bands, 80 through 10 meters. Operating classes include: (a) single operator, one band (for each band); (b) single operator, multiband; (c) multi-operator, multiband, one transmitter; (d) multioperator, mulitband, multi-transmitter.

\section*{EXCHANGE:}

RS(T) plus a three-digit QSO number starting with 001.

\section*{SCORING:}

Contacts between stations of different countries count two points. Contacts with stations within one's own country do not count but are valid as multipliers for each band. Count one multiplier for each Venezuelan and USA call area and each country (including own) worked on each band. Use the ARRL DXCC country list. Final score is the total QSO points times the total multiplier points.

\section*{AWARDS:}

For stations outside Venezuela, there will be a plaque to the highest scorer in
each class. Medals to the highest scorer in each continent and among the Bolivarian countries (Bolivia, Colombia, Ecuador, Panama, and Peru) in the single-operator, multiband class. Certificates to all stations in the Americas working 15 YV stations and 10 different countries, all European and African stations working 10 YV stations and 10 different countries, and all Asian and Oceanic stations working 5 YV stations and 10 different countries.

\section*{ENTRIES:}

Logs must show date and time in GMT, station worked, reports exchanged and respective numerical order, multipliers, and points. Use different sheets for each band worked. Include a separate summary sheet showing name(s) of operator(s), callsign, and address. Each participant must include \(\$ 2.00\) US or IRC equivalent with their logs. Entries must be postmarked no later than August 15 for SSB and September 15 for CW and should be addressed to: RCV, PO Box 2285, Caracas 1010-A, Venezuela.

\section*{INTERNATIONAL WORLDWIDE DX SSTV CONTEST \\ Starts: 0000 GMT July 13 \\ Ends: \(\mathbf{2 4 0 0}\) GMT July 15}

Official rules were not received prior to press time, so l assume there are no major changes from last year.

This is the third annual DX SSTV contest sponsored by A5 ATV Magazine. This is a 48 -hour SSTV video contest using 80 through 10 meters within the recommended SSTV calling/operating frequencies listed below. To encourage allband contest usage and promotion, extra bonus

\title{
CALENDAR
}

Jul 1
Jul 7-8
Jul 13-15
Jul 14-15
Jul 21-22
Jul 28-29
Jul 28-30
Aug 4-5
Aug 5-6
Aug 11-12
Aug 18-19
Aug 18-19
Aug 24-27
Sep 1
Sep 8-9
Sep 15-17
Sep 22-23
Oct 6-7
Oct 13-14
Oct 13-14
Oct 13-15
Oct 20-21
Nov 3
Nov 3-4
Nov 17-18
Dec 1-2
Dec 8-9
Dec 26-Jan
Dec 30

Canada Day Contest
YV Independence Worldwide Contest-SSB
A5 International SSTV DX Contest
IARU Radiosport Championship
SEANET Worldwide DX Contest-CW
YV Independence Worldwide Contest-CW
CW County Hunters Contest
ARRL UHF Contest
Illinois QSO Party
New Jersey QSO Party
SARTG Worldwide RTTY Contest
SEANET Worldwide DX Contest-Phone
A5 North American UHF FSTV DX Contest
DARC Corona 10-Meter RTTY Contest \#3
ARRL VHF QSO Party
Washington State QSO Party
Late Summer QRP CW Activity Weekend
ARRL QSO Party-CW
ARRL QSO Party-Phone
Rio CW DX Party
Oregon QSO Party
Jamboree on the Air
DARC Corona 10 -meter RTTY Contest \#4
ARRL Sweepstakes-CW
ARRL Sweepstakes-Phone
ARRL 160 -Meter Contest
ARRL 10-Meter Contest
QRP Winter Sports-CW
Canada Contest
points are granted on the \(10-15-40\)-, and 80 -meter band segments. Single-and mul-ti-operator stations are recognized, with crossband contacts not permitted. Individual contacts count only once per band with repetitive multiband contacts acceptable.

Callsigns and video reports must be in "video" form. Mug shots of the station operator, family, or friends can count only once. Slower clock-rate speeds are encouraged in either 12816.5 -second or 256 31 -second timebases. Color work must contain a minimum of a 2 -color overlay to qualify with standard RGB frame transmissions. Motion SSTV must have a minimum of 2 frames sent with automaticreceive switching circuitry or manuallyoperated switching by the receiving operator and \(64 \times 64\) "quadrant" storage of no less than 4 separate pictures with replays.

\section*{SCORING:}

Each SSTV two-way contact is worth 5 points within the same country and worth 10 points for DX out of country. Contact bonus points are available as follows: mug shots-1 point, slow speed-2 points, quad frame-3 points, motion SSTV-4 points, high resolution-5 points, and color SSTV (RGB)-10 points.
A band multiplier of 3 can be claimed for contacts on 40 and 80 meters, 2 for contacts on 6, 10, and 15 meters. Stations with over 25 DX countries worked add 25 points, with 50 DX countries add 50 points, and with over 100 DX countries add 100 points!

\section*{FREQUENCIES:}

Advanced/Extra-3835, 7220, 14230, 21340, 28660, 50.150.

General-3990, 7290, 14340, 21440, 28680, 50.150.

\section*{AWARDS:}

First-place winner receives a 3 -year subscription (worth \(\$ 60.00\) ) to A5 ATV Magazine with front-cover picture plus a Gold Certificate. Second- and third-place winners receive one-year subscriptions and Gold Certificates. All entries regardless of score receive Gold Certificates suitable for framing. Results will be in the November issue of A5 ATV Magazine.

\section*{ENTRIES:}

Submission of logs and totaled scores
must be postmarked no later than August 1 and submitted to: Contest Manager, A5, ATV Magazine, PO Box H, Lowden, lowa \(52255-0408\). Logs will be returned as will any photos, etc.

\section*{IARU RADIOSPORT CHAMPIONSHIP}

\section*{Starts: 0000 GMT July 14}

\section*{Ends: 2400 GMT July 15}

This contest is open to all licensed amateurs worldwide and several changes have been made since last year. The object is to contact as many other amateurs in as many parts of the world as possible using 1.8 through 148 MHz . Single-operator stations must not operate more than 36 hours of the contest period. Operating categories include:
(a) Single operator: phone-only, CW-only, and mixed-mode sections. One person performs all operating and logging functions. Use of spotting nets is prohibited. Off times must be 30 minutes minimum and single-operator stations are allowed only one transmitted signal at any given time.
(b) Multi-operator: single transmitter, mixed mode only. Only one transmitted signal allowed at any given time and must remain on a band at least 10 minutes at a time. All operators must observe the limits of their operator's license at all times.
Stations may be worked once per frequency band; crossmode, crossband, and repeater QSOs do not count.

\section*{EXCHANGE:}

Signal report and ITU zone.

\section*{SCORING:}

Count 1 point per QSO within your ITU zone, 3 points within your continent but different ITU zone, and five points with different continents. Multipliers are the number of ITU zones worked on each band. Final score is total number of QSO points multiplied by the sum of ITU zones worked on each band.

\section*{ENTRIES:}

All entrants are encouraged to use forms available from IARU/ARRL Headquarters; send SASE or 1 IRC. Logs must indicate times in GMT, bands, calls, and complete exchange. Multipliers and offtimes should be clearly marked in the


\section*{NEWSLETTER OF THE MONTH}

This month's winner, The RARS EXCITER, is edited by Ann Bradley WA4APK (ably assisted in May by Murray Hake W6MVZ). Packed with information of all sorts, it's another great example of excellence in ham radio journalism.

To enter your club's newsletter in 73's Newsletter of the Month Contest, send it to 73, Pine Street, Peterborough NH 03458, Attn: Newsletter of the Month.
logs. Cross-check sheets are required if more than 500 QSOs total are made. Entries must be postmarked by August 15; any entry received after mid-October may not be in time to be included in the printed results. Usual conditions of entry and disqualification apply. Entries should be addressed to ARRL Headquarters in Newington, Connecticut.

\section*{AWARDS:}

A certificate will be awarded to the high-scoring CW-only, phone-only, mixedmode, and multi-operator entrant in each ARRL section, each ITU zone, and each DXCC country. In addition, achievementlevel awards will be issued to those making at least 250 QSOs or having a multiplier total of 50 or more. Additional awards may be made at the discretion of each country's IARU society.
SEANET WORLDWIDE DX
CONTEST
CW
Starts: 00012 Saturday, July 21
Ends: 2359 Sunday, July 22
Phone
Starts: 0001 Saturday, Aug 18
Ends: 2359 Sunday, Aug 19

Use 160-through 10 -meter bands. Entry classifications include (1) single-band, single-operator; (2) multiband, single-operator; (3) multiband, multi-operator. Power input is as stipulated in the regulations governing the licenses of the operator. The contest call is "CQ SEA" for the CW contest and "CQ SEATEST" for the phone contest.
EXCHANGE:
RSIRST report plus serial numbers starting with 001 and increased by one for each successive contact. See also Rule 3(d).

\section*{SCORING:}
1) For stations outside the SEANET area:
(a) Contact with stations within the SEANET area of the following prefixes (DU, HS, YB, 9M2, 9M6, 9M8,9V1, V85)-20 points on 160 meters, 10 points on 80 and 40 meters, and 4 points on 20,15 , and 10 meters.
(b) Contacts with other stations within the SEANET area not listed above in 1 (a) -10 points on 160 meters, 5 points on 80 and 40 meters, and 2 points on 20, 15, and 10 meters.
(c) Contact between stations outside SEANET area will not be counted.
(d) Multipliers will be 3 points for each country worked, i.e., for countries between SEANET areas only. 2) For stations in the SEANET areas:
(a) Contacts with stations outside SEANET areas- 10 points on 160 meters, 5 points on 80 and 40 meters, and 2 points on 20,15 , and 10 meters.
(b) Contacts between stations within the SEANET areas- 6 points on 160 meters, 3 points on 80 and 40 meters, and 2 points on 20, 15, and 10 meters.
(c) Contacts between stations in own country will not be counted.
(d) Multipliers-contacts with countries within the SEANET area count 3 points for each country worked.
3) The final score will be the sum of the points multiplied by the sum of the country multipliers.
The list of SEANET area prefixes is as follows: A4, A5, A6, A9, AP, BV, CR9, C21, DU, EP, HL, HS, H44, JA/JE/JF/JG/JH/JI/ JR, etc., JD1, JY, KA, KC6, KG6/KH2, KH6, KX6, P29, S79, VK, VQ9, V85, VS6, VS9K, VU2, XU, XV5, XWB, YB, YJ8, ZK, ZL, 3B6/7, 3B8, 3D2, 4S7, 4X, 5W1, 5Z4, 8Q7, 9K2, 9M2, 9M6/8, 9N1, and 9V1.
Some restrictions apply, as follows:
(a) Contacts on cross-modes or crossbands or mixed CW/phone logs will be disqualified.
(b) Operators are not allowed to transmit two or more signals at the same time.
(c) Only one contact per band with the same station will be counted.
(d) Contest numbers should begin with 001 on each different band.
(e) All entries in violation of the contest rules, incorrect statements in the submitted reports, taking points from duplicate contacts, and practices against the brotherhood of amateur radio will be disqualified.
(f) The decision of the SEANET Contest Committee shall be final.
ENTRIES, LOGS, AND
SUMMARY SHEETS:
All entries must be in the form of logs and summary sheets. All time must be in GMT. Entries must be received by the Contest Manager, Eshee Razak 9M2FK, PO Box 13, Penang, Malaysia, not later than October 31, 1984. Results will be announced at the SEANET Convention. If you require the results to be sent to you, please enclose IRCs together with your entry.

\section*{CW COUNTY HUNTERS CONTEST Starts: 0000 GMT July 28 Ends: 0200 GMT July 30}

The CW County Hunters Net invites all amateurs to participate in this year's contest. All mobile and portable operation in less active counties is welcomed and encouraged. Stations may be worked once on each band and again if the station has
changed counties. Portable or mobile sta tions changing counties during the con test may repeat contacts for QSO points.

\section*{EXCHANGE:}

QSO number; category ( P for portable, M for mobile); RST; state, province, or country; and US county. Stations on county lines give and receive only one QSO number, but each county is valid for a multiplier.

\section*{FREQUENCIES:}

3575, 7055, 14065, 21065, 28065, it is strongly requested that only P or M category stations call CQ or QRZ on 40 meters below 7055 and on 20 meters below 14065 with all other stations spreading out above those frequencies.

\section*{SCORING:}

QSOs with fixed stations are 1 point; QSOs with portable or mobile stations are 3 points. Multiply the number of QSO points times the number of US counties worked. Independent cities may be counted as any one of their adjoining counties in accordance with USACA rules. Mobiles and portables calculate their score on the basis of total contacts within a state for state certificate and calculate their scores on all operations if they operated from more than one state in competition for the High Portable or High Mobile Trophy.

\section*{AWARDS:}

Certificates will be awarded in three categories:
1) Highest fixed or fixed portable station in each state, province, and country with 1,000 or more points.
2) Highest station in each state operating portable from a county which is not his normal point of operation with 1,000 or more points.
3) Highest station in each state operating mobile from 3 or more counties with a minimum of 10 QSOs in at least each of 3 counties.
Plaques will be awarded to the highest mobile and portable stations in the USA that meet the above requirements for cer-
tificates. Additional awards will be issued where deemed appropriate.

\section*{ENTRIES:}

Logs must show category, date/time in GMT, station worked, band, exchanges, QSO points, location, and claimed score. All entries with 100 or more QSOs must include a check sheet of counties worked or be disqualified from receiving awards. Enclose a large SASE if results are desired. Logs must be postmarked by September 1 and sent to: CW County Hunters Net, c/o Jerry Burkhead N6QA, 7525 Baltic St., San Diego, California 92111.
recently received a letter from the Yu kon Amateur Radio Association concerning VY1 participation in future contests. As a result of a recent group meeting, they are requesting separate multiplier status for the Yukon Territory, VY1, for the following reasons:
1) In most contests, Yukon and Northwest Territories are classed as one. The Yukon has no ties with VE8, political or otherwise. The VY1 prefix has been in existence for 6 years now, although most publications still think they are either South America or Sable Island.
2) It is discouraging to have many VE and W amateurs call and have no idea where the VY1 station is located, especially since most contest information still lists them as VE8.
3) There are no super stations in the Yukon. With the propagation anomalies they suffer at that latitude, they cannot compete with southern stations. They are relegated to just being on during the contest period for the sake of giving out the prefix.
4) They have made an effort to have at least 3 stations on in every major contest for the past 2 years. The main participants have just had about enough and are seriously considering following their preferred methods of operating rather than spending complete weekends operating contests without any hope of turning in reasonable scores.
I think the letter speaks for itself and future contest chairmen may want to reconsider their multipliers!

\section*{LB-VHF-UHF Repeaters}


HII PRO TRANSMITTER DESIGNED FOR REPEATER SERVICE WITH EXCELLENT HARMONIC REAECTO CIECTION AND LOW SIDEBAND NOISE ADJUSTABLE
POWER
OUTPUT
UP TO 5 WATTS
FROM THE
EXCIER BOARD
COOL OPERATION
HI PRO RECEIVER
THIS RECEIVER IS THE
HEART OF THE REPEATER
AND BOASTS SUPERIOR
SQUELCH ACTION NEEDED
FOR THIS TYPE OF
SERVICE EXCELLENT
SENSTIVITY, STABILTY
AND SELECTIVITY
USE THIS RECEIVER
TO REPLACE THAT
TROUBLESOME RECEIVER
IN YOUR PRESENT
REPEATER


\section*{NEW PRODUCTS}

\section*{AMATEUR RTTY/ASCII/CW TERMINAL}

ColoRadio Research, based in Loveland, Colorado, has announced the Model 900B Advanced Keyboard, a totally expandable amateur-radio RTTY/ASCII/CW terminal. It can be interfaced to a variety of computers via its RS-232C port and can be expanded to include a high-quality built-in keyboard, 16 -character LED display, and/or 80 -character-by- 25 -line highresolution video interface.

The unit sends and receives Baudot and ASCII codes at all standard baud rates from 45 to 110 and can transmit at up to 1200 baud. The RS-232C port can handle up to 9600 baud with CTS/RTS, Xon/Xoff, or no handshaking.
The Model 900B also has CW transmit and receive capability. The ColoRadio Surecopy I algorithm automatically adjusts to any incoming speed within a few letters and the hardware and software sig nal processing minimizes garbled copy under even the worst band conditions.

Other functions include dupe-checking of up to 1280 calls, and touchtone \({ }^{T M}\) and two-tone transmitter testing. The output and input tone frequencies can be changed at any time in \(1-\mathrm{Hz}\) steps, giving compatibility with not only current shifts of 170,425 , and 850 Hz , but also modem shifts of 200 Hz and any future shifts that may be used.
The unit interfaces easily with any ama-teur-radio station, with connectors for audio input and output, FSK, loop, autostart, key in, positive and negative key outputs, and video. A unique feature is the ability to multiplex the station microphone through the Model 900B to avoid having to switch cables when going from RTTY to SSB (useful on older transceivers that don't have separate mike and AFSK jacks).
Standard features include an 800-character type-ahead transmit buffer with break capability and buffer recall "point-
ers" that give an effective transmit-buffer capacity of 64,000 characters, ten 80 -character message buffers, an 80 -character WRU buffer, CW ID capability, 10,000 character receive buffer with scrolling, split- and full-screen display, complete status indications showing date/time, word mode, brag-tape status, diddle, sidetone, column number of automatic carriage return/line feed, operating mode, speed, tuning indicator, USOS, polarity, and frequency of transmit and receive tones. The dupe-check function has nicad battery backup to allow the user to return home from field contests and dump the stored calls to a computer or printer.
Inquiries should be mailed to ColoRadio Research, PO Box 603, Loveland CO 80539, (303)-667-7382. Reader Service number 477.

\section*{MICROCOMPUTER LOGGING PROGRAM}

Crumtronics has announced Contender, a logging program for the Commodore 64 microcomputer.
On a single-sided disk you can enter 2,000 entries, allowing callsign, RST sent/ received, time/date (auto or manual), name, QTH, zone, and QSL information for each entry. Contender permits forward/re verse scan, has an edit/update feature, and allows you to PRINT: dupe sheet to printer or screen, QSL labels, QSL cards, and complete log.
Contender is being expanded to include allband WAS, WAZ, DXCC, and statel county report. The expanded version will be known as Contender Plus and will be priced slightly higher.

For more information, write to Crumtronics, Software Division, PO Box 6187, Fort Wayne IN 46896; (219)-745-0350. Reader Service number 481.

\section*{IC-37A 220-MHZ MOBILE}
lcom has announced the IC-37A


\section*{IC-37A mobile transceiver.}
\(220-\mathrm{MHz}\) compact mobile transceiver. The IC-37A features:
- 25 Watts/5 Watts low
- same design as IC- \(27 \mathrm{~A}-51 / 2^{\prime \prime} \mathrm{W} \times 11 / 2^{\prime \prime}\) H \(\times 7^{\prime \prime} D\)
- 32 PL frequencies-standard, built-in
- 9 memories with offset and PL storage
- dial steps: \(10 \mathrm{kHz} / 5 \mathrm{kHz}\)
- memory scan, band scan, and priority scan
- dual vio's
- HM-23 touchtone \({ }^{\text {TM }}\) and scanning mike standard
- speech-synthesizer option
- NorlRev switch

For more information, contact lcom America, Inc., 2112 116th Ave. NE, Bellevue WA 98004; (206)-454-8155.

\section*{60-MHZ SCOPE FROM KIKUSUI}

A new \(60-\mathrm{MHz}\) oscilloscope, featuring peak-to-peak automatic triggering and automatic focus was recently added to Kikusui's line of oscilloscopes.

Other key features of the scope, model 5060 , include delay sweep, delay line, alternate sweep, a third channel signal, and a vertical-signal output on the back of the unit. Sensitivity is 1 mV with \(5 \times\) magnification. The scope also includes a sync separator as standard.
In addition, a variable hold-off allows precise adjustment of trigger hold-off time, ensuring stable triggering on complex or long waveforms. Auto triggering and peak-to-peak auto triggering, on the other hand, ensure stable triggering at all input amplitudes. The built-in delay line allows accurate leading-edge measurements. Also, a two-channel X-Y operation is included.
The CRT of the 5060 is a \(6^{\prime \prime}\) rectangular with 12 kV of accelerating potential to provide a clear, bright display, and automatic focus even when intensity is adjusted or the sweep rate is changed.

The unit is small, measuring \(6.9^{\prime \prime} \mathrm{H} \times\) \(11^{\prime \prime} \mathrm{W} \times 14.6^{\prime \prime} \mathrm{D}\). It weighs just under 16 pounds.
Ac voltage is selectable: \(100,115,215\), or \(230 \mathrm{~V}, 50\) or 60 Hz . Power requirements are approximately 40 VA .
Applications for the 5060 include computer field servicing, industrial control, process control (e.g., the paper industry), food processing, and assembly lines.
"It fits two niches nicely," explained Bill White, vice-president of marketing for Kikusui. "One is field service where light weight is a prime consideration, and the other is production lines where KIK's automatic triggering simplifies and speeds operation."
For more information, contact Kikusui International Corporation, 17819 S. Figueroa St., Gardena CA 90248; (800)-421. 5334. In Alaska, California, and Hawaii, call (213)-515-6432. Reader Service number 476.

\section*{CONFINED E-FIELD DISPLACEMENT ANTENNA}

Moler Antenna has produced a 16 -foot, 80 -meter vertical that enables any radio amateur to operate with a big signal from a small lot. It is motor-tuned at the loading coil to cover the whole band from 3.5 to 4.0 MHz . Fed with \(50-\mathrm{hm}\) coax, it handles the legal limit plus some and can be groundor roof-mounted. The antenna is toploaded with both inductance and a top capacity hat. The loading coil is wound with \(3 / 8\)-inch-wide copper strap and the capacity hat has a diameter of approximately 8 feet. When ground mounting, a radial system of approximately 32 wires, about 25 feet long, is recommended. For mounting above the ground, at least 8 radials about 25 feet long, are recommended. The antenna requires 3 guy ropes. The assembly time is about 30 minutes. The loading coil motor is a \(12 \cdot\) volt-dc reversible motor and can be driven easily by a 9 -volt tran-

sistor-radio battery. You can build your own control box or buy one from Moler. This antenna has a low wave angle, therefore, it works very well on DX. Two or more of these antennas can be phased easily by driving only one and using the others as parasitic elements, steering the beam in any direction by remotely tuning the mutually coupled antennas.

A conversion kit is available for the above antenna. It converts the 80 -meter vertical to half-wave vertical. The conversion kit eliminates the need for radials and increases the height of the antenna by 3 feet (making the overall length approximately 19 feet). For more information, contact Moler Antenna Corp., 2623 Morris Lane, Girard OH 44420; (216). 530-2059.

\section*{HF ANTENNA DESIGN PROGRAM}

HF Antenna Design is the latest offering in Cynwyn's software series for ama-teur-radio hobbyists. The program makes the necessary calculations for building three popular types of antennas-dipole, yagi, and quad-for frequencies of 1.8-30 MHz and displays them in an easy-to-read tabular format. Dimensions for the yagi and quad are optimized for maximum gain.

HF Antenna Design requires a TRS-80C Color Computer with 16 K RAM and Extended Color Basic or an MC-10 with 4 K RAM.

For more information, contact B. E. Wynkoop at Cynwyn, 4791 Broadway, Suite 2F, New York NY 10034; (212)-567-8493. Reader Service number 479.

\section*{NCG'S NEW TRIBANDER}

The new tribander, \(40-15\) plus 6 meters, will give all amateurs, from Novice to Extra, a rig that will fill the gap. The \(7-21-6 \mathrm{M}\) is all solid state with built-in ac/dc; no external power supply is needed. Full band coverage on 40 and 15 meters with 6 -meter coverage from 50.0 to 50.50 MHz . All bands operate in the modes of SSB or CW. Drift-free operation is less than 100 Hz . Two antenna connectors allow bandswitching easily, one is for 6 meters and the other is for 15 and 40 meters. Transmitting final stage is 26 Watts PEP and modulation is a balanced type. Carrier suppression is more than 40 dB down. Microphone impedance is from 50 to 400 Ohms. With built-in TVI suppression for 6 meters, this tribander will be a pleasure to operate. With a slow swr on the 6 -meter antenna, no or very little TV interference will be encountered. The \(7-21-6 \mathrm{M}\) is an ideal transceiver for the Technician, phone on 6, and CW on 15 and 40 meters. The tribander is small enough to operate mobile and large enough for a base rig.

The tribander should be available in July. For additional information, contact NCG Co., 1275 N. Grove St., Anaheim CA 92806; (714)-630-4541. Reader Service number 478.

\section*{SHACKMASTER}

Advanced Computer Controls, Inc., has introduced ShackMaster, a new product which allows you to remotely control your shack and effectively communicate with family members over your home equipment.

ShackMaster's crossband linking capability allows you to access your high-performance home station from VHF/UHF, either simplex or through repeaters. Telephone access permits remote control of your home station from any touchtone \({ }^{\text {TM }}\) telephone. BSR X-10 shack control offers touchtone remote control of 120 -volt devices with touchtone commands, over the air or over the phone.
ShackPatch, a remotely controlled intercom into the home, permits you to remotely control your home equipment, allowing third parties to participate. ShackPatch is based on the same principles as an autopatch, and you are in complete control of your station at all times. An electronic mailbox permits you and your family to leave messages for each other, to be retrieved when convenient. Finally, a simplex autopatch is available when it's necessary to make a phone call, report an accident, or call a friend.
ShackMaster is based on ACC's proven repeater control technology. It includes electronic synthesized speech with a custom vocabulary. It interfaces to up to three transceivers, the phone line, and a local speaker and microphone.
For more information, contact Ad vanced Computer Controls, Inc., 10816 Northridge Square, Cupertino CA 95014; (408)-749-8330. Reader Service number 480.

\section*{MODEL CS-16 TOUCHTONE DECODER}

Connect Systems, Inc., has introduced a low-cost, 16 -function touchtone \({ }^{\text {TM }}\) decoder board. Designated as model CS-16, the decoder will securely control virtually any apparatus via radio or wire. The CS-16 is especially useful for controlling various repeater on/off functions.

One feature of the CS-16 is dual password control. Two separately user-programmable three-digit passwords create heirarchy control capability. The primary control password can access all 16 of the available functions. The secondary password, however, can access only 8 of the 16 functions. Additionally, a special primary


ShackMaster from ACC.
password command is available which can enable or disable secondary password access. The CS-16 provides such a high degree of multi-level security that control can be accomplished directly on voice channels thus eliminating the need for separate control frequencies.
The CS-16 provides 16 independently controllable on/off latched functions. Each function is provided with an open collector and a \(5-\mathrm{V}\) CMOS logic output. A strobe output is also made available in open collector and logic format. This output can be used to gate repeated audio so that DTMF control commands are not re-transmitted-a further security enhancement.
A power-up reset feature causes all out puts to be in the off state after application of power. An audio preamp with level con-
trol permits the crystal-controlled tone decoder to operate over the wide input range of 10 mV to 2 volts. A strobe LED lights when any of the 16 buttons on a pad is pressed. (The CS-16 can also be used with 12 -button pads.) An on-board voltage regulator permits operation with a \(10-25 \cdot \mathrm{~V}\)-dc power source. The CS-16 incorporates reverse polarity protection and draws less than 20 mA from the supply.

The CS-16 is constructed on a top-quality glass board with plated-through holes. The board is reflow-soldered and ma-chine-trimmed. The 44 -pin edge connector is gold plated for extreme reliability. The CS-16 is supplied with mating connector, manual, and limited six-month warranty. For more information, contact Connect Systems, Inc., 23731 Madison St., Torrance CA 90505.


REVIEW

\section*{THE SUPER SANTECS EVEN BETTER NOW}

In last October's issue of 73,1 reviewed the Santec ST-/uP series of handie-talkies in glowing terms. Since then the importer, Encomm Inc., has introduced substantial ly updated versions of all three radios. The ST-144/uP, ST-220/UP, and ST-440/UP have been replaced by the ST-142, ST-222, and ST 442.
The good news is that, good as the ear lier versions were, the new ones are better. The really good news is that Encomm hasn't forgotten all you buyers of ST-/uP radios: For a cost considerably less than that of a new radio, they will update your ST-/uP into the new model, as they have done for all three of mine. I can't remember any manufacturerlimporter having done that before
The changes in the new models affect the microprocessor operating system. The transmitter and receiver are unchanged, and both have the excellent specs that were published in my October review.

\section*{Programmable Offset}

What's different? A whole lot. First and foremost, the transmit offset is now separately programmable on all ten channels! Think about that. If you use odd-split repeaters, or if you want to listen on your repeater's output but transmit on a control frequency, you can set up a channel memory for that purpose. In the ST-/uP radios, you could set up one, and only one, "special" offset, by receiving on the set frequency and transmitting on the frequency stored in memory 1 . Now you can have a different offset in every memory channel if you want it! You can also use the variable offset feature in the "normal," i.e., non-memory, mode, and it will apply to whatever receive frequency you program in.
The offset is variable in \(10-\mathrm{kHz}\) steps ( 25 kHz on the ST-442), the maximum offset is \(9990 \mathrm{kHz}(9975 \mathrm{kHz}\) on the 442), and the minimum offset is twice the minimum adjacent channel step (meaning 10 kHz minimum offset on the VHF radios and 50 kHz on the UHF one). Bear in mind that if your offset results in an out-of-band transmit frequency, nothing will happen when you press the push-to-talk bar.

If all this versatility isn't enough for you, as might happen if you wanted an offset not divisible by 10 kHz , the "old" setup of receiving on a selected channel and transmitting on a frequency stored in a "special" memory is still available. Memory 9 has replaced memory 1 for this purpose.

\section*{Programmable CTCSS}

Still on the subject of "customized" channels, Encomm is offering a programmable CTCSS encoder for the new radios that will allow you to generate a different subaudible access tone on each of the memory channels. The encoder uses a

PROM that you customize yourself. If you buy this accessory, you also get a little programming board which takes the PROM and uses any \(12 \cdot \mathrm{~V}\)-dc source to program it as you desire. Then all you have to do is select the channel you want, and the correct transmit offset and subaudible tone frequency are right there automatically.

\section*{Status Memory}

Variable offset and custom access tones are just the beginning. When you turned the ST-fuP radios off and then on again, they "woke up" on whatever frequency was stored in memory 1, but in "normal" (i.e., not memory) mode. This meant that when you finished a QSO and shut down the radio, then remembered you had something else to say, you would have to reselect the channel on which you had been talking (unless it happened to be the one in the first memory). No more! The new Santecs "wake up" in exactly the status they were in when you shut downon the same memory channel or on the same normal mode frequency, whichever way you had it set up when you switched off. Incidentally, this eliminated the "bug" mentioned in last October's review, which related to use of the clock (yes, the clock is still there). Sometimes when I switched to the clock mode and back to the frequency display, I found the radio on the memory 1 frequency in normal mode, as though l'd shut off the power and turned it on again. That no longer happens, because interrupting the power doesn't affect the frequency/memory settings.

\section*{Scan Lockout}

We're still not finished with the goodies list. On the ST-/uP radios, you could scan all or a set part of a band or you could scan the ten memories, with a priority feature for the memory 1 frequency. If you were scanning memory channels, you had to scan all ten, and the radio would stop on each one that was active. This meant that if you had programmed in, say, your three favorite repeaters, and six or seven more that you used only occasionally but wanted to have available, the radio would stop scanning on the less-interesting channels if they were in use, which introduced some delay in getting to the stuff you really wanted to hear.
Problem solved. The new radios have a "lockout" feature which can be applied to any channel. Select that channel, turn the "memory write" switch on, and press the "B" key. A small "L" lights up next to the frequency display, and that channel is locked out of the scan until you cancel the lockout. The locked-out channel is still available by keyboard selection, of course-it just won't show up in scan mode.

\section*{New "Open"ing}

Speaking of scanning: Have you ever

\section*{WHAT DO YOU THINK?}

Have you recently purchased a new product that has been reviewed in 73 ? If you have, write and tell us what you think about it. 73 will publish your comments so you can share them with other hams, as part of our continuing effort to bring you the best in new product information and reviews. Send your thoughts to Review Editor, 73: Amateur Radio's Technical Journal, Peterborough NH 03458.
made use of an "open" scan feature which lets you scan for a quiet channel? In theory it's a nice idea, but in a country with a lot of repeaters, it isn't too useful. I can't ever recall using it, although all three of my ST-fuP radios had it.
Well, I'm going to start using "open" scan now, because on the new Santec radios it isn't what it used to be. First, a quick refresher course in Santec scanning is in order. You had (and still have on the new radios): "MAN"ual scanning, one frequency step for each press of the "up" or "down" keys, continuous if you hold either key for a second or so; "SCAN," stop on each busy channel, auto restart after 6 seconds or so; and "SRCH," stop on a busy channel, no auto restart. The new "OPEN" mode stops on each busy channel, but auto restart is delayed until the channel has been quiet for a few seconds. Using "OPEN," you can hear a QSO out to its finish, and then the radio will resume scanning. That's a useful feature, and to my mind much more so than the ability to scan for a quiet channel. Remember also that all the Santec radios have variable scan interval -5 to 100 kHz for the VHF units, 25 to 100 kHz for the ST-442.

\section*{Accident Prevention}

On the ST-/uP radios, some care had to be exercised when programming memories. You set up the receive frequency on the display, set the offset switches the way you wanted, turned on the "memory write" switch, pushed the "write" key, and entered the desired channel digit. The problem was, if you accidentally pressed a second digit before turning off the write switch or pressing the write key a second time, the same frequency got written into another memory. Several times I forgot this, went into the "memory write" mode, and then entered the frequency I wanted. If I entered " 673 " (for 146.730 MHz ), I got whatever frequency was on the display entered into channels 3, 6, and 7-overwriting anything that had been there before!
The new radios eliminate this problem. The act of storing a frequency in a memory channel automatically takes the microprocessor out of the write mode. The worst that can happen is that you get one wrong frequency stored, not three or four. A big improvement.

The new radios are identical in their external details to the earlier versions. The only obvious difference is the nameplate, which carries the new model number.

\section*{Updating Available}

I said earlier that Encomm will update your ST-/uP radios. At his writing, the updating charge is \(\$ 100\)-a lot less than the cost of a new radio. Your updated version will be identical in all respects to the new models and will accept the accessory programmable tone encoder. So you can have your ST-/UP made over into "this year's" radio instead of trading in the old one. Encomm hasn't abandoned you.
If you liked the ST-144/uP and its cousins, you'll love the ST-142.
For further information, contact Encomm, Inc, 2000 Avenue G, Suite 800 , Plano TX 75074; (214)-423-0024. Reader Service number 482.

Robinson Markel W2IVS
New York NY

\section*{ICOM'S IC-RP3010 70-CM REPEATER}

In our efforts to escape from the crowded metropolitan-area 2 -meter band, our club sought refuge on 440 megahertz. Such a move in a heavily populated area is
fraught with its own perils. Our repeater site on top of a high-rise apartment building provides excellent coverage, but many of the commercial operators in the area have had similar feelings and installed (more than 20) commercial repeaters within several hundred feet of our site.
It was a difficult decision to select a repeater that would be cost-effective and yet sufficiently selective to be able to cut the mustard. A modern commercial repeater was out of the question because of cost, and the older commercial variety used by many of the other 440 groups in our area required \(\mathrm{PL} \mathrm{TM}^{\text {To keep the intermod }}\) out.
The Icom IC-RP3010 seemed a likely candidate; however, we had difficuily obtaining any information on it. We finally decided that the lcom name and reputation was enough to \(g o\) on and after some difficulty locating one in this country and arranging for its shipment, we were pleasantly surprised when we opened our new package.
The repeater cabinet is constructed of heavy-gauge metal and is completely shielded on both top and bottom. Both the transmitter and the receiver are mounted in rf-tight boxes with quick disconnect plugs to enable easy removal for service. The power supply has a trickle charger to keep a backup battery fully charged for emergency power, and the power-on light, normally green for ac operation, changes to red to warn of battery power. A large heat sink the entire width of the cabinet is installed on the rear to dissipate heat generated by the power supply and PA.
The controller, CTCSS, and touchtone \({ }^{T M}\) decoder boards are mounted underneath the main chassis. The front panel of the repeater is anodized aluminum, very attractively finished with an easy-to-follow block diagram of the repeater controls embossed on its face. Volume and squelch, CTCSS on-off, transmitter inhibit, manual ID, and COR simulate are the only external controls on the repeater. Annunciator lights make it easy to determine the mode and status of the repeater. It is \(19^{\prime \prime}\) rack width, but the mounting holes are metric and may not line up with all US racks (possibly requiring rack modification by drilling new holes).
We bought the repeater with the optional loom mounting rack which allows approximately \(12^{\prime \prime}\) below the repeater for mounting duplexers of other accessories. It makes the repeater very attractive; thus far my wife has not objected to its being in our apartment, where it serves as a table.
The repeater comes from the factory aligned on a Japanese repeater frequency in the 430 -megahertz portion of the band, so our first step was to install the crystals we had previously ordered for our assigned frequency and then retune the transmitter and receiver. The Icom manual contains detailed instructions on all alignment procedures. However, as in most manuals translated from the Japanese by non-na-tive-English-speaking writers, some of the instructions require a little carefut thought before execution. The receiver and transmitter both tweaked up well within Icom specs. Squelch on the receiver opened at 0.1 microvolts, and the transmitter produced 14 Watts.
The control board "brain" is a factory. programmed EPROM which contains the settings for all the timers with the exception of the squelch tail and the repeater callsign. The EPROM must be returned to Icom to have the repeater callsign programmed in ROM. Perhaps Icom could make some arrangement to program the EPROM and tune the transmitter and receiver on the user's frequencies at the
factory before shipment so that the entire repeater would become a turn-key operation.
The machine is now up and running and producing excellent results. We are running it without a power amplifier, using Wacom WP-678 cavities, and are currently using about 115 feet of hardliner. The results have been excellent. The audio is typical Icom and is equal to or better than that of other repeaters. Intermod has not
been a major problem and we have been able to operate with the CTCSS off with little intermod interference.
The CTCSS frequency tolerance seerns rather broad, and mobile stations have been able to get in even if they were one or two codes away from ours.
The repeater comes with single-digit touchtone \({ }^{\mathrm{TM}}\) control for repeater and CTCSS on-off, and we have found that the decoder frequently falses on voice modu-
lation, thus turning the repeater or the PLIM on and off at inconvenient times. The single-digit decoder can be defeated by inserting an included jack on the rear repeater panel or by installing the ICEX339 3 -digit decoder available as an option from Icom.
Unfortunately, no provisions for installing an autopatch have been included. However, interfacing any commercial autopatch should be a rather easy job.

In summary, I feel the IC-RP3010 is an excellent piece of equipment well worth its purchase price. As soon as more become available, it is going to make the 440-megahertz band a popular place.

For further information, contact lcom America, Inc., 2112 116th Ave. NE, Bellevue WA 98004; (206)-454-8155.

Keith J. Mackey W4LDP
Ft. Lauderdale FL

\section*{RTTY LOOP}

\section*{Marc I. Leavey, M.D. WA3AJR 6 Jenny Lane \\ Pikesville MD 21208}

As I write this column, this year's Greater Baltimore Hamboree and Computerfest has come to a close. It is amazing to describe the changes that have become apparent within amateur radio over the past several years, as viewed from the perspective of a hamfest.
Not that long ago, the bulk of dealers at these gatherings were selling big boxy transmitters or receivers, or tubes or other parts by the bin. As far as RTTY went, you could usually find a Teletype \({ }^{0}\) Model 15 or two, or maybe a Model 28 if you were lucky, but not much else of especial interest to the RTTYer.
With the coming age of digital communications, all this has changed! This year, I would estimate the average distance between keyboards as under three feet, and that is allowing for the still considerable number of non-RTTY or computer items being displayed. Walking around this giant hamfest (which takes over the Timonium Fairgrounds, home of our Maryland State Fair, every spring) and pushing through the thousands of folks who braved a cold rainy day to come pointed up many sights.

I found RTTY bargains aplenty, ranging from rolls of paper at giveaway prices to one gent offering a Teletype Model 33 for all of ten dollars. Computer manufacturers have not forgotten us either, folks. Just about every table had a computer set up to either run RTTY or serve some other useful function in a ham shack. Yes, RTTY umn-the history of RTTY! this year's hamfest.
is more alive than at any time in its history. Hmm, there is a topic for a future col-

At any rate, included in this month's column are a few choice photos taken at

At the risk of inundating Levittown with mail, I have a note here, the contents of which I must pass along. As of the date of this writing (the first week of April), Fred Weidenhammer W4SDL/2 indicates that he has a Teletype Model 35-RO, free to someone willing to pay shipping and insurance. This is a receive-only ASCII print-


The outside tailgating area, showing mostly the rain and tents.
er, and it does not have a cabinet. That is all I know. I would suggest you contact Fred for further details at 332 Blacksmith Road, Levittown, New York 11756.

More comments on the various programs to run RTTY on TRS-80 Models I and III have arrived. Bill Buckingham WA3LIL, who has written us before on the subject, passes along the information that the programs he uses operate through the vO bus of these computers with an I/O interface. The Model I has a forty-pin bus and the Model III a fifty-pin bus, so there are a few differences between them, but apparently they are not insurmountable. Bill also indicates that work is under way to adapt these programs to the new TRS-80 Model 4. Thanks for the information, Bill.
Along the same line, regards to Richard Ellers K8JKL of Warren, Ohio. Richard is trying to put his TRS-80 Model III onto RTTY and is looking for software. I have
put Richard in touch with Bill and hope to see him on RTTY very shortly.
Duane Vincent KA7JEX from Seattle, Washington, passes along his comments with regard to running a Texas Instruments T1-99/4A on RTTY. Using one of the popular interfaces available, Duane is very pleased with this setup. He notes that the keyboard touch on the 99/4A is not unlike that of the IBM terminal he uses at work.

Duane has also used a VIC-20 on RTTY. He uses that computer for portable RTTY out of his van. Boy, that brings back a picture in my mind of a vehicular station set up locally some years ago by W3DTN, complete with a mobile Model \(15!\) Well, Duane prefers the 99/4A keyboard to the VIC, but he likes to run the VIC on the mobile \(12 \cdot \mathrm{~V}\)-dc battery power. Yes, sir, things are moving along!
Another Commodore patron is Allen Fugelseth WB6RWU. Allen is using a Commodore 64 computer and is looking for, as he puts it, "free or inexpensive software." Well, I have not seen anything that quite meets that description, but I will keep my eye out. Part of the problem, Allen, is that 1 try not to recommend products that I have not seen or that I have not received other detailed information about from a source other than the manufacturer. There have been a few "lemons" dangled in there with the other fruits and such, and I would rather avoid them if I can. Will keep you and the rest of the fan club posted on new software as the information arrives.
New members of the CoCo club include Bruce T. Brackin of Oklahoma City, Oklahoma, and Peter G. Pototsky NH6BF of Kailua, Hawaii. Bruce is an SWL with an interest in putting his CoCo to work receiving the RTTY he hears on the air. I have forwarded the information covered in the last few months here to him to help in these efforts. Bruce asks if I have noted any computer-generated if problems as-


One of the highlights of the hamfest was a look at the FCC mobile monitoring van.


One of the indoor flea-market areas at the Greater Baltimore Hamboree.
sociated with the CoCo. He notes that his "Osborne I will tear the National (NC-400 receiver) to pleces, and just about anything else within about 100 feet of it." Well, Bruce, I have not noticed any RFI at all with the CoCo, and I think that is a tribute to careful attention being paid to those design features which minimize "leaks." I don't know why your Osborne is causing problems; I have several friends who are using theirs without interference. Would suggest you check out your grounding in the station to be sure that a floating
ground or the like is not the culprit. Who knows, you may hear enough RTTY to want to get a license and join us!

Peter, when he is not basking on the beaches in Hawaii (do you know how miserable the weather in Maryland is this time of year?), is trying to put his CoCo on RTTY and would like a disk-based program to do it. Well, at this time, 1 know of no diskbased program that exists. I have indicated to Clay Abrams that upgrading his excellent tape program would be ideal, and
he has related the intention of doing just that, but these things take time. In the meantime, you might drop Clay a line at 1758 Comstock Lane, San Jose, California 95124. Tell him that WA3AJR said to bug him for a disk program!

Well, response to my offer for some basic RTTY material has been gratifying. Therefore, I am now preparing a second edition of RTTY material. This stuff was covered here several years ago and is being re-presented for those who came in
late, forgot it, or whatever. Issue number one dealt with the basics of RTTY data exchange; number two shall deal with the essentials of the RTTY code structure, primarily Murray and ASCII. These are several pages of information, offered at a cost of \(\$ 2.00\) each. If you would like either of these editions, just drop me a line at the above address and include a self-addressed, stamped envelope and \(\$ 2.00\) for each issue desired. I will continue to put more of this information together as time permits and demand persists.

\section*{ \\ Chod Harris VP2ML \\ Box 4881 \\ Santa Rosa CA 95402}

\section*{DXING IN JULY}

July. The lazy, hazy, noisy days of summer. High absorption batters down the higher bands, while summer thunderstorms fill the lower bands with deafening static crashes. Even the usually productive sunrise and sunset operating times are short and dull. Let's face it: July is not the best month for DXing.
So what's the DXer to do for the month of July? Take a month off from DXing? Maybe get to know the family again, before the bands start to pick up again in the fall? If you do that, of course, they'll start to expect you around the house, and it will be even harder to lock yourself into the radio shack for the start of the next DX season.
Fortunately, there are plenty of DX related activities well suited to the dog (if not \(\operatorname{Dog} X\)-ray) days of summer.

\section*{Antennas}

The first thing that comes to mind is antennas. July offers an excellent time to review your DX-antenna farm. What worked last season? Will that antenna be good enough for the next DX season? With the decline of radio propagation, you might consider improving your low-band aerial hardware; 40, 80, and 160 meters will be hopping the next few winters. Meanwhile, the DX pickings on 10 meters will be few and far between. Even 15 meters will provide but sporadic excitement for the mid-80s. So think low bands, long dipoles, Inverted vees, zepps, verticals, and ground planes.
If you are fortunate enough to have sufficiently tall, properly-spaced trees on your property, July is a good month to break out the bow and arrow or fishing rod and stick up a few wires and strings. So what if the neighbors think you're a little soft in the head, fishing in trees. Murmur something about flying fish and air sharks; they all think you're crazy to be a DXer anyway.

What kinds of antennas should you get up for the low bands? The bigger the better, of course, and height helps too. Vertical antennas seem to work better on the lower bands, if you can provide a reasonable ground. (We'll talk more about the low bands and DX antennas in a future column. Meanwhile, watch for bargains in lots of wire, and try to figure out how you are going to squeeze a 160 -meter dipole onto your city lot.)

\section*{Paperwork is Never Finished}

DXers whose antennas are already big
enough (if any) and those whose financial, environmental, or family circumstances preclude better antennas, might make use of the month of July by catching up on their DX paperwork.

Review your DXCC totals, QSLs sent and recelved, and your "need" list. The new DXCC Countries List from the ARRL provides a good place to tally your present worked/ confirmed totals. This multi-page pamphlet provides columns for all HF bands and for many of the other DXCC awards, such as RTTY bands and satellite. Three drawbacks with the new listing are: no spaces for new and changed countries within the listing. no place for band totals, and the cost-now \(\$ 1.00\) postpaid from ARRL
Do you have any countries worked but not confirmed? Take some time in July to follow up those QSLs. If you wait too long to confirm after the contact, the chances of getting your card decrease. So, if you have cards outstanding to QSL managers and in other direct methods, see if a follow-up note might be in order. Of course, if you are awaiting cards via the QSL bureau, don't hold your breath; it might be years before you receive your cards.

If you do decide to send reminders or second requests for cards, check the current callbooks, QSL-manager lists, and DX bulletins for the most recent QSL information.
Two fortunate readers of the column can turn to their complimentary subscriptions to weekly DX bulletins (see this column, January, 1984). In the drawing held earlier
this year, the awards and lucky readers were: The DX Bulletin (Box DX, Andover CT 06232) to John Holstead VS6HJ, and ORZ DX (Box 834072, Richardson TX 75083) to Ray Perkins KA2PSW.

Congratulations to both! And for the rest of you DXers who didn't win the free subscriptions, you can keep up with the day-to day activities in the DX world by taking out your own subscription-see the address above. It's hard to have too much information in DX!
Another source of up-to-date DX informa: tion is your local DX radio club. Through meetings, newsletters, and DX-oriented repeaters, club members share ideas and locate the rare ones. And clubs provide assistance with Beam Tearns and Quad Squads to repair damage from last winter's storms and put up even bigger aerial hardware.

These DX radio clubs depend on the interest, expertise, and enthusiasm of the members of the clubs. The club officers devote many hours of their time to provide programs, speakers, events, and camaraderie for the club. Too often when an officer asks for help with a club project, his efforts are rewarded with dead silence.

So, if you're not already a member of a local DX club, consider joining. If you are a member now, speak up the next time the club needs something done; help your fellow DXer. And if you already are active in your DX club, think about running for club office next time and share your energy to improve the DX world.

Among those who are doing just that are the officers of the very active Southeastern DX Club, centered in Atlanta, Georgia. Officers for 1984 include President Carl Hanson WB4ZNH, Vice-President Grover Meinert KC4BX, Treasurer Carol Shrader WIAK, Secretary Joel Levine WA4HNL, and Activities Chairman Jim Steible K4DLI.
The Western Pennsylvania DX Associa-


1984 officers for the Western Pennsyivania DX Association, from left: K3UA, K3MC, AD8I, \(K B 3 K V, K F 3 C\), and \(K J 3 Q\).
tion's officers for 1984 are: President John Getz ADBJ, VicePresident Phil Koch K3UA, Secretary Wayne Albert KB3KV, Treasurer Don McDanial KJ3Q, DX Information Chairman Denny Brantner KF3C, and (newsletter) Editor Mike Chepponis K3MC (see photo).

Also on the east coast is the newlyfounded Connecticut DX Association. That association's officers are: President Ron Richards WB1EAZ, Vice-President Paul Shafer KB1BE, and Secretary/Treasurer Tom Le Clerc WB1CBY.
And in the center of the country, the dynamic and interesting Kansas City DX Club sports the following for the 1984 slate of officers: President John Chass WouLC, VicePresident Bill Henderson K0VBU, Treasurer Tom Bishop K0TLM, Secretary Steve Gecewicz KOCS, and (newsletter) Editor Mike Crabtree ABOX
Congratulations to all these and other DX club officers. And for the rest of you: Isn't it time you did your part to make your DX club interesting and helpful?

\section*{Operating Events}

No matter what other, nonoperating activities the DXer finds to while away the month of July, nothing provides quite the same satisfaction as getting on the air and working DX. Fortunately, despite the lousy band conditions, a couple of operating events help stir up the DXers in the heat of the summer.
The most popular on-theair activity in July is the International Amateur Radio Union (IARU) Radiosport competition, the weekend of July 14-15, 1984. (See the "Contests" column in this issue, and see the rules in the May issue of QST.) Briefly, you try to work stations in different International Telecommunications Union (ITU) Zones, which are not the same as the CQ magazine zones for their contest and awards program.

The Radiosport rules (assuming no major changes from previous years-check this) provide a heavy premium for working stations on different continents. In addition to the possible new zone multipliers of these stations, each contact with a station on a different continent counts five times as much as a contact within one's own zone. So the emphasis is on DX contacts.
The rule structure of this contest brings out many DX stations, anxious to fight the Iow Maximum Usable Frequency and high noise levels to work each other and maybe even you! The eastern Europeans and Russians are especially fond of this contest, and Radiosport provides an excellent opportunity to contact many of these stations.
The 1984 Radiosport contest will be quite different in at least one way: Many of the Russian stations will be sporting new callsigns, thanks to a major revision of the Russian callsign system this spring. All the radio club calls in the Soviet Union and many individual callsigns will be different. And unlike the FCC callsign "reform," in the USSR the callsign will give the location!

Here's how the system will work, with thanks to the Murphy Message, the newsletter of the Murphy's Marauders radio club:

The first letter of the callsign will be U or R. (Ten-meter fans are familiar with the lowpower RA prefix stations from the USSR.) The second letter will indicate the republic: A for RSFSR, B for the Ukraine, etc. This is similar to the present system, but the procedure will be used for all calls in the republic, including club callsigns, which presently have a UK prefix. The number in the call will no longer be fixed, as now. If you hear UB, you won't be able automatically to add a 5 . UB calls will be issued with any numeral, and the same with all the other republics, UI8, UL7, UF6, etc. The third letter (directly after the numeral) will help identify the oblast, or location. The fourth letter will be anything except \(W\) through \(Z\), which are reserved for club stations. There might be a fifth letter in some areas. For example, UB3BDS would be a Ukrainian in the Ternopol oblast. Just to confuse things, some of the older two-letter suffix calls (issued before 1970) will stay the same.
In that part of the world, where amateurs must build their own gear and individual amateur licenses are relatively few and far between, the club stations account for much of the operating activity. In every contest, the big-gun clubs, such as UK2BBB, provide the little-gun DXers with their best shot at working the rarer Soviet republics. All these clubs now operate under new callsigns without the familiar UK prefix. Club stations will be identified by the last two letters of the callsign: WA through \(Z Z\). So a


Bob Hess KA3EAL does his DXing from this compact station in Penns Creek, Pennsylvania.
club station in the Ternopol oblast might be UB8BZZ (In RSFSR, UA1-4, 6, 9, and 0, club calls will have a UZ or RZ prefix.)
Meanwhile, we hear that the French are jumping on the new callsign bandwagon. According to Les Nouvelles DX, the present F1 calls will change to FC1 and FD1. F2-F9 calls will emerge as FD2-9 and FE2-9. Corsica Island calls, now sporting an FC prefix, will be TK1-TK4. Other French overseas de-
partments (Martinique, etc.) probably also will change.
All of this callsign switching will be confusing for a time, but it will make the prefix hunters delirious! Dozens of new prefixes will be on the air this summer, most never heard before-another excellent reason to keep up with your DX reading.

Another operating activity in July is the annual French Polynesia Tiurai. Listen for

Tahitian stations July 14-21 on the following frequencies: \(\mathbf{2 8 6 0 0}, \mathbf{2 1 3 0 0}, 14240,14180\), 7090 , and 3800 , especially between 0200 and 1000 UTC. The stations will be celebrating their annual festival with a special certificate for working at least three Tahitian stations on at least two different bands. Send your log data and 12 IRCs to Tiural 1984 Certificate, CORA, BP 5006, Pirea, Tahitt, French Polynesia.
The station that works the greatest number of French Polynesian stations during the festival week will win a handsome trophy: a beautiful engraved mother-of-pearl shell. (Thanks to Russ Forbes WB6GFJ/ FOOFB for this news.)

\section*{DX Convention}

By now, your month of July should be well-filled with DX activities. But if you are still yearning for more, take heart: There's a way to wrap up the DX month in fine fashion. The Northwest DX Convention will be held July 27-29, at the Greenwood Inn in Beaverton, Oregon, Just outside of Portland. For more information on the convention, contact Bob Herndon W7XN, Willamette Valley DX Club, Box 555, Portland OR 97207. Who knows, you might even meet the DX editor of 73 magazine there!
So before you decide that the entire month of July is a complete waste, DX. wise, tune up those antennas, work the new Russian prefixes, hang your Tiuria certificate on your wall, and have a few eyeball contacts at the DX convention. And, yes, say hello to the family sometime during the month, so that they don't consider you a complete stranger!

\section*{LETTERS}

\section*{OH, HE NEEDS HELP!}

A number of others are working on wild and imaginative conversions and end up seeking help from those who have already done it. Perhaps someone will be able to provide me assistance as well?

Does anyone have instructions for converting a military surplus ARC-5/T-19 into an allband, all-mode, synthesized transceiver with automatic antenna tuner built-in? if possible, I'd like to replace the 1625 tubes (hard to find) with more common 3-500Zs for full legal power, and transistorize the rest. It should have at least 16 K of memory and search/scan capability with priority channel lock-out-at least on all bands above 30 MHz . Oh yes, unless a key jack is included I probably won't be interested. Oh, one thing more: l'd like to be able to use it also as a vacuum cleaner, LNA for satellite TV reception, and wattmeter-at the flip of a 4-position switch.

Anyone who has already done this mod, please send me an SASE; l'Il tell you how much you owe for photocopies. Thanks. 73.

Robert ( 50 -Ohm Bob) Wheaton W5XW San Antonio TX

\section*{HATS OFF AND SALUTES}

About 5:00 pm on Monday, April 9, 1984, during a brief trip to California to analyze a budding computer manufacturing company, I is enjoying the California sun in
the beautiful backyard of the home of the friends with whom I was staying. Stripped to my shorts, I was stretched out listening to the chatter of happy people on my 2-meter hand-held when I was brought upright hearing, "Mayday! Mayday! This is KE6HI. Mayday! I need a local contact fast!"
My first reaction was to answer the distress call, but being pretty unfamiliar with the area, I waited an instant to see if a local would answer. My hunch was right for only a few seconds later I heard, "KE6HI this is KF6TF. You are loud and clear. State your emergency. This is KF6TF. The handle is Dora. Go ahead." The message was transmitted in a calm, precise, and authoritative manner.

From my notes taken at the time, here is what apparently happened thereafter. KE 6 HI , handle Alma, driving on Interstate 5 in heavy traffic during rush hour was following at a fair speed behind a motorcyclist when the cyclist crashed and was thrown onto the pavement and appeared to have a broken leg. The cyclist was at the mercy of the speeding traffic, and KE6HI, instead of swerving to pass the cyclist, chose to slam on her brakes and park in the middle of the freeway in a way to protect the downed cyclist from the certain dangers of oncoming traffic. After positioning her car in a protective position, turning on her flasher warning lights, and assuring herself that the injured cyclist would not be further injured, KE6HI sent out her Mayday call. After passing the pertinent information to KF6TF, KF6TF contacted the authorities and within ten minutes had the police, the fire and rescue
team, and an ambulance at the site of the accident. While waiting, KE6HI directed traffic until the police arrived and took over.

Two fine California ladies doing a splendid job, excellently executed in a professional way: Alma Bourhenne KE6HI from Cardiff by the Sea, and Neldora Tuttle \(\overline{K F 6 T F}\) from Escondido. I was most impressed with how well they did a volunteer job. I think they probably saved the life of the cyclist. Wouldn't it be nice for some of you to send each of them a QSL card just saying, "Well Done!"

Yes, a commendable job done by two fine ladies who know how to handle themselves with courage, efficiency, and dispatch under extreme emergency conditions. I was so proud of their performance that I hardly could wait to get home here in Washington State so I could tell my lovely wife all about it. My wife? Yes, she just got her Novice call, KA7RXM, and I'm mighty proud of her, too!

Christian L. Engleman W7QQ
Washougal WA

\section*{DX WORLD}

Recently a program I wrote appeared in 73 (February, 1984), "Put the DX World On the Screen." I would like to thank all the many people who wrote me with their comments, suggestions, and their orders. The real pay in doing a project like this is the thanks that I receive from all my fellow hams; lord knows the money isn't worth it. I hope that all the people who received my program were pleased with what they received.
As many people already know, I did a rewrite of the Prefix Locator program for the Commodore 64 . I added many features to it that you will not find in the VIC version. Let me list some of the added features.
- A more expanded data list, including cities and all the states in the US of A.
- Two clocks, one local and one GMT.
- User-selectable screen, border, and print colors.
- An MUF forecast in local time and GMT time.
- Printer output routines.
- A machine-language data-search routine. Now data searches take three to five seconds instead of three to four minutes.
- And, recently added, is a sunrise and sunset calculation routine.

This version is available from me or from RAK Electronics. The C64 version is available on tape or disk. A C64 version of one form or another has been available since November, 1983. The C64 version has been updated several times and some older versions don't have all the features mentioned above.

Eugene Morgan WB7RLX
1311 Cross St.
Ogden UT 84404

\section*{COME TO THE FAIR}

A working amateur-radio station with space-age equipment, an international mes-sage-sending service, and the Smithsonian Institution's Marconi exhibit, will demonstrate amateur radio's role in worldwide friendship.
The Loulsiana Amateur Radio Exhibition's booth at the Julia Street exit will outline amateur radio's heritage from the experimental days of radio wizard Guglielmo Marconi to disaster communications such as during Gulf Coast hurricanes, the current era of amateur-radio space communications including astronaut Owen Garriott's amateur-radio experiments from the space shuttle Columbia last year, and speculation on the hobby's future.
Operators will demonstrate how ama-
teurs communicate today, including the newer modes of color slow-scan television, radio-teleprinter, and computer and space satellite methods, and the standby, Morse code.

Visitors from the world's fair countries of the United States, Canada, Australia, Is rael, Liberia, and Peru may send free messages to friends in their countries from the booth, via the hobby's international message system.

Among Marconi's relics on display
through mid-August will be a rotary sparkgap transmitter used by early amateurs and a magnetic detector used by radio stations in 1912.
Visiting amateur-radio operators will be allowed to use the station on presentation of their licenses. They will identify themselves with the station's callsign, K5WF, which belongs to Howard T. DeLaneuville of Jefferson, Louisiana.
A unique verification card will be provided to amateur-radio operators who contact
the stations and to shortwave listeners who describe hearing it. The QSL is being designed by John Chase, New Orleans historical cartoonist.

The Historic New Orleans Collection is providing a full-time curator, Patricia Tusa (XYL of Nick Tusa K5EF), to watch after the Marconi exhibit, which is being provided through the Smithsonian Institution TravelIng Exhibition Service.

Marconi's daughter, Goia Marconi Bragga, has indicated that she would like to visit
the exhibit. Plans are being made to have her come in June.

Amateur-radio equipment manufacturers are lending American-made products for use at the booth. Local volunteers have been constructing and designing the exhibit. Many volunteers will be needed to man the booth for the six-month show.

John J. Uhi KV5E, President
Louisiana Amateur Radio Exhibition, Inc. New Orleans LA 70124

AWARDS

\section*{USS COD DXING}

NOARS and the USS Cod will be on the air again this summer. Northern Ohio ARS members will be operating from the Cod starting Memorial Day weekend running daily through Labor Day weekend. Look for operations in the lower portion of the General bands 10 through 80 meters, with special Novice operations on June 16, July 15, and August 18, and Extra operations during the Cleveland Hamfest, September 23 rd.
QSL cards picturing the Cod and NOARS station will be sent out confirming all contacts, a special \(8 \times 11\) certificate will be available upon request with QSL confirming the two-way contact and \(\$ 1.00\) for handling and postage. Send all QSLs to WD8RZG.

The USS Cod is on permanent display as a war memorial to honor the men of the Silent Service and is located at the port of Cleveland between East 9th Street pier and Burke Lakefront Airport. Guided tours given daily. So come on down for an historic visit into the past for an adventure to remember.

\section*{BARC CERTIFICATE}

A handsome new amateur operating certificate is now being offered by the Bartlesville (Oklahoma) Amateur Radio Club. The purpose of the certificate is to focus attention on the interesting "Green Country" region of northeast Oklahoma, and to emphasize the varied operating activities of the nearly 200 amateurs within that area.

The Green Country award is available to anyone making two-way amateur-radio contact with three hams in the Nowata, Osage, and/or Washington Counties of Okiahoma. All bands and modes are permitted. The certificates will be numbered and issued serially.

Applicants for the award should submit calls and pertinent details of their three qualifying QSOs, plus a \(\$ 1.00\) handling fee. QSLs are not required. Applications should be mailed to W5NS Awards Manager, 1800 Moonlight Drive, Bartlesville OK 74006.

\section*{2000TH ANNIVERSARY}

To celebrate both the 2000th anniversary of the founding of Trier, Germany, and the 60th anniversary of the New Trier High School ARC, a certificate will be awarded to any amateur contacting a station in both Trier and New Trier Township, Illinois (includes the villages of Wilmette, Winnetka, Kenilworth, Glencoe, and Northfield). Contacts must be made in 1984, any band, any mode.

Send QSLs for both QSOs to New Trier H.S. ARC, W9EDC, New Trier H.S., Winnetka IL. 60093, along with a large SASE, 54 cents US postage, or 4 IRCs for a nonfolded certificate.

To assist amateurs in earning the award, special-event stations will be operated simultaneously from Trier (DLOTR, DLOBBS) and New Trier (W9EDC) on June 30th and July 1st. Operation will be 80-10 meters (SSB and some CW), 15
kHz above General band edges. DLoTR and DLOBBS will also go RTTY and OSCAR 10.

\section*{THUNDER ON THE OHIO}

The Tri-State Amateur Radio Society (TARS) will operate a special-event station in conjunction with the Freedom Festival and Thunder on The Ohio Hydroplane Races during the Fourth of July weekend.

The station will use the club call W90G (W 9 Old Glory) which is very appropriate for July 4th. Operations will begin on June 30, 1984, and continue daily through July 4, 1984. Hours of operation will be 10:00 am to \(5: 00 \mathrm{pm}\) CDT in the lower portions of the Novice and General segments of the 10, 15-, 20, 40-, and 80 -meter bands. All modes will be used including RTTY.

An attractive \(8 \times 10\) certificate will be available for \(\$ 1.00\) postage to confirm contacts with the station. Certificates will be packaged flat and be suitable for framing. For those who do not wish a certificate, a special QSL card will be sent confirming all contacts. Please include 20c postage for the QSL card.
Send QSO information to TARS SpecialEvent Station W9OG, Attn: M. G. Anderson, PO Box 3284, Evansville IN 47732 . For additional information on the specialevent station contact me by phone: (812)-424-2306 (days) or (812)-476-5572 (evenings), or write asking to be placed on our publicity mailing list.

\section*{STEAM ENGINE}

\section*{CONVENTION}

A special-event station will be operating July 13-15 from the Bourbon County Fairgrounds in Bourbon County, Kentucky, to commemorate the annual steam engine convention. This station will be operating with the call of WD4GPO, in the General phone and CW portion, with some Novice activity planned. All amateurs and

SWL.s working this station during this time can receive a commemorative QSL card from the Pioneer Amateur Radio Club of Winchester, Kentucky, send an SASE to Pete Clough WD4GPO, 425 Bell Street, Paris KY 40361.

\section*{SPEEDWAY STATION}

The Adrian Amateur Radio Club is having a special-event station, W8TQE, at the Michigan International Speedway (MIS) on July 20, 21, and 22 . The frequencies will be \(28.625,21.360,14240,7240,3900 \pm\) QRM. The Novice bands up \(10 \mathrm{kHz}, 21.110\), 7.110, 3.710. This is to celebrate the Michigan 500 Indy-type car race. A special certificate will be offered. Send a large SASE to Adrian Amateur Radio Club, PO Box 26, Adrian MI 49221.

\section*{DETROIT ARSENAL}

The Tank-Automotive Command ARC will operate W8JPW on July 21, 1984, from \(1300-2000 \mathrm{Z}\) to commemorate the 43 rd year of the Detroit Arsenal, home of the the US Army Tank-Automotive Command. Frequencies: phone \(7.274,21.400\), and 146.49 MHz ; and CW 7.055 from 1500-1700Z. Put your QSO number and frequency in upper-left corner of outer envelope. Send \(9^{\prime \prime} \times 12^{\prime \prime}\) SASE for unfolded certificate; otherwise, SASE to: W8JPW, US Army Communications Command, Attn: CCNC-TAC-M, 28251 Van Dyke, Warren MI 48090.

\section*{BERNE SWISS DAYS}

The Adams County ARC will operate KC9TZ from 1400 Z July 27 to \(2200 Z\) July 28 to commemorate Berne Swiss Days. Operation will be 15 kHz above the bottom of the General phone band on 20 m and 40 m , and the Novice band on 15 m and 40 m . QSL to the Callbook address for a decorative certificate.

TU-4200
- Baud rates to 1200 ASCII \& BAUDOT
-TIL \& RS-232C I/O
- Bell 202 compatible tones.

Kit \$ 99.95
wired \(\$ 429.95\)

TU-170A
- Single shift RTTY terminal unit.
- Xtal AFSK, FSK, active-filters and more.


Kit \$489.95 wired \(\$ \mathbf{2 8 9 . 9 5}\)

\section*{TU-470}
- Full featured RTTY to 300 baud plus CW terminal unit.
- 3 Shifts, active filters, remote control, xtal AFSK, FSK,

\(\$ 499.95\)


TRS-80* RTTYICW
- ROM-146 Interface for model I, III, IV ( 16 K MIN ).
- Trademark of TANDY CORP


For more information \& sales
1-800-HAM-RTTY
SERVICE 1-913-234-0198
Flesher Corporation
P.O. BOX 976
-23 TOPEKA, KS. 66601


Engineering Incorporated

RS-232 SERIAL LINE MONITOR
- Quick and easy operation
- Red/Green LEDs show polarity of 7 most used signals
- Comprehensive users manual
- Line, powered, NO battery \(\$ 29.95\) plus \(\$ 2\) for \(\mathrm{P} / \mathrm{H}\)

Esoteric Engineering Incorporated Post Office Box 33602 San Diego, CA 92103 (619) 569-7060

\section*{this publication is available in microform}


University Microfilms International 300 North Zeeb Road Dept. P.R.
Ann Arbor, M1 48106 U.S.A. 18 Bedior London, WC1R 4EJ England
[ COMPUTER \({ }^{\circ}\) TRADER -280 MAGAZINE
\(\star\) * \(\star\) LIMITTAD TMIE OFFER \(\star \star \star\) BAKER'S DOZEN SPECIAL! \(\$ 12.00\) for 13 Issues
Regular Subscription \$15.00 Year Foreign Subscription: \(\mathbf{\$ 5 5 . 0 0}\) (air mail) \(\$ 35.00\) (surface)
Articles on MOST Home Computers, HAM Radio, hardware \(\&\) software reviews, programs, compute: languages and construction, plus much more!!!
Classilied Ads tor Computer \& Ham Radio Equipment FREE CLASSIFIED ADS for subscribers
Excellent Display and Classified Ad Rates Full National Coverage
CHET LAMBERT, W4WDR
1704 Sam Drive • Birmingham, AL 35235
(205) \(854-0271\)

Sample Copy \(\$ 2.50\)


Master code or upgrade in a matter of days. Code Quick is a unique breakthrough which simplifies learning Morse Code. Instead of a confusing maze of dits and dahs, each letter will magically begin to call out its own name! Stop torturing yourself! Your amazing kit containing 5 powerpacked cassettes, visual breakthrough cards and original manual is only \(\$ 39.95\) ! Send check or money order today to WHEELER APPLIED RESEARCH LAB, P.O. Box 3261, City of Industry, CA 91744. Ask for Code Quick \#103, California residents add \(6 \%\) sales tax.

One User Comments:
"First new idea in code study and the darn thing works! So much fun you don't realize how much you're learning."
M.S. Greneda, Miss.

Hundreds of satisfied customers! You can't lose! Follow each simple step. You must succeed or return the kit for a total immediate refund!

\section*{Telephones \& Accessories}

AT LOWEST PRICES
- Cordless Phones
- Memory Phones
- Answerers
- Dialers
- Hardware
- Speaker Phones
- Call Diverters
- Feature Phones

Send \(\$ 2.00\) for
Complete Catalog


\section*{R-390A HF RECEIVER}

Famous military receiver covers \(0.5-32\) Mhz AMCW in 31 one Mhz bands using mechanical digital tuning. 455 Khz IF; has four Collins mechanical filters for selectable 2-4-
\(8-16 \mathrm{Khz}\) bandwidth. 100 Khz calibrator; BFO. No covers. \(115 / 230\) VAC 60 Hz ; \(101 / 2 \times 19 \times 163 / 4^{\prime \prime}\),' 95 lbs . sh. (UPS in 2 pkgs.). Used-reparable \$215. Checked \$335. Manual, partial repro
\$15.
CV-1982/TSC-26 SSB CONVERTER, compatible with R -390A and other receivers with 455 Khz IF. Has \(3^{\prime \prime}\) VU Meter and \(13 / k^{\prime \prime}\) meters for Carrier and Subcarrier. \(51 / 4 \times 19 \times 161 / 4^{\prime \prime}, 29 \mathrm{lbs}\). sh. Used-reparable, \(\mathbf{\$ 1 5 5}\). RYCOM R-2174/URR, selective voltmeter used by military as \(1.0-420 \mathrm{Khz}\) AM-LSB-USB receiver; 0.1 -\(3-10 \mathrm{Khz}\) selectable bandwidth. Built-in speaker. \(9 \times 19 \mathrm{x}\) \(7^{\prime \prime}, 25 \mathrm{lbs}\). sh. Used-reparable \$125. Checked \$195. R-1420/URR SURVEILLANCE RECEIVER, unit covers \(30-300 \mathrm{Mhz}\) AM-FM-CW in two bands. Selectable 20 or 300 Khz bandwidth. Same as CEI 905A; partial repro manual included. Meters and/or knobs may not be original. \(31 / 2 \times 19 \times 15^{\prime \prime}, 25 \mathrm{lbs}\), sh. Used-operating
\(\$ 495.00\)
Prices F.O.B. Lima, O. - VISA, MASTERCARD Accepted. Allow for Shipping - Send for New FREE CATALOG ' 84

Address Dept. 73 - Phone: 419/227-6573
-22 FAIR RADIO SALES
1016 E. EUREKA - Box 1105 - LIMA, OHIO . 45802


EIMAC 4CX10,000D/8171 with SK300 and SK1306 SK300 and SK1306 only.
(These are all new not used.) Limited Supply.


KIM ELECTRONICS, INC. VHF ANPLIFIER PC BOAROS AND RF TRWNSISTOR KITS,
Model PA2-70B fo power inout 2watts at 144 to \(148 \% \mathrm{Hiz}\) output 7 Onatts 13.5 vdc at 10 arps . \(\$ 49.99\) with data PC Board Only \(\$ 14.99\)
MDEL PAIO14aB PF power input lowatts at 144 to 148 W Hz outbut 140 watts 13.5 vdC at 18 amps , \(\$ 89.99\) with data PC Board only \(\$ 19.99\)

This attractive watch has the following modes: Normal Time Setting, Calendar Setting, Daily Alarm Time Setting, Weekly Alarm Time Setting, Chronograph,
Calculator.


Featured in Black Plastic
\(\$ 18.99\)
or Featured in Stainless Steel
\(\$ 29.99\)

\section*{SILICON DIODES}
\begin{tabular}{lrrrr} 
MR751 & 100 vdc & 6Amps & \(10 / \$ 5.00\) & \(100 / \$ 38.00\) \\
MR510 & 1000 vdc & 3Amps & \(10 / \$ 3.75\) & \(100 / \$ 24.00\) \\
HEP170 & 1000 vdc & 2Amps & \(20 / \$ 2.00\) & \(100 / \$ 15.00\) \\
1N3209 & 100 vdc & 15 Amps & \(\$ 2.00\) & \(10 / \$ 15.00\) \\
BYX21/200 & 200 vdc & 25 Amps & \(\$ 2.00\) & \(10 / \$ 15.00\) \\
1N2138A & 600 vdc & 60 Amps & \(\$ 5.00\) & \(10 / \$ 40.00\) \\
DS85-04C & 400 vdc & 80 Amps & \(\$ 10.00\) & \(10 / \$ 80.00\) \\
1 N 3269 & 600 vdc & 160 Amps & \(\$ 15.00\) & \(10 / \$ 120.00\) \\
275241 & 300 vdc & 250 Amps & \(\$ 20.00\) & \(10 / \$ 175.00\) \\
\(7-5754\) & 300 vdc & 400Amps & \(\$ 30.00\) & \(10 / \$ 250.00\) \\
RCD-15 & 15 KVDC & 20ma. & \(\$ 3.00\) & \(10 / \$ 20.00\) \\
SMFR20K & 20KVDC & 20 ma. & \(\$ 4.00\) & \(10 / \$ 30.00\) \\
1N4148 & signal & & \(30 / \$ 1.00\) & \(100 / \$ 3.00\) \\
& & & & \\
\hline
\end{tabular}

FAIRCHILD 4116 16K DYNAMIC RAMS 200ns. Part \# 16 K 75
25 For \(\$ 25.00\) or 100 For \(\$ 90.00\) or 1000 For \(\$ 750.00\)

2716 2048x8
27L32/25L32 \(\$ 10.00\) each

HEWLETT PACKARD MICROWAVE DIODES


For information call: (602) 242-3037
Toll Free Number 800-528-0180 (For orders only) substituted with comparable parts

\section*{"MIXERS"}

WATKINS JOHNSON WJ-M6 Double Balanced Mixer
\begin{tabular}{|c|c|c|}
\hline LO and RF 0.2 to 300 MHz & IF DC to 300 MHz & \$21.00 \\
\hline Conversion Loss (SSB) & 6. 5 dB Max. 1 to 50 MHz & \\
\hline & 8.5 dB Max. . 2 to 300 MHz & WITH DATA SHEET \\
\hline ise Figure (SSB) & \begin{tabular}{l}
same as above \\
8. 5dB Max 50 to 300 MHz
\end{tabular} & \\
\hline Conversion Compression & .3dB Typ. & \\
\hline
\end{tabular}

NEC (NIPPON ELECTRIC CO. LTD. NE57835/2SC2150 Microwave Transistor


\section*{UNELCO RF Power and Linear Amplifier Capacitors}

These are the famous capacitors used by all the RF Power and Linear Amplifier manufacturers, and described in the RF Data Book.


\section*{FAIRCHILD / DUMONT Oscilloscope Probes Model 4290B}

Input Impedance 10 meg., Input Capacity 6.5 to 12pf., Division Ratio (Volts/Div Factor)
10:1, Cable Length 4Ft. , Frequency Range Over 100 MHz .
These Probes will work on all Tektronix, Hewlett Packard, and other Oscilloscopes.
PRICE \(\$ 45.00\)

\section*{MOTOROLA RF DATA BOOK}

Listsall Motorola RF Transistors / RF Power Amplifiers, Varactor Diodes and much much more.
PRICE \(\$ 7.50\)

TYPE
2N1561
\(2 N 1562\)
\(2 N 1692\) \(2 N 1692\)
2 N 2957 2 M 2857 J NNIX 2N2857JANIXV \(2 N 2876\)
\(2 \times 2947\) 222947 \(2 \times 2948\) 2N3375 2N3553
2N3632 2N3733 2N3818
2N3866 2N3866JAN 2N3924 \(2 N 3927\) 2N4012 2N4041 2N4072 2N4127 2N4427
2N4428 2N4430 2N4957
2N4959 \(2 N 5090\) 2N5109 2N5160 \(2 \times 5179\) \(2 N 5216\)
\(2 N 5583\) \(2 \times 5589\) \(2 N 5590\) \(2 N 5637\) 215641 \(2 N 5642\) \(2 N 5643\)
\(2 N 5646\) 2N5651 2N5691
2N5764 2N5836
2N5842/MM1607 2
2N5913
2N5922
2N5923
2N5941
2N5945
2N5946
\begin{tabular}{lll}
2 N 6080 & 14.40 & HI \\
2 N 6081 & 10.35 & HI \\
2 N 5082 & 12.07 & 12.65 \\
\hline
\end{tabular}
\(2 N 6083\)
\(2 N 6084\)
2N6094
2N6095
\(2 N 6096\)
\(2 N 6097\)
220105
206136
226166
2 N 2201
\(2 N 6304\)
\(2 N 6459\)
\(2 N 6567\)
2 N 6567
2 N 680
\(25 \times 703\)
\(25 C 756 \mathrm{~A}\)
\(25 C 781\)
\(2 S C 781\)
2 SC1018
\(2 S C 1042\)
\(2 S C 1070\)
\begin{tabular}{lr}
\(25 C 1239\) & 2 \\
\(2 S C 1251\) & 12
\end{tabular}
\begin{tabular}{lr}
\(2 S C 1306\) & 2.90 \\
\(2 S C 1307\) & 5.50 \\
\(2 S C 1424\) & 2.80
\end{tabular}

Toll Free Number 800-528-0180 (For orders only)
\begin{tabular}{|c|c|}
\hline TYPE & PRICE \\
\hline 2SC1678 & \$ 2.00 \\
\hline \(25 C 1729\) & 20.00 \\
\hline \(2 \mathrm{SC1760}\) & 1.50 \\
\hline 2 SC1909 & 4.00 \\
\hline 2 SC1946 & 38.00 \\
\hline \(25 C 1946\) A & 40.00 \\
\hline 2 SC1970 & 2.50 \\
\hline \(25 C 1974\) & 4.00 \\
\hline 2 SC 2166 & 5.50 \\
\hline \(25 \times 2237\) & 32.00 \\
\hline \(25 C 2695\) & 47.00 \\
\hline A50-12 & 25.00 \\
\hline A209 & 10.00 \\
\hline A283 & 5.00 \\
\hline A283B & 6.00 \\
\hline AF102 & 2.50 \\
\hline AFY12 & 2.50 \\
\hline BF272A & 2.50 \\
\hline BFR21 & 2.50 \\
\hline BFR90 & 1.00 \\
\hline BFR91 & 1.65 \\
\hline BFR99 & 2.50 \\
\hline BFT12 & 2.50 \\
\hline BFW16A & 2.50 \\
\hline BFW17 & 2.50 \\
\hline BFw92 & 1.50 \\
\hline BEX44 & 2.50 \\
\hline BEX48 & 2.50 \\
\hline BEX65 & 2.50 \\
\hline BEX84 & 2.50 \\
\hline BFX85 & 2.50 \\
\hline BEX86 & 2.50 \\
\hline BEX89 & 1.00 \\
\hline BFY11 & 2.50 \\
\hline BFY18 & 2.50 \\
\hline BFY19 & 2.50 \\
\hline BFY39 & 2.50 \\
\hline BFY90 & 1.00 \\
\hline Bil. \(\times 67\) & 15.24 \\
\hline B1x68C3 & 15.24 \\
\hline BLX93C3 & 22.21 \\
\hline BLY87A & 8.94 \\
\hline BLY88C3 & 13.08 \\
\hline BLY94C & 21.30 \\
\hline Bly351 & 10.00 \\
\hline BLY568C/CF & 30.00 \\
\hline C458-617 & 25.00 \\
\hline C4005 & 20.00 \\
\hline CD1899 & 20.00 \\
\hline C12188 & 18.00 \\
\hline CD2545 & 25.00 \\
\hline CTC3005 & 100.00 \\
\hline Dexcel GaAs FET & \\
\hline DXI3501A-P100F & 49.30 \\
\hline Fujitsu GaAs FET & \\
\hline FSX52WF & 58,00 \\
\hline GMO290A & 2.50 \\
\hline HEP76 & 4.95 \\
\hline HEPS3002 & 11.40 \\
\hline HEPS3003 & 30.00 \\
\hline HEPS3005 & 10.00 \\
\hline HEPS3006 & 19.90 \\
\hline HEPS3007 & 25.00 \\
\hline HEPS3010 & 11.34 \\
\hline Hewlett Packard & \\
\hline HFET2204 & 112.00 \\
\hline 35821 E & 38.00 \\
\hline 358268 & 32.00 \\
\hline 358268 & 32.00 \\
\hline 35831E-H31 & 30.00 \\
\hline 35831 E & 30.00 \\
\hline 35832E & 50.00 \\
\hline 35833 E & 50.00 \\
\hline 35853 E & 71.50 \\
\hline 35854 E & 75.00 \\
\hline 35866 E & 44.00 \\
\hline HXIR3101 & 7.00 \\
\hline HXIR3102 & 8.75 \\
\hline HXTR5104 & 30.00 \\
\hline HXIP6104 & 68.00 \\
\hline HXTP6105 & 31.00 \\
\hline HXTR6106 & 33.00 \\
\hline \(J 310\) & . 70 \\
\hline TRW & \\
\hline J02000 & 10.00 \\
\hline JO2001 & 25.00 \\
\hline J04045 & 25.00 \\
\hline Motorola Corm. & \\
\hline \(\overline{M 1131}\) & 8.50 \\
\hline M1132 & 11.95 \\
\hline
\end{tabular}

All parts may be new or surplus, and parts may be substituted with comparable parts If we are out of stock of an item."
\begin{tabular}{|c|c|c|c|}
\hline TYPE & PRICE & TYPE & PRICE \\
\hline M1134 & \$ 16.90 & MSC1821-3 & \$125.00 \\
\hline M9579 & 7.95 & MSC1821-10 & 225.00 \\
\hline 19588 & 7.50 & USC2001 & 40.00 \\
\hline M9622 & 7.95 & MSC2223-10 & 200.00 \\
\hline 19623 & 9.95 & MSC3000 & 50.00 \\
\hline 10624 & 11.95 & MSC3001 & 50.00 \\
\hline 39625 & 17.95 & MSC73001 & 50.00 \\
\hline 19630 & 18.00 & 3SC82001 & 40.00 \\
\hline 19740 & 29.90 & MSC82014 & 40.00 \\
\hline 49741 & 29.90 & MSC82020 & 40.00 \\
\hline 39755 & 19.50 & MSC82030 & 40.00 \\
\hline 19848 & 37.00 & MSC83001 & 50.00 \\
\hline M9850 & 16.90 & MsC83005 & 100.00 \\
\hline 19851 & 20.00 & MT4150 & 14.40 \\
\hline M9887 & 5.25 & MT5126 & POR \\
\hline MEI 80091 & 25.00 & M15596/2N5596 & 99.00 \\
\hline MM1550 & 10.00 & M15768/2N5768 & 95.00 \\
\hline MM1552 & 50.00 & M18762 & POR \\
\hline MM1553 & 50.00 & NEC2136 & 2.50 \\
\hline MM1614 & 10.00 & NE13783 & POR \\
\hline MM1943/2N4072 & 1.80 & N21889 & POR \\
\hline MM2608 & 5.00 & NE57835 & 5.70 \\
\hline MM3375A & 17.10 & NE73436 & 2.50 \\
\hline MM4429 & 10.00 & TRW & \\
\hline MM8000 & 1.15 & PRT8637 & POR \\
\hline M48006 & 2.30 & PT3190 & POR \\
\hline M48011 & 25.00 & PT3194 & POR \\
\hline MPF102 & . 45 & PT3195 & POR \\
\hline MPSU31 & 1.01 & PT3537 & 7.80 \\
\hline MRA2023-1.5 & 42.50 & PT4166E & POR \\
\hline MRF208 & 16.10 & P14176D & POR \\
\hline MRF212 & 16.10 & p74186B & POR \\
\hline MRF223 & 13.25 & P14209 & POR \\
\hline MPF224 & 15.50 & PT4209C/5645 & POR \\
\hline MRF231 & 10.92 & PT4556 & 24.60 \\
\hline MRP232 & 12.07 & PT4570 & 7.50 \\
\hline MPr233 & 12.65 & P14577 & POR \\
\hline MRP237 & 3.15 & PT4590 & POR \\
\hline MRP238 & 13.80 & PT4612 & POR \\
\hline MRP239 & 17.25 & PT4628 & POR \\
\hline MRP245 & 35.65 & PT4640 & POR \\
\hline MPF247 & 35.65 & PT4642 & POR \\
\hline MRP304 & 43.45 & PIS632 & 4.70 \\
\hline MRF309 & 33.81 & P15749 & POR \\
\hline MRF314 & 28.52 & P16629 & POR \\
\hline MRF315 & 28.86 & P16709 & PCR \\
\hline MRF316 & POR & P16720 & PCR \\
\hline MRF317 & 63.94 & P18510 & POR \\
\hline MRF420 & 20.00 & P18524 & POR \\
\hline MRF421 & 36.80 & P18609 & POR \\
\hline MRF422A & 41.40 & P18633 & POR \\
\hline MRF427 & 17.25 & PT8639 & POR \\
\hline MRE428 & 46.00 & P18659 & POR \\
\hline MRF433 & 12.07 & P18679 & POR \\
\hline MRF449/A & 12.65 & p18708 & POR \\
\hline MRF450/A & 14.37 & P18709 & POR \\
\hline MRF453/A & 18.40 & P18727 & 29.00 \\
\hline MRF454/A & 20.12 & P18731 & POR \\
\hline MRF455/A & 16.00 & P18742 & 19,10 \\
\hline MRF458 & 20.70 & P18787 & POR \\
\hline MPF463 & 25.00 & P19783 & 16.50 \\
\hline MRF472 & 1.00 & P19784 & 32.70 \\
\hline MPF475 & 3.10 & P19790 & 56.00 \\
\hline MRF476 & 2.00 & P131962 & POR \\
\hline MRF477 & 14.95 & PT31963 & POR \\
\hline MRF492 & 23.00 & P131083 & POR \\
\hline MPI502 & 1.04 & PTX6680 & POR \\
\hline MRF503 & 6.00 & RCA & \\
\hline MPF504 & 7.00 & 40081 & 5.00 \\
\hline MRP509 & 5.00 & 40279 & 10.00 \\
\hline MPP511 & 10.69 & 40280 & 4.62 \\
\hline MRF515 & 2.00 & 40281 & 10.00 \\
\hline MRES17 & 2.00 & 40282 & 20.00 \\
\hline MRF559 & 2.05 & 40290 & 2.80 \\
\hline MPF605 & 20.00 & 40292 & 13.05 \\
\hline MPF618 & 25.00 & 40294 & 2.50 \\
\hline MRF628 & 8.65 & 40341 & 21.00 \\
\hline MR1629 & 3.45 & 40608 & 2.48 \\
\hline MRF644 & 27.60 & 40894 & 1.00 \\
\hline MPF646 & 29.90 & 40977 & 10.00 \\
\hline MRF816 & 15.00 & 62800A & 60.00 \\
\hline MRF823 & 20.00 & RE3754 & 25.00 \\
\hline MRF901 (3) Lead & - 1.00 & RE3789 & 25.00 \\
\hline MRP901 (4) Lead & - 2.00 & RF110 & 25.00 \\
\hline MRF904 & 2.30 & S50-12 & 25.00 \\
\hline MRF911 & 3.00 & S3006 & 5.00 \\
\hline MRF961 & 2.30 & S3031 & 5.00 \\
\hline MRF8004 & 2.10 & SCA3522 & 5.00 \\
\hline MS261F & POR & SCA3523 & 5.00 \\
\hline MSC1720-12 & 225.00 & PRICE ON REQU & T \(=\) POR \\
\hline
\end{tabular}

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

\title{

}
 ＂sped əiqexedwoo पम！M peimulisqns eq kew sued pue＇snldıns 10 mau eq kew sued \｜V．．
（K｜uo s．əp．10 ఎ0」）
08เ0－8zs－008


L\＆0ع－乙ฤ乙（乙09）：：ןеэ ио！！ешлоృи！10」

\(\qquad\)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \(00^{\circ} 0 \mathrm{z}\) & z－zSbIas & \(00 \cdot 81\) & I－8Lztas & \(00 \cdot \mathrm{Zz}\) & 8 8IIIAS \\
\hline \[
\begin{aligned}
& 90 \cdot 8 \\
& 00 \cdot 8 \mathrm{I}
\end{aligned}
\] & －70N Z60z4HS & \(00^{\circ} \mathrm{Oz}\) & ZSbIGS & 00＇02 & 8LZLAS & \(00^{\circ} \mathrm{G}\) & 9 9IIICS \\
\hline  &  & \(00 \cdot 8 \mathrm{~L}\) & z－tsttas & \(00^{\circ} \mathrm{SI}\) & F－zLzIIS & \(09^{\prime}\) Z & L－gIItas \\
\hline 00．0s & L969Nz／9662vl & \(00 \cdot 81\) & tgbtas & \(00^{\circ} \mathrm{GI}\) & z－zLzIGS & \(00 \cdot 8\) & \＆－stitas \\
\hline \(00 . \mathrm{GL}\) & OZ6GNZ／L8VLVL & \(00 \cdot 82\) & I－OGbIGS & \(00^{\circ} \mathrm{EL}\) & ZLZIGS & \(00 \cdot 8\) & z－gilias \\
\hline \[
00^{\circ} 08
\]
\[
00: 001
\] & LZ6SNZ／GOZLVI & \(00 \cdot 9\) & 8－blbLas & \(00^{\circ} \mathrm{SI}\) & I－E9tias & \(00 \cdot 81\) & gottas \\
\hline & －d＇H TOZztAXL & 00＇9 & UUbIas & \(00^{\circ} \mathrm{SI}\) & E9zIIS & \(00^{\circ} \mathrm{G}\) & 00 ITIS \\
\hline 00． 09 &  & \(00^{\circ} \mathrm{SI}\) & ZtbIGS & \(00^{\circ} \mathrm{ZL}\) & z9\％ITS & \(00^{\circ} \mathrm{GI}\) & g60tIS \\
\hline \(00 \cdot 99\) & ／baLEOLOB－LO & 00：16 & Itblas & \(00 \cdot 7\) & I－VİLIS & \(00^{\circ} \mathrm{SI}\) & 9－680tas \\
\hline \(00^{\circ} \mathrm{GI}\) & M LL 8zoLdL & 00＊93 & 88tITIS & \(00^{\circ} \mathrm{SL}\) & 8－0才दIGS & \(00^{\circ} \mathrm{CI}\) & L80tas \\
\hline \(00^{\circ} \mathrm{G}\) & M MLL FIOLCIL & 00\％ 08 & 6－tebtas & \(00^{*}\) \％ & ఒ\＆ZLIS & \(00 \cdot 8\) & F80tas \\
\hline \(09^{*} \mathrm{z}\) & zIEd． & \(00^{\circ} 08\) & ¢－VEvtas & \(00^{\circ} \mathrm{EL}\) & 91－6દ\％IUS & \(00^{\circ} \varepsilon\) & 6－080IIIS \\
\hline Sc＇\({ }^{\prime}\) ¢ & 9964HIN／68LSLL & 00＇8I & z－OEtIAS & \(00^{\circ} \mathrm{EI}\) & L－6Z\％tas & 00.9 & 8－080tas \\
\hline \(00^{\circ} \mathrm{GI}\) & VOP 5688 VL & \(00 \cdot \mathrm{ZI}\) & 0¢ttas & Hod & 8－8दてtas & \(00 \cdot\) \％Z & 9－8LOtOS \\
\hline \(00^{\circ} \mathrm{OZ}\) & －70N LS8ZJAS & \(00 \cdot \mathrm{GL}\) & 9－6ztias & \(00^{\circ} 8 \mathrm{I}\) & ¢zzias & \(00^{\circ}+\) & 9－Llotas \\
\hline 00＊9Z & 70N LZ8Z：THS & \({ }_{00} 0 \cdot{ }^{\text {c }}\)－ & を－6zttas & 00．81 & OL－चZzIas
II－zzzias & 00\％ 0 \％ & F－Llotas
9 cotas \\
\hline \(00^{\circ} \mathrm{OL}\) & －70N b8Gzids & 00． \(\mathrm{E} \mathrm{\varepsilon}\) & 8\％btas & \(00 \cdot 91\) & －－zZ\％Ias & \(00 \cdot 8 \mathrm{z}\) & 920tGS \\
\hline \(00^{\circ} 91\) & －70¢ 8LEzatS & \(00^{\circ} \mathrm{\square}\) ¢ & z－zzttas & \(00 \cdot 8\) & 6－0zzITS & 00＊8 & S－blotas \\
\hline \(00^{\circ} 88\) & －70N 95EzTAS & 00．0c & －9IpIas & \(00 \cdot 8\) & 0zzias & \(00^{\circ} 8 \mathrm{I}\) & V－v20tas \\
\hline \(00^{\circ} \mathrm{Zz}\) & －7ON LDIZHES & 00．81 & T－EItIGS & \(00^{\circ} \mathrm{GL}\) & 8－6İICS & \(00^{\circ} \mathrm{GI}\) & \％－blotas \\
\hline \(00^{\circ} \mathrm{S}\) & ＇70W 8totays & & \＆－0rbias & \(00^{\circ} \mathrm{GI}\) & 9－6IzIas & SL．\({ }^{\text {\％}}\) & 890ILIS
g90IGS \\
\hline \(00^{\circ} 98\) & 7 \％W OsLas & 00． 27 & －otides & 00＊\({ }^{\text {c }}\) & ¢－6IてIMS & \(00{ }^{\circ} \mathrm{F}\) & cgotas \\
\hline OG＇Z & －70N もLLLSWS & \(00 \cdot 81\) & G0btas & \(00^{\circ} \mathrm{KI}\) & － & \(00^{\circ}\) & Esotas \\
\hline \(00^{\circ} \mathrm{gI}\) & VDY LLIEXS & \(00^{\circ} \mathrm{Ot}\) & coblas & \(00^{\circ} \mathrm{G}\) & 9tzias & 00 亿 & ［－610tas \\
\hline \(00^{\circ} \mathrm{G}\) & VD\％8tocas & \(00.0{ }^{\circ}\) & ¢08tas & \({ }^{00} 0^{\circ} \mathrm{C}\) & It－bIztas & GL＇\(\%\) & Sbotas \\
\hline \(00^{\circ} \mathrm{gz}\) & －70\％LSEDAS & \(00^{\circ} \mathrm{I}\) & L－088ITIS & 00 \(00^{\circ} \mathrm{G}\) & L－bIZIAS & 00 OL & I－Eわ0tIS \\
\hline \(00^{\circ} 62\) & I9Stas & \(00^{\circ} \mathrm{I}\) & L－08EtİS & 00＇\％ & 9L－zIzIas & 00 ll & 2－080tas \\
\hline \(00^{\circ} \mathrm{tE}\) & GESLAS & \(00^{\circ} \mathrm{SL}\) & －08EIGIS & \(00^{\circ} \mathrm{H}\) & ZI－zIzIas & \(00^{\circ} \mathrm{ZL}\) & z－0¢0tas \\
\hline \(00^{\circ}\) It & I－96Stas & \(0 \mathrm{SH}^{\circ} \mathrm{L}\) & 9－gletas & \(00^{\circ} \mathrm{O}\) & zoztas & \(00^{\circ} \mathrm{OL}\) & g－ozotas \\
\hline \(00 \cdot 8 \mathrm{E}\) & \％－08ctas & \(0 \mathrm{OF}^{\circ} \mathrm{L}\) & GLETOS & \(00^{\circ} \mathrm{O}\) & z－toztas & \(00^{\circ} \mathrm{SI}\) & 9I－810IGS \\
\hline \(00^{\circ} \mathrm{tz}\) & \＆－8zSIGS & Oc＇z & g－c9ctas & \(09^{\circ} \mathrm{L}\) & 00ztos & 00． \(0^{\circ}\) & L－8LOLTS \\
\hline \(00^{\circ} \mathrm{\square}\) ¢ & I－8ZSLCS & OS \(\cdot{ }_{\text {¢ }}\) & I－g9etas & \(00 \cdot 6\) & 68 ILIS & \(00^{\circ} \mathrm{gI}\) & 9－810tas \\
\hline \(00^{\circ} \mathrm{E}\) ¢ & v－zZSIUS & \(00^{\circ} \mathrm{G}\) & 9－cuetas & \(00^{\circ} \mathrm{OL}\) & 88 IITS & \(00^{\circ} \mathrm{GI}\) & b－810tas \\
\hline \(00^{*} 81\) & \％－0zstos & \(00^{\circ} \mathrm{\varepsilon}\) & ceetas & \(00^{\circ} \mathrm{SI}\) & LitIas & \(00^{\circ} \mathrm{GI}\) & s－910tas \\
\hline \(00 \cdot 68\) & 1－66bIGS & \(00^{\circ} \mathrm{OL}\) & LIEtas & \(00^{\circ} \mathrm{gI}\) & 9 dIaS & \(00 \cdot{ }^{\text {SI }}\) & 9LOIGS \\
\hline 00：82 & 8－88btas & \(00^{\circ} \mathrm{I}\) & IIEIGS & \(00^{\circ} \mathrm{E}\) & I－billas & 00\％II & 9－vLOLES \\
\hline \(00 \cdot \mathrm{LZ}\) & L－88もLAS & \(00^{\circ} \mathrm{E}\) & 80cIas & \(00^{\circ} \mathrm{LI}\) & \＆－EDIIGS & 00＊＇II & blotas \\
\hline \(00^{\circ} 8 \mathrm{z}\) & 1－88btas & \(00^{\circ} \mathrm{\varepsilon}\) & LOEIGS & \(00^{\circ} \mathrm{ZI}\) & I－EtIIGS & OS＇\({ }^{\text {¢ }}\) I & L－Etotas \\
\hline \(00^{\circ} 68\) & 88btas & \(00^{\circ} \mathrm{\varepsilon}\) & coetas & \(00^{\circ} \mathrm{GI}\) & z－96IITS & OS＇EL & \(\varepsilon\)－etoitas \\
\hline \(09^{\circ} \mathrm{I}\) & L－b8btas & \(00^{\circ} \mathrm{E}\) & L－togtas & 00． 91 & getios & \(06^{\circ} 6\) & ¢－ztotas \\
\hline \(0{ }^{\prime}\) I & \(9-180\) Las & \(00^{\circ} \mathrm{\varepsilon}\) & OOEIGS & \(00 \cdot 8\) & geilas & \(06^{\circ} 6\) & \＆－zIotas \\
\hline \(0 S^{\prime} \mathrm{I}\) & G－78btas & \(00^{\circ} \mathrm{GL}\) & L－06\％IIS & \(00^{\circ} \mathrm{E}\) & －terias & \(06^{\prime} 6\) & zLOLGS \\
\hline \(0{ }^{\circ} \mathrm{T}\) & y8btas & \(00^{\circ} \mathrm{GI}\) & v－06दLas & \(00^{\circ} \mathrm{tI}\) & －－EEIIGS & \(00^{\circ} \mathrm{GL}\) & z－600tas \\
\hline \(00 \cdot 09\) & 08btas & \(00^{\circ} \mathrm{SI}\) & I－68ztas & \(00^{\circ} \mathrm{bI}\) & Eetias & \(00^{\circ} \mathrm{CI}\) & 600 tas \\
\hline \(00 \cdot 18\) & 8LbITS & \(00^{\circ} \mathrm{OL}\) & E8ZIas & O¢ \({ }^{\circ} \mathrm{E}\) & LGIIGS & \(00^{\circ} \mathrm{CI}\) & H00tas \\
\hline \(00^{*} 81\) & llbtas & \(00 \cdot 8\) & z－186Las & \(00^{\circ} \mathrm{OS}\) & bZilas & \(00^{\circ} \mathrm{G}\) & Stuas \\
\hline \(00^{*} 81\) & －fictias & 00＇81\＄ & ¢－8LZIGS & \(00^{\circ} \mathrm{S}\) \＄ & 6ItIas & \(00^{\circ} \mathrm{C}\) \＄ & Steas \\
\hline 00.818 & －－8cbics & & & & & & W NOSTVOHL \\
\hline
\end{tabular}
＊SZAISISNVZL if＊



BNC To Banana Plug Coax Cable RG-58 36 inch or BNC to N Coax Cable RG-58 36 inch.
\(\$ 7.99\) or 2 For \(\$ 13.99\) or 10 For \(\$ 50.00\)


SOLID STATE RELAYS
PEB Model ECTIDB72
PRICE EACH \(\$ 5.00\)
Digisig, Inc. Model ECS-215 5vdc turn on PRICE EACH \(\$ 7.50\)

Grigsby/Barton Model GB7400 5vdc turn on PRICE EACH \(\$ 7.50\)
\(\$ 8.99\) or 2 For \(\$ 15.99\) or 10 For \(\$ 60.00\)


120 vac contact at 7 amps or 20 amps on a \(10^{\prime \prime} \times 10^{\prime \prime} \mathrm{x} \cdot 124\) aluminum. Heatsink with silicon grease.
240 vac contact 14 amps or 40 amps on a \(10^{\prime \prime} \times 10^{\prime \prime} \mathrm{x} .124\) aluminum. Heatsink with silicon grease.

240 vac contact at 15 amps or 40 amps on a \(10^{\prime \prime} \times 10^{\prime \prime} \mathrm{x} .124\) aluminum. Heatsink with silicon grease.

NOTE: \(\begin{aligned} & \text { 肺 } \\ & \text { Items may be substituted with other brands or equivalent model numbers. *** }\end{aligned}\)
For information call: (602) 242-3037
लМЩ

The Recall Phone Telephone employs the latest state of art communications technology. It is a combination telephone and automatic dialer that uses premium-quality, solid-state circuitry to assure high-reliability performance in personal or business applications. \(\$ 49.99\)

Super Glue \#CE-486 high strength rapid bonding adhesive. Alpha Cyanoacrylate. Set-Time 20 to 40 \(\mathrm{sec} ., 0.7 \mathrm{fl}\).oz. (20gm.)


TOUCH TONE PAD

This pad contains all the electronics to produce standard touch-tone tones. New with data.

\(\$ 9.99\) or \(10 / \$ 89.99\)

MITSUMI UHF/VHF VARACTOR TUNER MODEL UVEIA
Perfect for those unscrambler projects. New with data.

\begin{tabular}{|c|c|c|c|}
\hline INTEGRATED & CIRCUIT. & 1 to 10 & 11 up \\
\hline MC1372P & Color TV Video Modulator Circuit. & \$ 4.42 & \$2.95 \\
\hline MC1358P & IF Amp., Limiter, FM Detector,Audio Driver, Electronic Attenuator. & 5.00 & 4.00 \\
\hline MC1350P & IF Amplifier & 1.50 & 1.25 \\
\hline MC1330A1P & Low Level Video Detector & 1.50 & 1.15 \\
\hline MC1310p & FM Stereo Demodulator & 4.29 & 3.30 \\
\hline MC1496P & Balanced Modulator/Demodulator & 1.50 & 1.25 \\
\hline LM565N & Phase Locked Loop & 2. 50 & 2.00 \\
\hline LM380N 14 & 2Watt Audio Power Amplifier & 1.56 & 1.25 \\
\hline LM1889N & TV Video Modulator & 5.00 & 4.00 \\
\hline NE564N & Phase Locked Loop & 10.00 & 8.00 \\
\hline NE561N & Phase Locked Loop & 10.00 & 8.00 \\
\hline
\end{tabular}

FERRANTI ELECTRONICS AM RADIO RECEIVER MODEL ZN414 INTEGRATED CIRCUIT.
Features:
1.2 to 1.6 volt operating range., Less than 0.5 ma current consumption. 150 KHz to 3 MHz Frequency range., Easy to assemble, no alignment necessary. Effective and variable AGC action., Will drive an earphone direct. Excellent audio quality., Typical power gain of \(72 \mathrm{~dB}, \mathrm{TO}-18\) package. With data.

NI CAD RECHARGEABLE BATTERIES
AA Battery Pack of 6 These are Factory New.
\(\$ 5.00\)
SUB C Pack of \(102.5 \mathrm{Amp} / \mathrm{Hr}\). \(\$ 10.00\)
Gates Rechargeable Battery Packs
12 vdc at \(2.5 \mathrm{Amp} / \mathrm{Hr}\).
\(\$ 11.99\)
12 vdc at \(5 \mathrm{Amp} / \mathrm{Hr}\).
\$15.99

> MOTOROLA MRF559 RF TRANSISTOR hfe 30 min 90 typ 200 max . ft 3000 m hz gain 8ab min 9.5typ at 870inz 13db typ at 512minz output power. 5 watts at 12.5 vdc at 870 nnz .

\section*{"SOCKETS AND CHIMNEYS"}

EIMAC TUBE SOCKETS AND CHIMNEYS
\begin{tabular}{|c|c|c|}
\hline SK110 & Socket & \$POR \\
\hline SK300A & Socket For \(4 \mathrm{CX} 5000 \mathrm{~A}, \mathrm{R}, \mathrm{J}, 4 \mathrm{CX10}, 000 \mathrm{D}, 4 \mathrm{CX15,000A,J}\) & \$520.00 \\
\hline SK400 & Socket For \(4-125 \mathrm{~A}, 250 \mathrm{~A}, 400 \mathrm{~A}, 400 \mathrm{C}, 4 \mathrm{PR} 125 \mathrm{~A}, 400 \mathrm{~A}, 4-500 \mathrm{~A}, 5-500 \mathrm{~A}\) & 260.00 \\
\hline SK406 & Chimney For \(4-250 \mathrm{~A}, 400 \mathrm{~A}, 400 \mathrm{C}, 4 \mathrm{PR} 400 \mathrm{~A}\) & 74.00 \\
\hline SK416 & Chimney For 3-4002 & 36.00 \\
\hline SK500 & Socket For \(4-1000 \mathrm{~A} / 4 \mathrm{PR} 1000 \mathrm{~A} / \mathrm{B}\) & 390.00 \\
\hline SK600 & Socket For \(4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, 4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}\) & 51.00 \\
\hline SK 602 & Socket For \(4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, 4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}\) & 73.00 \\
\hline SK606 & Chimney For \(4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, 4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}\) & 11.00 \\
\hline SK607 & Socket For \(4 \mathrm{CX} 600 \mathrm{~J}, \mathrm{JA}\) & 60.00 \\
\hline SK610 & Socket For 4CX600J, JA & 60.00 \\
\hline SK620 & Socket For 4CX600J, JA & 66.00 \\
\hline SK626 & Chimney For 4CX600J, JA & 10.00 \\
\hline SK630 & Socket For 4CX600J, JA & 66.00 \\
\hline SK636B & Chimney For 4CX600J, JA & 34.00 \\
\hline SK640 & Socket For 4CX600J, JA & 36.00 \\
\hline SK646 & Chimney For 4CX600J, JA & 71.00 \\
\hline SK700 & Socket For 4CX300A, Y, 4CX \(125 \mathrm{C}, \mathrm{F}\) & 225.00 \\
\hline SK711A & Socket For 4CX300A, Y, \(4 \mathrm{CX1} 125 \mathrm{C}, \mathrm{F}\) & 225.00 \\
\hline SK740 & Socket For 4CX300A, Y, \(4 \mathrm{CXI} 25 \mathrm{C}, \mathrm{F}\) & 86.00 \\
\hline SK770 & Socket For 4CX300A, Y, 4CX125C,F & 86.00 \\
\hline SK800A & Socket For 4CX1000A, 4CX1500B & 225.00 \\
\hline SK806 & Chimney For \(4 \mathrm{CX1000A}, 4 \mathrm{CX1500B}\) & 40.00 \\
\hline SK810 & Socket For 4CX1000A, 4CX1500B & 225.00 \\
\hline SK900 & Socket For 4X500A & 300.00 \\
\hline SK906 & Chimney For 4X500A & 57.00 \\
\hline SK1420 & Socket For 5CX3000A & 650.00 \\
\hline SK1490 & Socket For 4CV8000A & 585.00 \\
\hline
\end{tabular}

JOHNSON TUBE SOCKETS AND CHIMNEYS
\begin{tabular}{|c|c|c|}
\hline 124-111/SK606 & Chimney For \(4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, 4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}\) & \$ 10.00 \\
\hline 122-0275-001 & Socket For 3-5002, 4-125A, 250A, 400A, 4-500A, 5-500A & (pair) 15.00 \\
\hline 124-0113-00 & Capacitor Ring & 15.00 \\
\hline 124-116/SK630A & Socket For \(4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, / 4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}\) & 55.00 \\
\hline 124-115-2/SK620A & Socket For \(4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, / 4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}\) & 55.00 \\
\hline & 813 Tube Socket & 20.00 \\
\hline
\end{tabular}


WATKINS JOHNSON WJ-V907: Voltage Controlled Microwave Oscillator \(\$ 110.00\)
Frequency range 3.6 to 4.2 GHz , Power ouput, Min. 10 dBm typical, 8 dBm Guaranteed.
Spurious output suppression Harmonic ( \(\mathrm{nf} \mathrm{f}_{0}\) ), min. 20dB typical, In-Band Non-Harmonic, min. 60 dB typical, Residual FM , pk to pk , Max. 5 KHz , pushing factor, Max. \(8 \mathrm{KHz} / \mathrm{V}\), Pulling figure ( \(1.5: 1\) VSWR), Max. 60 MHz , Tuning voltage range +1 to +15 volts , Tuning current, Max. -0.1 mA , modulation sensitivity range, Max. 120 to \(30 \mathrm{MHz} / \mathrm{V}\), Input capacitance, Max. 100pf, Oscillator Bias \(+15+-0.05\) volts @ 55 mA , Max.
"All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item.

For information call: (602) 242-3037

\section*{TUBES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline TYFE & PRICE & TYPE & PRICE & TYPE & PRICE \\
\hline 2C39/7289 & \$ 34.00 & 1182/4600A & \$500.00 & ML7815AL & \$ 60.00 \\
\hline 2 E 26 & 7.95 & 4600A & 500.00 & 7843 & 107.00 \\
\hline 2K28 & 200.00 & 4624 & 310.00 & 7854 & 130.00 \\
\hline 3-5002 & 102.00 & 4657 & 84.00 & ML7855KAL & 125.00 \\
\hline 3-1000Z/8164 & 400.00 & 4662 & 100.00 & 7984 & 14.95 \\
\hline 3B28/866A & 9.50 & 4665 & 500.00 & 8072 & 84.00 \\
\hline \(3 \mathrm{CX40007/8961}\) & 255.00 & 4687 & P.O.R. & 8106 & 5.00 \\
\hline \(3 \mathrm{CX1000A7/8283}\) & 526.00 & 5675 & 42.00 & 8117A & 225.00 \\
\hline \(3 \mathrm{CX3000F1/8239}\) & 567.00 & 5721 & 250.00 & 8121 & 110.00 \\
\hline 3 CW 30000 H 7 & 1700.00 & 5768 & 125.00 & 8122 & 110.00 \\
\hline \(3 \times 250043\) & 473.00 & 5819 & 119.00 & 8134 & 470.00 \\
\hline \(3 \times 300051\) & 567.00 & 5836 & 232.50 & 8156 & 12.00 \\
\hline 4-65A/8165 & 69.00 & 5837 & 232.50 & 8233 & 60.00 \\
\hline 4-125A/4D21 & 79.00 & 5861 & 140.00 & 8236 & 35.00 \\
\hline 4-250A/5D22 & 98.00 & 5867 A & 185.00 & 8295/PL172 & 500.00 \\
\hline 4-400A/8438 & 98.00 & 5868/AX9902 & 270.00 & 8458 & 35.00 \\
\hline 4-400B/7527 & 110.00 & 5876/A & 42.00 & 8462 & 130.00 \\
\hline 4-400C/6775 & 110.00 & 5881/6L6 & 8.00 & 8505A & 95.00 \\
\hline 4-1000A/8166 & 444.00 & 5893 & 60.00 & 8533W & 136.00 \\
\hline \(4 \mathrm{CX250B/7203}\) & 54.00 & 5894/A & 54.00 & 8560/A & 75.00 \\
\hline \(4 \mathrm{CX250FG} / 8621\) & 75.00 & 5894B/8737 & 54.00 & 8560AS & 100.00 \\
\hline \(4 \mathrm{CX250K} / 8245\) & 125.00 & 5946 & 395.00 & 8608 & 38.00 \\
\hline \(4 \mathrm{CX250R} / 7580 \mathrm{~W}\) & 90.00 & 6083/AZ9909 & 95.00 & 8624 & 100.00 \\
\hline \(4 \mathrm{C} \times 300 \mathrm{~A} / 8167\) & 170.00 & 6146/6146A & 8.50 & 8637 & 70.00 \\
\hline \(4 \mathrm{CX350A/8321}\) & 110.00 & 6146B/8298 & 10.50 & 8643 & 83.00 \\
\hline \(4 \mathrm{CX350F/8322}\) & 115.00 & \(6146 \mathrm{~W} / 7212\) & 17.95 & 8647 & 168.00 \\
\hline \(4 \mathrm{CX350FJ} / 8904\) & 140.00 & 6156 & 110.00 & 8683 & 95.00 \\
\hline \(4 \mathrm{CX600J} / 8809\) & 835.00 & 6159 & 13.85 & 8877 & 465.00 \\
\hline \(4 \mathrm{CX1000} \mathrm{~A} / 8168\) & 242.50* & 6159B & 23.50 & 8908 & 13.00 \\
\hline \(4 \mathrm{CX1000A/8168}\) & 485.00 & 6161 & 325.00 & 8950 & 13.00 \\
\hline \(4 \mathrm{CX1500B} / 8660\) & 555.00 & 6280 & 42.50 & 8930 & 137.00 \\
\hline \(4 \mathrm{C} \times 5000 \mathrm{~A} / 8170\) & 1100.00 & 6291 & 180.00 & 6 L6 Metal & 25.00 \\
\hline 4CX100000/8171 & 1255.00 & 6293 & 24.00 & 6L6GC & 5.03 \\
\hline 4CX15000A/8281 & 1500.00 & 6326 & P.O.R. & 6CA7/EL34 & 5.38 \\
\hline 4CW800F & 710.00 & 6360/A & 5.75 & 6CL6 & 3.50 \\
\hline 4D32 & 240.00 & 6399 & 540.00 & 6DJ8 & 2.50 \\
\hline 4E27A/5-125B & 240.00 & 6550A & 10.00 & 6DQ5 & 6.58 \\
\hline 4PR60A & 200.00 & 6883B/8032A/8552 & 10.00 & 6GF5 & 5.85 \\
\hline 4PR60B & 345.00 & 6897 & 160.00 & 6GJ5A & 6.20 \\
\hline 4PR65A/8187 & 175.00 & 6907 & 79.00 & 6GK6 & 6.00 \\
\hline 4PR1000A/8189 & 590.00 & 6922/6DJ8 & 5.00 & \(6 \mathrm{HB5}\) & 6.00 \\
\hline 4X150A/7034 & 60.00 & 6939 & 22.00 & 6HF5 & 8.73 \\
\hline 4X1500/7609 & 95.00 & 7094 & 250.00 & 6JG6A & 6.28 \\
\hline 4X250B & 45.00 & 7117 & 38.50 & 6JM6 & 6.00 \\
\hline \(4 \times 250 \mathrm{~F}\) & 45.00 & 7203 & P.O.R. & 6JN6 & 6.00 \\
\hline \(4 \times 500 \mathrm{~A}\) & 412.00 & 7211 & 100.00 & 6JS6C & 7.25 \\
\hline \(5 \mathrm{C} \times 1500 \mathrm{~A}\) & 660.00 & 7213 & 300.00* & 6KN6 & 5.05 \\
\hline KT88 & 27.50 & 7214 & 300.00* & 6KD6 & 8.25 \\
\hline 416B & 45.00 & 7271 & 135.00 & 6LF6 & 7.00 \\
\hline 416 C & 62.50 & 7289/2C39 & 34.00 & 6LQ6 G.E. & 7.00 \\
\hline 572B/T160L & 49.95 & 7325 & P.0.R. & 6LQ6/6MJ6 Sylvania & 9.00 \\
\hline 592/3-200A3 & 211.00 & 7360 & 13.50 & 6ME6 & 8.90 \\
\hline 807 & 8.50 & 7377 & 85.00 & 12 AT7 & 3.50 \\
\hline 811A & 15.00 & 7408 & 2.50 & \(12 \mathrm{AX7}\) & 3.00 \\
\hline 812A & 29.00 & 7609 & 95.00 & 12 BY 7 & 5.00 \\
\hline 813 & 50.00 & 7735 & 36.00 & 12JB6A & 6.50 \\
\hline
\end{tabular}

NOTE * = USED TUBE
NOTE P.O.R. = PRICE ON REQUEST
"ALL PARTS MAY BE NEW, USED, OR SURPLUS. PARTS MAY BE SUBSTITUTED WITH COMPARABLE PARTS IF WE ARE OUT OF STOCK OF AN ITEM.

NOTICE: ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Toll Free Number 800-528-0180 (For orders only)

All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item."


\section*{"FILTERS"}

\section*{COLLINS Mechanical Filter \#526-9724-010 MODEL F455Z32F}

455 KHz at 3.2 KHz wide. May be other models but equivalent. May be used or new, \(\$ 15,99\)

\section*{ATLAS Crystal Filters}
5.595-2.7/8/LSB, 5.595-2.7/LSB

8 pole 2.7 KHz wide Upper sideband. Impedence \(8000 \mathrm{hms} 15 \mathrm{pf} \mathrm{In} / 800 \mathrm{ohms}\) 0pf out.
5.595-2.7/8/U, 5.595-2.7/USB

8 pole 2.7 Khz wide Upper sideband. Inpedence \(8000 \mathrm{hms} 15 \mathrm{pf} \mathrm{In} / 800\) ohms Opf out.
19.99
5.595-. 500/4, 5.595-.500/4/CW

4 pole 500 cycles wide CW. Impedance 8000 hms 15 pf In \(/ 8000 \mathrm{hms}\) Opf out.
19.99
9. OUSB/CW

6 pole 2.7 KHz wide at 6 dB . Impedance \(680 \mathrm{ohms} 7 \mathrm{pf} \mathrm{In} / 300 \mathrm{hms} 8 \mathrm{pf}\) out. \(\mathrm{CW}-1599 \mathrm{~Hz}\)
KOKUSAI ELECTRIC CO, Mechanical Filter \#MF-455-ZL/ZU-21H
455 KHz at Center Frequency of 453.5 KC . Carrier Frequency of 455 KHz 2.36 KC Bandwidth.
Upper sideband. (ZU) 19.99
Lower sideband. (ZL) 19.99


CERAMIC FILTERS
AXEL 4F449
TCF4-12D36A
\(455 \mathrm{KHz}+2 \mathrm{KHz}\) bandwidth \(4-78\) at 3 dB
10.00
\(455 \mathrm{KHz}+2 \mathrm{KHz}\) bandwidth \(4-78\) at \(3 \mathrm{~dB} \quad 5.00\)
\(455 \mathrm{KHz}+1 \mathrm{KHz}\) bandwidth \(6 \mathrm{~dB} \min 12 \mathrm{KHz}, 60 \mathrm{~dB} \max 36 \mathrm{KHz} \quad 10.00\)
MURATA BFB455B \(455 \mathrm{kHz}-2.50\)
\begin{tabular}{|c|c|c|c|}
\hline & BFB455L & 455 KHz & 3.50 \\
\hline & CFM455E & \(455 \mathrm{KHz}+5.5 \mathrm{KHz}\) at \(3 \mathrm{~dB},+8 \mathrm{KHz}\) at \(6 \mathrm{~dB},+16 \mathrm{KHz}\) at 50 dB & 6.65 \\
\hline & CFM455D & \(455 \mathrm{KHz}+7 \mathrm{KHz}\) at \(3 \mathrm{~dB},+10 \mathrm{KHz}\) at \(6 \mathrm{~dB},+20 \mathrm{KHz}\) at 50 dB & 6.65 \\
\hline & CFR455E & \(455 \mathrm{KHz}+5.5 \mathrm{KHz}\) at \(3 \mathrm{~dB},+8 \mathrm{KHz}\) at \(6 \mathrm{~dB},+16 \mathrm{KHz}\) at 60 dB & 8.00 \\
\hline & CFU455B & \(455 \mathrm{KHz}+2 \mathrm{KHz}\) bandwidth +15 KHz at \(6 \mathrm{~dB},+30 \mathrm{KHz}\) at 40 dB & 2.90 \\
\hline & CFU455C & \(455 \mathrm{KHz}+2 \mathrm{KHz}\) bandwidth +12.5 KHz at \(6 \mathrm{~dB},+24 \mathrm{KHz}\) at 40 dB & 2.90 \\
\hline & CFU455G & \(455 \mathrm{KHz}+1 \mathrm{KHz}\) bandwidth +4.5 KHz at \(6 \mathrm{~dB},+10 \mathrm{KHz}\) at 40 dB & 2.90 \\
\hline & CFU455H & \(455 \mathrm{KHz}+1 \mathrm{KHz}\) bandwidth +3 KHz at \(6 \mathrm{~dB},+9 \mathrm{KHz}\) at 40 dB & 2.90 \\
\hline & CFU455I & \(455 \mathrm{KHz}+1 \mathrm{KHz}\) bandwidth +2 KHz at \(6 \mathrm{~dB},+6 \mathrm{KHz}\) at 40 dB & 2.90 \\
\hline & CFW455D & \(455 \mathrm{KHz}+10 \mathrm{KHz}\) at \(6 \mathrm{~dB},+20 \mathrm{KHz}\) at 40 dB & 2.90 \\
\hline & CFW455H & \(455 \mathrm{KHz}+3 \mathrm{KHz}\) at \(6 \mathrm{~dB},+9 \mathrm{KHz}\) at 40 dB & 2.90 \\
\hline & SFB455D & 455 KHz & 2.50 \\
\hline & SFD455D & \(455 \mathrm{KHz}+2 \mathrm{KHz}\), 3 dB bandwidth \(4.5 \mathrm{KHz}+1 \mathrm{KHz}\) & 5.00 \\
\hline & SFEE10.7MA & \(10.7 \mathrm{MHz} 280 \mathrm{KHz}+50 \mathrm{KHz}\) at \(3 \mathrm{~dB}, 650 \mathrm{KHz}\) at 20 dB & 2.50 \\
\hline & SFE10.7MS & \(10,7 \mathrm{MHz} 230 \mathrm{KHz}+50 \mathrm{KHz}\) at \(3 \mathrm{~dB}, 570 \mathrm{KHz}\) at 20 dB & 2.50 \\
\hline & SFG10.7MA & 10.7 MHz & 10.00 \\
\hline NIPPON & LF-B4/CFU455I & \(455 \mathrm{KHz}+1 \mathrm{KHz}\) & 2.90 \\
\hline & LF-B6/CFU455H & \(455 \mathrm{KHz}+1 \mathrm{KHz}\) & 2.90 \\
\hline & LF-B8 & 455 KHz & 2.90 \\
\hline & LF-C18 & 455 KHz & 10.00 \\
\hline TOKIN & CF455A/BFU455K & \(455 \mathrm{KHz}+2 \mathrm{KHz}\) & 5.00 \\
\hline MATSUSHIRA & EFC-L455K & 455 KHz & 7.00 \\
\hline
\end{tabular}

SPECTRA PHYSICS INC, Model 088 HeNe LASER TUBES


ON M M M
115 VAC 14 WATTS 50/60CPS

IMPEDENCE PROTECIED-F
88CFM at 50CPS
\$ 7.99

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

\section*{HEWLETT PACKARD SIGNAL GENERATORS}
 modulation.
Same as above but hos frequency control feature to allow 8708A Synctironizer

608C 10 MHz to \(480 \mathrm{MHz}, 0-1 \mathrm{UV}\)-1V into 50 ohms, AM, CN, or pulse modulation, callbrated attenuator.

608E Improved version of popular 608C.Un to IV output. Improved Improved version of popular
stability. Iow residuol FM. pulse-FM or square wave modulation.
Sane as above but later model.
\(\$ 2200,00\)
\(608 \mathrm{~F} \quad 10 \mathrm{MHz}\) to 455 MHz in 5 bands +-18 frequency accuracy with synchronlzer. output continuously adjustoble from. IuV to . 5 v into 50 onms.
\(612 \mathrm{~A} \quad 450-1230 \mathrm{NHz}, 0.1 \mathrm{VV}-0.5 \mathrm{~V}\) into 50 ohms, callbrated output. \(\$ 750.00\)
\(614 \mathrm{~A} \quad 900-2100 \mathrm{MHz}\) with many features including collbrated output
\(\begin{array}{ll}616 \mathrm{~A} & \text { Direct reading and al rect control from } 1.8 \text { to } 4.26 \mathrm{~Hz} \text {, The } \\ \text { TS403 } & \text { H.P. } 616 A \text { features }+-1.50 \mathrm{~B} \\ \text { calibrated outout }\end{array}\) Hi 3127 dan to -dBn. The output is directly calibrated in nicro yoits and dBn with continuous monitoring. simple operation frequency diod occurocy is +1 17 ond stability exceeds \(0,005 \%\) within t-1. 5 dB over entire output bond, 50 ohm impedance unit has internal pulse modulation Ni th rep rate variable from 40 Mz to 4 KHz , var lable pul sewidth(1 to 10usec) and variable pulse
delay( 3 to \(300 u s e c)\). External modulating inputs increas versotifity.

LIEX LABORATORIES THS-2 FLEXICOM HEADSET.
these heodsets care with data to hook in to a lCaM rodios and many other equibnert, Perfect for Alrplanes, helicopters, Moblle Fadios, or Just the Telephone. These Are Foctory New in seoled Boxes. Limited Supply only \(\$ 69.95\)


\title{
jMFI
}

\section*{2111 W. CAMELBACK ROAD PHOENIX, ARIZONA 85015}

All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item."

Toll Free Number 800-528-0180 (For orders only)
For information call: (602) 242-3037

\section*{-Please contact these advertisers dirsctly.}

To receive full information from our advertisers please complete the postage-paid card.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & No. Page & R.S. & No. Page & R.S. & No. & Page & & & Page \\
\hline \multirow[t]{2}{*}{} & Advanced Computer Controls & 168 & Communications Specialists, Inc. & - & ICOM & 80,82 & 500 & 73 & \\
\hline & . 107 & & . 61 & 39 & Jan Crystals & & & Advertising . & 101 \\
\hline \multirow[t]{2}{*}{480} & Advanced Computer Controls & - & Computer Trader . . . . . . . . . . 87 & & KLM Electronics & 41 & & Back Issues & 68 \\
\hline & 81 & 279 & Continental Satellite Systems ... 5 & & Kantronics & . 103 & & Dealer Ad. & \\
\hline \multirow[t]{2}{*}{} & AEA/Advanced Electronic & & Connect Systems, Inc, . . . . . 69,81 & - & Kenwood & Cov.IV & & Mailing List & \\
\hline & Applications . . . . . . . . . . . . . . 23 & & Crumtronics . . . . . . . . . . . . . . 73 & 476 & Kikusul International Corp. & & & Moving & \\
\hline 20 & All Electronics . . . . . . . . . . . . . 22 & 481 & Crumtronics . . . . . . . . . . . . . . . 80 & 9 & MFJ Enterprises & .64,65 & & Subscriptions & 18,87 \\
\hline \multirow[t]{2}{*}{} & Amateur Communications, Etc. & 346 & Data Service . . . . . . . . . . . . . . . 77 & 48 & MHz Electronics & 88-97 & & Smith Software Systerns & \\
\hline & 69 & 276 & Digital Audio . . . . . . . . . . . . . . . 63 & 282 & Madison Electronics & . 68 & 68 & Spectrum Communications. & .52,53 \\
\hline & Amateur Electronic Supply . . . . 17 & 425 & Doppler Systems . . . . . . . . . . 105 & & Maggiore Electronic Labs & . 79 & 436 & Spectrum international, inc. & \\
\hline - & Barker \& Williamson .......... 19 & 482 & Encomm . . . . . . . . . . . . . . . . . 82 & 54 & Magnum Distributors, Inc. & & & Spider Antenna . . . . . . . . & \[
\text { ... } 69
\] \\
\hline 305 & Barry Electronics . . . . . . . . . . 33 & 29 & Esoteric Engineering . . . . . . . . 87 & 49 & Micro Control Specialists & . 16 & 32 & TE Systerns ... & . 47 \\
\hline \multirow[t]{2}{*}{,} & Bash Educational Services, Inc. & 22 & Fair Radio Sales . . . . . . . . . . . . . 87 & 51 & Microlog Corp. & \[
\text { .. } 35
\] & - & Ten-Tec & \\
\hline & & 99 & Faxscan \(\qquad\) 47 & & Mirage Communications & \[
\text { . . } 19
\] & 63 & The Antenna Specialists & \[
.15
\] \\
\hline & Bill Ashby \& Son . . . . . . . . . . . 107 & 23 & Flesher Corp. . . . . . . . . . . . . . 86 & & Moler Antenna & . 80 & & The Hamshack & 39 \\
\hline & Birch Hill Sales . . . . . . . . . . . . . 54 & 88 & Fox-Tango Corporation ........ 77 & 478 & National Comm. Group & .. 81 & 104 & Trionyx, Inc. & . 40 \\
\hline & Blacksburg Group . . . . . . . . . . 22 & 269 & GLB Electronics . . . . . . . . . . . 34 & 412 & Nemal Electronics & .. 77 & 166 & Unadilla/Reyco/Inline & . 34 \\
\hline & Butternut Electronics . . . . . . . . 105 & 281 & Gien Martin Engineering . . . . . . . 4 & 137 & Nuts \& Volts & . 72 & 149 & Unique Comm. Corp. & . 87 \\
\hline 462 & CES, Inc. . . . . . . . . . . . . . . . . 105 & 31 & Hal-Tronix . . . . . . . . . . . . . . . 34 & - & Orbit Magazine & . 50 & - & University Microfilms & . 87 \\
\hline 111 & CeCoCommunications ....... 25 & 271 & Ham MasterTapes . . . . . . . . . . 29 & - & PC Electronics & . 19 & 311 & Vanguard Labs . & . 73 \\
\hline 479 & Cynwyn . . . . . . . . . . . . . . . . . 81 & & Ham Radio Outlet . . . . . . . . . . . 3 & 4 & Parsec Communications & . 71 & . & W9INN Anternas & . 79 \\
\hline 477 & ColoRadio Research . ......... 80 & 33 & Hamtronics, NY .........112,113 & 212 & Pipo Comm. & . 72 & - & Westech Electronics, Inc. & . 72 \\
\hline \multirow[t]{2}{*}{14} & Communications Concepts, Inc. & 303 & Heath Co. . . . . . . . . . . . . . . . 57 & 277 & RF Products & & 80 & Western Radio Electronics & . 77 \\
\hline & . 107 & - & Horizon Printing Co. . . . . . . . . . 87 & 61 & Radio Amateur Callbook, Inc & . . . 107 & & Wheeler Applied Research & \\
\hline \multirow[t]{3}{*}{15} & Communications Specialists, Inc. & 123 & Hustler, Inc. . . . . . . . . . . . . . . . . 4 & 268 & Ramsey Electronics & . 109 & & & \\
\hline & & 274 & ICOM . . . . . . . . . . . . . . . . . . Cov.II & 62 & Ramsey Electronics & .. 111 & & Williams Radio Sales .. & \[
\ldots .87
\] \\
\hline & & & & & RUN Magazine . . . . . & . 51 & 83 & Yaesu Electronics Corp. & ov. III \\
\hline
\end{tabular}

50073
Advertising . .................. 101
Back Issues . . . . . . . . . . . . . . . . 68
Dealer Ad . . . . . . . . . . . . . . . . . . . . 99
Mailing List . . . . . . . . . . . . . . . . . . . 71
Moving ... . 99

Smith Software Systems
68 Spectrum Communications . . 52,53
436 Spectrum international, Inc. ..... 16
Spider Antenna . . . . . . . . . . . . . . . . 68
- Ten-Tec . . . . . . . . . . . . . . . . . . . . . 59

63 The Antenna Specialists ......... 15
104 Trionyx, Inc. . . . . . . . . . . . . . . . . . . 40
166 Unadilla/Reyco/nline . . . . . . . . . . . 34
149 Unique Comm. Corp. . . . . . . . . . . . 87
University Microfilms ............ . 87
W9INN Antennas ............ 79
Westech Electronics, Inc. . ...... 72
80 Western Radio Electronics ..... 7
Wheeler Applied Research Lab

83 Yaesu Electronics Corp. . . . Cov. III

\section*{BOOKS, etc.}

\section*{AMATEUR RADIO/ELECTRONICS TITLES} Catalog \# BK7307 Behind the Dial CT7305 5 WPM Code Tape CT7306 6 + WPM Code Tape CT7313 \(13+\) WPM Code Tape CT7320 \(20+\) WPM Code Tape CT7325 25 + WPM Code Tape CT7394 Code Tapes (any four above) BK7308 Contest Cookbook BK7321 A Guide to Ham Radio BK7322 Hobby Computers Are Here BK7393 Living on a Shoestring BK7312 The Magic of Ham Radio BK7340 The New Hobby Computers BK7383 The New Weather Satellite Handbook
BK7310 Owner Repair of Radio Equipment BK7302 Propagation Wizard's Handbook BK7351 SSB. . The Misunderstood Mode BK7368 VHF Antenna Handbook SG7357 Study Guide-Novice Class SG7358 Study Guide-General Class CT7300 Novice Study Tapes (Set of 3) LB7360 Test Equip. Lib. V2-Audio Tester LB7361 Test Equip. Lib. V3-Radio Equip. LB7362 Test Equip. Lib. V4-IC Test Equip. LB7365 Test Equip. Lib. V0-Vols. 2, 3, \& . 4 BK7315 World Repeater Atlas

Price Catalog \#
\$ 4.95 BK7384
4.95 BK7385
\(\begin{array}{ll}4.95 & \text { BK7390 } \\ 4.95 & \text { BK7398 }\end{array}\)
\begin{tabular}{rl}
4.95 & BK77386 \\
4.95 & BK7404 \\
\hline 15.95 & BK7400
\end{tabular}
15.95 BK7400
5.95 CC740011
2.49
7.97
7.97 BK7388
\(\begin{array}{ll}4.95 & \text { BK7311 } \\ 2.49 & \text { BK7394 }\end{array}\)
8.95 BK7395
7.95
6.95
6.95
5.50
5.50
5.95
4.95
\(\begin{array}{r}6.95 \\ \hline 15.95\end{array}\)
15.95
1.95
1.95
1.95
1.95
1.95
1.95
4.95
2.00

MICROCOMPUTER TITLES
\(\begin{array}{ll}4.95 & \text { CC740012 } \\ 249 & \text { CC740013 }\end{array}\)

BK7382
Annotated BASIC Vol. 2
Inside Your Computer
Introduction to TRS-80 Data Files
Kilobaud Klassroom
Mach. Lang. Subroutines for CoCo
Prog. for Electronic Circuit Design
BK7400 with Apple disk
BK7400 with IBM PC disk
BK7400 with TRS-80 disk
The Selectric \({ }^{\text {TM }}\) Interface Some of the Best from Kilobaud TRS-80 as a Controller TRS-80/Z80 Assembly Lang. Library
Understanding \& Prog. Microcomputers

\section*{SHELF BOXES}

\section*{Catalog \#}

BX1000
BX1002

\title{
DR. DIGITAL
}

Robert Swirsky AF2M

\section*{PO Box 122}

Cedarhurst NY 11516

\section*{BITS AND PIECES}

I have an old Apple II computer: According to the date stamped on the circuit board, it was manufactured in late 1979 (I purchased it in early 1980). In the four years I have had it, it has performed flaw-lessly-until just recently.
The P and the L keys started to


Fig. 1. Underneath an Apple. Arrows indicate screws to remove.
"bounce." Sometimes I would get two or three Ps or Ls when I only wanted one. I ran over to a local computer repair shop and purchased 2 keyswitches. When 1 returned home, I had to figure out how to take the Apple apart to get at the key-board-a task that isn't too difficult if you know which screws to remove! To save you from possible aggravation if the need ever arises to take your Apple apart, I will describe how it is done. Please note that this information only applies to Apple II computers; Apple lle computers are constructed differently.
Start by disconnecting the power cord from the computer. Pop the lid off and carefully disconnect all the peripheral cards, disk connector cables, etc. Unplug anything you might have plugged in the game port or the if modulator socket.
Look at the diagram in Fig. 1. Turn your computer over and set it down on a protective surface. Remove only those screws that are marked with an arrow in the diagram! You should have removed six flathead Phillips screws and four round-head Phillips screws. Put the screws aside so you don't lose them.
After the screws are out, carefully lift the end labelled FRONT in the diagram up a few inches. It should hinge open. You will notice a DIP connector connecting the keyboard assembly to the main assembly. Using extreme care, gently unplug this connector from the main board
and note its orientation (you'll be putting it back later!).
After you have disconnected the key. board connector from the main board, you are ready to lift the bottom off completely. Set it down in a safe place (where no one is likely to step on it).
Next, to remove the keyboard from the case, simply remove the screws at each of the four corners of the board. If your Apple is a fairly recent one, you will notice that the keyboard has a "piggyback" board connected to it. Removal of this piggyback board is a bit tricky. Locate the two white plastic posts that extend through it. You will notice that these posts serve to hold the boards together by means of tiny plastic expanding tabs. With a needle nose pliers, squeeze these tabs together to unlock the posts from the board. Carefully separate the boards, taking care to notice that a 25 -pin connector must also be separated. To replace this board, first align all of those 25 fragile pins into the proper holes and then push the boards together firmly to lock the plastic posts.
That's all there is to disassembling an Apple. The procedure is fairly simple; about the only tricky thing is removing the piggyback board from the main keyboard. While you're inside your computer, you might want to give the insides a thorough cleaning. You'd be amazed at the amount of dust, dirt, hair, and assorted particles that find their way into a computer!

\section*{WHO'S WHO IN NEW-WAVE MUSIC}

I received a post card from Wilbur T. Golson W4AV regarding my April column. He said: "Re: 'The End of Amateur Radio': I agree with your thoughts one hundred percent, but the majority of hams don't. I
feel that the code test should have been dropped and the technical tests and rules beefed up to keep with today's modern technology. The FCC feels the same way, but it seems that the I had to learn it, so you should, too' attitude is far too common. I don't know who David Byrne is, but he may be right. .."

The reference to David Byrne is regarding a quote I used in the April column: "Watch out, you might get what you're after." For those of you who don't watch MTV (and I certainly don't hold that against you), David Byrne is a new-wave musician whose group The Talking Heads sings that line in one of their songs. Next time I'll know only to quote well-known people.
While I'm on the subject of mail, I received a number of interesting ideas in a letter from Charles W. Creasy III (who neglected to give his callsign) concerning the need for a computer operating system designed for amateur radio. Features that such an operating system might incorporate are conversion from one code to another (ASCII, Murray, EBCDIC, AMTOR, etc.) and real-time control of amateur-radio hardware (transmitters, receivers, antenna rotors). One could program ama-teur-radio applications in the high-level language of his choice and perform any needed function with calls to the operating system. Such programs could be made machine-independent; the operating system, customized for a particular computer, would take care of hardware differences.
The concept of an amateur-radio operating system is an intriguing one. If anyone has implemented anything along these lines, I would like to hear about it. In the meantime, I think I'II look at the feasibility and practicality of such a system. I

Selling 73 will make money for you. Consider the facts:
Fact 1: Selling 73 increases store traffic-our dealers tell us that 73 is one of the hottestselling amateur radio magazines on the newsstands.
Fact 2: There is a direct correlation between store traffic and sales-increase the number of people coming through your door and you'll increase sales.
Fact 3: Fact \(1+\) Fact \(2=\) INCREASED \(\$\) ALE \(\$\), which means more money for you. And that's a fact.
For information on selling 73, call 800-343-0728 (in New Hampshire call 1-924-9471) and speak with Ginnie Boudrieau, our bulk sales manager. Or write to her at 73, 80 Pine St., Peterborough, NH 03458.


Amateur Radio's Technical Journal

Let us know 8 weeks in advance so that you won't miss a single issue of 73.
Attach old label where indicated and print new address in space provided. Also include your mailing label whenever you write concerning your subscription. It helps us serve you promptly. Write to:


Amateur Radio's
Subscription Department
Technical Journal
P.O. Box 931

Farmingdale NY 11737
\(\square\) Extend my subscription one additional year for only \(\$ 17.97\)
\(\square\) Payment enclosed \(\quad \square\) Bill me
Canada \& Mexico \(\$ 20.97 / 1\) year only US Funds drawn on US bank. Foreign Surface \(\$ 25.00 /\) y year only US Funds drawn on US bank. Foreign Airmail, please inquire

If you have no lubel hundy, print OLD address here.

\section*{Name}

\section*{Address}
City
State
Zip
print NE W address here:

\section*{Name}

\section*{Address}

City
State
Zip
can see the value of such an operating system for applications other than amateur radio. Many computer interface problems are due to a poor communications interface, and computer-to-computer communications over media other than ham radio is a rapidly growing field.

\section*{CONNECTING A COMPUTER TO THE OUTSIDE WORLD}

In some of the mail l've received, I have noticed a common problem in interfacing a computer to another device. Much of the confusion is focused on the computer's end of the interface-most hams know how to interconnect ham equipment without too much difficulty.
Most home computers use TTL logic circuitry. These components work with two voltages: +5 volts (or a bit below it) and 0 volts (or slightly more). These two voltage levels are used to represent the zeroes and ones that a computer thrives on. As you probably know, computers represent numbers and symbols with binary numbers. A binary number is a number in base 2 and is written using only the symbols 0 and 1. As with the more familiar base-10 numbers, the value of a particular digit depends on its place within the number. For example 0101 would be the
number five in binary; there is a one in the ones place and a one in the fours place, adding up to five.

What do binary numbers have to do with computer input and output ( \(/ 10\) )? Everything! Remember that the ones and zeroes are represented within the computer's hardware by the presence or absence of electrical current. By connecting special circuitry to look for specific patterns of current on a computer's internal data lines, devices can be controlled with computer commands. It is this principle that is the basis for all computer interfacing.

Let's look at how the built-in \(1 / \mathrm{O}\) ports on an Apple II computer work. The 6502 microprocessor in an Apple II has 16 "address lines" and 8 "data lines." These lines are simply connections on the microprocessor chip that are used to signal a particular memory address or 8 -bit data item to the other components of the computer. By having different patterns of on and off voltages on these connections, different memory addresses and data items can be specified.

Usually, the address lines are decoded by the memory chips; when the circuitry associated with the memory chips sees a particular voltage pattern on the address
lines, the data contained at the location specified by that pattern is ted into (or taken from) the 6502's data lines.
Memory chips are not the only components which can interpret the information contained on the address lines, however. It is possible to have other circuits recognize certain addresses. The designers of the Apple II computer used this principle to control the four output lines and three input lines on the computer's "Game I/O Connector." Circuitry inside the Apple looks for certain voltage pat terns and uses the presence of certain ones to switch the four outputs on or off. For example, placing the binary pattern 1100000001011000 will turn output number 0 off; the pattern 1100000001011001 will turn it on.

You're probably thinking, "How am I going to get the 6502 to put that bit pattern on the address lines?" The answer is remarkably simple. Just have the computer execute any statement that references that address.

It so happens that the two binary bit patterns mentioned before correspond to the numbers 49240 and 49241 in the more familiar base-10 notation. So, if we execute the Basic statement \(\mathrm{Q}=\mathrm{PEEK}\) (49240), we can flip that output off. Similarly, the statement \(\mathrm{Q}=\mathrm{PEEK}(49241\) ) will
turn it on. Note that the value assigned to Q is meaningless. It is simply the reference to the memory location that does the work. Any variable can be substituted, and the result will be the same.
The off/on locations for the other three outputs are: 49242/49243 (output 1), \(49244 / 49245\) (output 2), and 49246/49247 (output 3). Outputs 0 through 3 correspond to pins 12 through 15 on the game port connector.

The Apple also has three inputs that work in a similar manner. By using the Basic PEEK command for locations 49249 through 49251, a value can be obtained to indicate if the input is "high" or "low" (0 or 1 ). For example, the command \(Q=\) PEEK(49251) will assign Q a value less than 128 if the input is high and a value greater than or equal to 128 if the input is low.

Caution: These input and output lines are designed to handle the special voltage and current levels used by the computer chips. Do not attempt to connect any device to these I/O lines without the appropriate interfacing hardware.

Next time, l'll describe how to properly interconnect computer \(1 / 0\) ports with other devices. I'll also cover Atari and TRS-80 computer I/O ports.

\section*{RADIO AND ELECTRONICS PIONEERS}

It is natural that one should wonder whether the wireless telephone is destined to displace our present apparatus Itelegraphy]. This does not seem at all probable. In the first place, wireless telephony is now, and probably always will be, very expensive. Wherever the wire will do, it is the more economical... Millions of messages going in all directions, crossing and recrossing one another, as is done every day by wire, are probably an impossibility by radio telephony. Weird and little-understood conditions of the ether, static electricity, radio disturbances, make wireless work uncertain, and such a thing as twenty-fourhour service, seven days in the week, can probably never be guaranteed.-Walter Kellogg Towers, Masters of Space, 1917.

Don't you just love the predictions of socalled experts? Every time I read a newspaper article or see a television report predicting the future of the electronics industry, I think of the preceding quote.
Fortunately, the subjects of this month's column-radio and electronics pioneersdidn't hold the same beliefs as Mr. Towers. These were men who were willing to take chances on a dream. They didn't care if their goals meshed with the expectations of society. If they did, our shacks would probably consist of little more than paper cups and strings. (I've got a Dixie HW-101, how about you?)
So let's learn a little bit about the people who made our hobby what it is today. And let's all remember how they bucked the advice of the experts. Ham radio could use a little more of that attitude today.

\section*{ELEMENT 1 MULTIPLE CHOICE}
1) Which of the following devices was an invention of Sir Hiram Stevens Maxim, father of ARRL founder Hiram Percy Maxim W1AW?

\section*{1) Radioscope}
2) Self-regulating generator
3) Carbon resistor
4) All of the above
2) Which of the following men first proposed naming the two electrical poles
"plus" and "minus"?
1) Thomas Edison
2) Henry J. Faxton
3) Michael Faraday
4) Benjamin Franklin
3) English philosopher and chemist Joseph Priestly:
1) Proposed the inverse square law 2) Invented the galvanic jar
3) Discovered the unit of quantity
4) Developed the practical nicad cel
4) German physicist Thomas Johann Seebeck discovered the "Seebeck Effect," which eventually became known as:

\section*{1) Radiation}
2) Thermal electromotive force
3) Electricity
4) Static discharge
5) Samuel Morse constructed his first telegraph from:
1) Aluminum
2) An old picture frame
3) Bits and pieces of old newspapers
4) Scrap iron
6) Name the two actors who portrayed Thomas Edison in MGM movies during the 1930s.
1) Spencer Tracy, Don Ameche
2) Raymond Massey, Cedric Hardwicke
3) Mickey Rooney, Spencer Tracy
4) William Powell, Humphrey Bogart

\section*{ELEMENT 2 MATCHING}

Match the names in column \(A\) with the inventions in column \(B\).
\begin{tabular}{ll}
\multicolumn{1}{c}{ A } & \multicolumn{1}{c}{ B } \\
1) deForest & A) Radar \\
2) Fleming & B) Television \\
3) Fessenden & C) Teleprinter \\
4) Baekeland & D) Radiotelephony \\
5) Hilliard & E) Triode \\
6) Affell & F) Diode \\
Epensched & G) FM radio \\
7) Stanley & H) Magnetic detector \\
8) Shockleyl & 1) Transistor \\
Brittain/Bardeen J) Bakelite \\
9) Armstrong & K) Heterodyne \\
10) Taylor/Young & L) Radio beacon \\
11) Berliner & M) Tape recorder \\
receiver & M) Photoelectric cell \\
12) Elster & C) Circuit breaker \\
13) Poulsen/ & P) Multigrid tube \\
Fessenden & Q) Ac transistor \\
14) Marconi & R) Static power \\
15) Zworkin & S) Coaxial cable \\
16) Alexanderson & T) Cascade tuning \\
17) Poulsen & U) Microphone \\
18) Morkrum/ & \\
Kleinschmidt & \\
19) Donovan & \\
20) Langmuir &
\end{tabular}

\section*{ELEMENT 3 TRUE-FALSE}
1) Zenith, the famous electronics company, derives its name from an amateur call.
2) The callsigns of the first two FM broadcast stations were KE2XCC and W2XMN.
) David Sarnoff, founder of RCA, first rose to national attention by relaying distress messages from the illfated RMS Lusitania.
4) The first US broadcast radio station was WPLJ in Albany. New York.
5) During World War I, the US Navy's primary school for wireless operators was located at Harvard University.
6) At the time he discovered radio, Marconi was only 29 years old.
7) Lee deForest went bankrupt at the age of 33.
8) Reginald Fessenden was an adopted son of Thomas Edison.
9) Michael Faraday, of unit of capacitance fame (the farad), died in 1967.
10) The coulomb-the unit of electrical quan-
tity-is named after
Charles Augustin
Coulomb (1736-1806).

\section*{ELEMENT 4} SCRAMBLED WORDS
Unscramble these names of radio and electronics pioneers.
\begin{tabular}{lll} 
RAMINCO & YARAFAD & LAVOT \\
RETZH & HOM & ROSEM \\
PRAMEE & YARAFAD & SLATE
\end{tabular}

\section*{THE ANSWERS}

Element 1:
\(1-2,2-4,3-1,4-2,5-2,6-3\).
Element 2:
1-E, 2-F, 3-K, 4-J, 5-O, 6-S, 7-Q, 8-I, 9-G, \(10-\mathrm{A}, 11-\mathrm{U}, 12-\mathrm{N}, 13-\mathrm{D}\), \(14-\mathrm{H}, 15-\mathrm{B}, 16-\mathrm{T}, 17-\mathrm{M}, 18-\mathrm{C}\), \(19-L, 20-P\).

Element 3:
1-True From the call of the company's founder, E. F. McDonald 9ZN (originally ZN -ith Radio Products).
2-True The experimental stations run by Armstrong in New York and New Jersey.

3-False It was the Titanic.
4-False KDKA in Pittsburgh, Pennsylvania.
5-True Harvard was a major training center for the War Department during the Great War.
6-False He was only 22!
7-True But he made up for it later.

8-False Hardly. He was the son of a Canadian minister.
9-False 1887.
10-True The one and only.
Element 4:
(Reading from left to right) MARCONI, EDISON, VOLTA; HERTZ, OHM, MORSE; AMPERE, FARADAY, TESLA.

SCORING
Element 1:
Four points for each correct answer.
Element 2:
Two points for each match.
Element 3:
Two and one-half points for each correct
answer.

Element 4:
Two points for each name unscrambled.

1-20 points-Still in the Dark Ages 21-40 points-Communicator
41-60 points-Radio cadet
61-80 points-Academician
\(81+\) points - Son of the pioneers

\section*{HAM HELP}

I need a schematic and any technical information on an SBE SB-144 two-meter crystal-controlled transceiver. I will pay any and all copying and postage costs.

> Dick Roux N1AED 25 Greentield Drive Merrimack NH 03054

Help! I now own a working NC-109 general-coverage receiver. I need information about it so that when it no longer
works, I can find out why. (Also, I may want to perform modifications to it.)
Also, I have been having a terrible time trying to connect a Western Electric \#1035C3A-type touchtone \({ }^{\text {TM }}\) pad to a 500 -type telephone set. Any help at all will be greatly appreciated.
Thanks a lot.

\section*{SATELLITES}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{RS-5} & \multicolumn{2}{|r|}{RS-6} & \multicolumn{2}{|c|}{RS-7} & \multicolumn{2}{|l|}{RS-8} & \multirow[b]{2}{*}{Date} \\
\hline UTC & EQX & UTC & EQX & UTC & EQX & UTC & EQX & \\
\hline = \(=\) = \(=\) & \(==\) & = & = & = & = & = \(=\) & - & =\#\#= \\
\hline 0142 & 172 & 0006 & 154 & 0028 & 155 & 0044 & 153 & 1 \\
\hline 0136 & 172 & 0150 & 182 & 0019 & 154 & 0041 & 154 & 2 \\
\hline 0131 & 172 & 0134 & 179 & 0009 & 153 & 0038 & 155 & 3 \\
\hline 0126 & 173 & 0119 & 177 & 0158 & 182 & 0036 & 156 & 4 \\
\hline 0120 & 173 & 0103 & 175 & 0149 & 181 & 0033 & 156 & 5 \\
\hline 0115 & 173 & 0048 & 172 & 0139 & 180 & 0030 & 157 & 6 \\
\hline 0110 & 173 & 0033 & 170 & 0129 & 179 & 0027 & 158 & 7 \\
\hline 0104 & 173 & 0017 & 168 & 0120 & 178 & 0024 & 159 & 8 \\
\hline 0059 & 174 & 0002 & 166 & 0110 & 177 & 0021 & 160 & 9 \\
\hline 0053 & 174 & 0145 & 193 & 0100 & 177 & 0019 & 160 & 10 \\
\hline 0048 & 174 & 0130 & 191 & 0051 & 176 & 0016 & 161 & 11 \\
\hline 0043 & 174 & 0114 & 188 & 0041 & 175 & 0013 & 162 & 12 \\
\hline 0037 & 174 & 0059 & 186 & 0032 & 174 & 0010 & 163 & 13 \\
\hline 0032 & 175 & 0044 & 184 & 0022 & 173 & 0007 & 164 & 14 \\
\hline 0027 & 175 & 0028 & 181 & 0012 & 172 & 0004 & 164 & 15 \\
\hline 0021 & 175 & 0013 & 179 & 0003 & 171 & 0002 & 165 & 16 \\
\hline 0016 & 175 & 0156 & 206 & 0152 & 200 & 0159 & 196 & 17 \\
\hline 0011 & 175 & 0141 & 204 & 0142 & 199 & 0156 & 197 & 18 \\
\hline 0005 & 175 & 0125 & 202 & 0133 & 198 & 0153 & 198 & 19 \\
\hline 0000 & 176 & 0110 & 199 & 0123 & 198 & 0150 & 199 & 20 \\
\hline 0154 & 206 & 0054 & 197 & 0113 & 197 & 0147 & 199 & 21 \\
\hline 0149 & 206 & 0039 & 195 & 0104 & 196 & 0144 & 200 & 22 \\
\hline 0144 & 206 & 0024 & 192 & 0054 & 195 & 0142 & 201 & 23 \\
\hline 0138 & 206 & 0008 & 190 & 0044 & 194 & 0139 & 202 & 24 \\
\hline 0133 & 207 & 0151 & 218 & 0035 & 193 & 0136 & 203 & 25 \\
\hline 0128 & 207 & 0136 & 215 & 0025 & 192 & 0133 & 204 & 26 \\
\hline 0122 & 207 & 0121 & 213 & 0016 & 191 & 0130 & 204 & 27 \\
\hline 0117 & 207 & 0105 & 211 & 0006 & 190 & 0127 & 205 & 28 \\
\hline 0112 & 207 & 0050 & 208 & 0155 & 220 & 0125 & 206 & 29 \\
\hline 0106 & 208 & 0034 & 206 & 0146 & 219 & 0122 & 207 & 30 \\
\hline 0101 & 208 & 0019 & 204 & 0136 & 218 & 0119 & 208 & 31 \\
\hline 0056 & 208 & 0004 & 201 & 0126 & 217 & 0116 & 208 & 1 \\
\hline 0050 & 208 & 0147 & 229 & 0117 & 216 & 0113 & 209 & 2 \\
\hline 0045 & 208 & 0131 & 226 & 0107 & 215 & 0110 & 210 & 3 \\
\hline 0039 & 209 & 0116 & 224 & 0057 & 214 & 0108 & 211 & 4 \\
\hline 0034 & 209 & 0101 & 222 & 0048 & 213 & 0105 & 212 & 5 \\
\hline 0029 & 209 & 0045 & 219 & 0038 & 212 & 0102 & 213 & 6 \\
\hline 0023 & 209 & 0030 & 217 & 0028 & 212 & 0059 & 213 & 7 \\
\hline 0018 & 209 & 0014 & 215 & 0019 & 211 & 0056 & 214 & 8 \\
\hline 0013 & 209 & 0158 & 242 & 0009 & 210 & 0053 & 215 & 9 \\
\hline 0007 & 210 & 0142 & 240 & 0000 & 209 & 0051 & 216 & 10 \\
\hline 0002 & 210 & 0127 & 238 & 0149 & 238 & 0048 & 217 & 11 \\
\hline 0156 & 240 & 0112 & 235 & 0139 & 237 & 0045 & 217 & 12 \\
\hline
\end{tabular}
\(521 / 2\) Washington Street Newburyport MA 01950

Help! I am a Novice and I need the manual (or a copy) for the Heath model HW-16 and any modification for HW-16, and also the manual (or a copy) for the Heath VFO-1. I will gladly pay postage and copying costs.

Edward Moiser KA2IVD 4376 Coolidge Rd. Coleman M1 48618

I need an operating or technical manual for a Nems-Clarke Spectrum Display Unit, model 200-3. The unit is a narrow-bandwidth spectrum analyzer, apparently used by the military to monitor the \(30-\mathrm{MHz}\) i-f output of UHF or microwave converters. I will pay reasonable copying costs.
My thanks to you for your service. I have utilized "Ham Help" once before and got
many offers of help, including long-distance phone calls. Since then, I have helped several others using your service.

\author{
Bob Lombardi WB4EHS 2046B Renee Place Melbourne FL 32935
}

I have been a subscriber to 73 for over twenty years. I now have a problem which you might be able to help me with. I am looking to locate a published article or other information concerning the effect of radio frequency transmissions on an implanted heart pacemaker.

Your help will be greatly appreciated.
Maurice J. Hindin W6EUV
10471 Le Conte Avenue
Los Angeles CA 90024

\section*{CORRECTIONS}

The address for the SW station in Norway, page 49, 73 for April, 1984, should be: Radio Norway, Oslo 3, Norway.

Roger N . Peterson New Canaan CT

Have you placed your vote for 73 's best advertisement of the month? To do so, simply turn to the reader service card and fill in the company name and reader service number.

\title{
73 INTERNATIONAL
}
from page 62
to be noted is that under the strong pres sure and reaction of the amateurs, the Post and Telecommunications Ministry (MPT), has warmly invited the ARI directors for a friendly exchange of opinions for the first time in italian radio-amateur history, openIng its golden doors to hams, it has made a descent from its throne, receiving their representatives and discussing their problems in the presence of the Minister of Posts, Senator Gava, and the MPT general manager, Dr. Monaco.

Together with beautiful words on the importance of the amateur-radio service, on its social values, etc., words which were absolutely unheard before, as a first step the MPT released the 160 -meter band, the 18 and 24 MHz bands, and promised the \(10-\mathrm{MHz}\) band (with some frequency limitations) in a very short time. Moreover, the MPT promised to authorize in very short time the 144 -and-up repeater network, the free transfers of stations, and mobile operation.

The more controversial matter appears to be the 3.5 MHz band, as the MPT pro poses for amateur use only a segment of 100 kHz . A very important and perhaps decisive meeting between the ARI and the MPT will take place soon. I hope to be able to announce a complete amateur victory in the next column.
The most important observation which should be made on this "Italian Affair" is that in a free and democratic country, the radio amateur's community, even if small, like any other citizen's community, can safeguard its own rights while fighting against forces which, at first, could be judged not suitable to be attacked, like powerful government agencies-telecommunications, military, etc.

The Italian amateurs, who had been judged weak and inoffensive by the administration (and just for that reason were kept for decades in a substandard position), suddenly raised a fierce and strong protest when the \(3.5-\mathrm{MHz}\) band was practically closed. The battle started from this point and was extended to the other controversial areas like repeaters, mobile operations, and so on.

Open discussions on these matters were kept on the air, a very sharp protest against the MPT, and the ARI, whose action was Judged weak and ineffective, then started writing in the technical magazines. Groups of amateurs, and I was among them, started to organize actions through radio, TV, newspapers, and weekly magazines. A petition with thousands of cards, tele grams, and letters was directed to the Pres ident of the Republic, Sandro Pertini. The echo of this big noise filtered through the MPT walls, and the MPT, surely fearing neg ative public opinion, suddenly changed its own behavior in such a way that it was the first to contact the amateurs in order to modify the clamor they were raising.

At present, we are strongly believing that almost all our targets will be hit.
I think that the "Italian Affair" will make history, and also I believe it should be studied deeply wherever similar problems arise in other countries.
interpretation of the rules relaxed some what in order to accommodate amateurradio operation of repeaters.
Q: How many times did you visit the Ministry of Posts and Telecommunications (MPT) before you finally succeeded?
A: On the average, I visited the MPT once a week. At the present time, there are 150 re peaters on the air in Japan. And there are 290 repeater applications on file which will be acted upon. So sometime this year there will be more than 3000 repeaters in operation here.
Q: There is a jamming problem on the re peaters, at least here in Tokyo.
A: Yes. Well, especially your club, TIARA has problems because your repeater is located on top of Hotel Okura, one of the highest points in Tokyo. The question is, what are we going to do about all the trouble we have been having with this repeater? I have talked to the MPT about this. What we are thinking is to add some repeaters around the hotel to cover almost the same area, so that the number of users on each repeater would be somewhat diluted. The TIARA repeater gets out so far and so well that it attracts a lot of users.
Q: We get the impression that because we are speaking English on this repeater, we are deliberately jammed. I can't imagine the same situation in America, although I have heard there are some jamming problems there, too.
A: Well, it's true that the TIARA repeater is having more trouble than other repeaters. And while it is true that English-speaking hams on that repeater do attract some troublemakers, it is not the main reason for the trouble. The main reason is that it is right smack in the middle of Tokyo, probably the world's most populous city, hamwise, at least. And it is at the highest point in Tokyo, so it covers a very wide area. We think that if a lot more repeaters go on the air in this area, most of the troubles will disappear.
Q: Did you hear about the incident the other night where employees of Hotel Okura ac tually apprehended a taxicab driver near the hotel who was jamming the repeater?
A: Yes, I heard about that. We know about that and other incidents, as well. We inform the MPT about all of these problems.
Q: Let's talk about the progress in the reciprocal license field.
A: We really thought we could accomplish a reciprocal agreement with the US in early 1982, but here it is 1984 and we haven't suc ceeded yet. The plan is to begin by having the first Japanese reciprocal agreement with America. Somehow or other we haven't been able to settle certain matters. So we don't have anything yet.

Q: I have heard that the ball is on the US side now. Is that right?
A: Well, actually the problem is here in Japan. In this country, we have a separate station license, separate operator's itcense, station inspection, and complicated application procedures. In America, you don't have to contend with all of those things. In Japan, to go on the air, there is a mountain of bureaucratic red tape to get through. In America, it's relatively simple, as it is in Germany, too. This is a very dif ficult problem to overcome.

Q: Do you think it is arrogant of the US to insist on Japan changing its rules to match the American side?
A: No, I don't. Reciprocal means "same." Same rules and procedures. So we're trying to come up with a way to simplify the procedures. The law was changed in the Japanese parliament in 1981, so the stage has been set. The problem now is how to apply the law and to work out details of applying
for permission and regulations and restrictions that will apply.
Q: So when do you think we can expect to see a reciprocal agreement with America? A: I had been hoping for March of this year, but some people are saying it won't come until June or July.
Q: Now on to other items. In 1958, the Ifcensing structure was changed dramatically in Japan with the introduction of a nocode class. This was an accomplishment of the JARL, wasn't it?
A: In 1982, when ham radio was again allowed in Japan after the war, we had only first- and second-class stations, with power limited to 500 and 100 Watts respectively. So the JARL came up with a plan, in 1957, to add two new classes, with power limited to 10 Watts. One was a phone, no-code license, and the other was a CW-only license. This was approved by the government in 1958.
Q: Did you play a part in this, Mr. Hara?
A: Yes, I was the main force behind that.
Q: When did you become president of the JARL?
A: Well, I was already involved with the JARL in 1941, and in 1946 I was working at the head office, although it is misleading to say "working," as I didn't receive any pay. At that time we were working on getting permission to have ham radio restored in Japan. I became a director in 1952, vicepresident in 1964, and president in 1970.
Q: So you have been president now for 14 years. Is it a satisfying job being president of the JARL?
A: Yes, I enjoy it very much, although it keeps me very busy.
Q: I know you are already very busy at Mitsubishi Heavy Industries in your regular occupation. What is your job there?
A. My title is Chief Engineer, Shipbuilding and Steel Structures Headquarters.
Q: So I would imagine that this job keeps you very busy.
A: Yes.
Q: How do you find time for the JARL activities?
A: It seems that I am on the go from morning until late at night. As for the company, if there is nothing special going on, I work from 8:00 am in the morning until \(10: 00 \mathrm{pm}\) at night. During those hours I squeeze in JARL affairs. The company is closed on Saturday, but if there is nothing for me to attend to at the JARL, I go to the Mitsubishi Heavy Industries office.
Q: Do you go to the JARL office every day? A: No, I don't, but I am in frequent contact with the JARL officials as necessary.
\(Q\) : is it true that most of the directors are retired MPT employees? I heard a rumor about that some time ago.
A: No. Not true. There are 20 directors, but not even one is from the MPT. Among those 20 directors we have one president, two vice-presidents, a general secretary, and 16 other directors, 10 of whom reside in the outlying call areas. The other six reside in Tokyo. Also there is one auditor.

\section*{\(Q:\) Do the directors receive a salary?}

A: No. Nothing.
Q: Are you, Mr. Hara, paid for your services? A: No. Nothing at all, In fact, I sometimes have to spend some of my own money. Even when the JARL holds a party, I have to pay the admission fee like everyone else. The directors are volunteers and don't receive a salary. But we have 140 employees in the headquarters here in Tokyo who are paid a salary.
Q: Are there any salaried employees in outlying areas?
A: In the JA2 area there are three; in the 3 area there are eight; in the 4 area there are

\title{
Kantronics Interface II The Interface For Apple, Atari, TI-99/4A, TRS-80C, VIC-20, and Commodore 64 Computers
}


Interface II is the new Kantronics transceiver-tocomputer interface. Interface II features a highly sensitive front end with mark and space filtering. Even the most discerning operator will be surprised with the Interface II's ability to dig out signals in poor band conditions. Our unique tuning system even displays signal fading.
\(\mathrm{X}-\mathrm{Y}\) scope outputs and dual interface outputs for VHF and HF connections make Interface II compatible with almost any shack. All three standard shifts are selectable, and Interface II is AMTOR compatible. Interface II is designed for use with Kantronics software.

\section*{Kantronics Software - The Industry Standard}

\section*{Hamsoft}

Our original program for reception and transmission of CW-RTTY/ASCII. Features include Split Screen Display. Message Ports. Type-ahead buffer, and printer compatibility. Apple Diskette \(\$ 29.95\), VIC-20 cartridge \(\$ 49.95\), Atari board \(\$ 49.95\). TRS-80C board \(\$ 59.95\). T1-99/4A cartridge \(\$ 99.95\).

\section*{Hamtext}

All the features of Hamsoft with the following additional capabilities: text editing, received message storage. variable buffer sizes, diddle, word wraparound, time transmission. and text transmission from tape or disc. The program is available on cartridge for the VIC-20 or Commodore 64, and diskette for the Apple. Suggested Retail \$99.95.

\section*{Hamsoft/Amtor}

This program has Hamsoft features with the added ability of communicating in the newest coded amateur format-AMTOR. AMTOR offers error free low power communication. Hamsoft/Amtor is available for the Atari. TRS-80C. VIC-20, and Commodore 64 computers. Suggested Retail \$79.95.

\section*{Amtorsoft}

For the serious AMTOR operator using a VIC-20. Commodore 64, or Apple computer. This program is similar to Hamtext in capabilities, but can only be used for AMTOR. The Apple version includes both Hamtext and Amtorsoft on one diskette (\$139.95), while the Vic-20 and Commodore 64 cartridge is just Amtorsoft (\$89.95).
two; in the 5 area there are two; in the 6 area there are three; and so forth. Those people receive a salary from the JARL Total for the year is about \(400,000,000\) yen.
Q: One of the recent accomplishments has been in the area of amateur examinations given in this country. It used to be that Japanese could take the exam only twice a year. But the JARL succeeded in expanding the exam schedule. Did you play a part in that, Mr. Hara?
A: Yes, I did. I suggested to the Ministry that they give the examinations every day instead of twice a year. But they said money was the problem. Thereafter, a separate entity was established called the "Examination Center" to which the JARL contributed \(100,000,000\) yen. This was established in Tokyo only, but soon there will be examination centers like that throughout the country.

Q: On a different subject, I have heard Japanese as well as foreign hams state that one of the problems here is the large number of Novice phone-class hams and their bad behavior at times. What do you think about that?
A: I don't agree with that at all. It depends on the individual, not merely on the class of license they happen to hold

Q: Mr. Hara, when did you first become interested in ham radio?
A: I first became interested in ham radio in 1938 and I became a ham in 1952, with my present callsign, JA1AN.

Q: May I ask how old you are?
A: I am 57; I was born on September 26 , 1926.

Q: What bands are you active on, Mr. Hara? A: Well, I'm too busy to be very active on the air, but when time permits, I like to get on 6 and 2 and 430 MHz .

Q: Are there any other hams in your family, Mr. Hara?
A: There certainly are. My wife, Yoshiko, is JA1ECQ, my daughter, Hisako, who is married and has a child, is JG1QIK, and my son Keizo is JG1WTK
Q: Do you have any hobbies besides ham radio?
A: Yes, I am an equestrian. I like to ride horses and I belong to a riding club, and I ride whenever I can find the time.
Q: On behalf of 73 magazine, I'd like to thank you for taking the time from your busy schedule to talk with us today.
A: Thank you. It was my pleasure.


\section*{LIBERIA}

Brother Donard Steffes, C.S.C
EL2ALWBBHFY
Brothers of the Holy Cross
St. Patrick High School
PO Box 1005
Monrovia
Liberia
AMATEUR RADIO IN LIBERIA
It is not difficult for an American to obtain an amateur-radio license in Liberia. If he holds an American license that is current, he simply presents it at the Ministry of Post and Telecommunications and receives the equivalent Liberian license. Under normal circumstances this can happen within twenty-four hours. If he does not hold a current American license, he will receive his Liberian license upon having passed examinations in international Morse code and in amateur-radio theory. The theory examination consists of basic us of basic
electronics, national and internationa regulations concerning amateur radio, and common amateur practice. In general, these tests are very similar to those given in the States.
Regulations and procedures for obtaining amateur licenses differ from one country to another, and it is not surprising that some countries restrict the privilege of operating amateur radio to their own citizens. An expatriate simply cannot obtain a 1 i cense at all. It is necessary, therefore, for any given country to investigate the requirements of that country.

The office of the Ministry of Post and Telecommunications of Liberia is located
in the post office building in Monrovia. It is open every working day and there is always someone there to give service or direction.
If the person who is seeking an amateurradio license is in need of instruction, he may go to the Ministry and make known his needs. They will direct him to a place where instruction is available, and it is free. There are two organized classes in amateur radio In Monrovia each year, and individual instruction is available for anyone who is not able to attend one of the classes. Like courses are being organized in some of the other cities.
In Liberia, the amateur-radio association has been entrusted with the task of


Nipkov disk in action

A. Meijer and homemade gear.
instructing and testing applicants for an amateur license. The president and his officers are very generous with their time and will schedule an examination for one person if the need arises! Whatever the case may be, when an applicant has passed the examinations, the exam papers with the grade are sent to the Ministry along with a letter recommending that the applicant be given his license and call letters, and this is usually done within a day.
In this country, there are only two classes, the Novice and the General. The Novice class has privileges similar to the Novice class in the States-with one notable exception. Here, the Novice may operate phone at 7.060 MHz ; this is the frequency used by the West African Net and so allows the Novice to take part in the net activities. In Liberia, this becomes very important because the net is a vehicle for passing messages from one part of the country to another.
The General class has all the privileges which are allowed to amateur radio in Region I. There is no higher amateur license in Liberia. It is a fact, however, that when a Liberian General license is presented for the equivalent American license under the reclprocal agreement between the two countries, it is the American General license that is awarded, not the Extra.
There are many Americans who come to Liberia and establish residence for two or three years-or for much longer. The greatest number of these are missionaries, but there are also Peace Corps volunteers and businessmen as well as members of the diplomatic service. Many of these people look to amateur radio as a means of keeping in touch with home. This article should be a real help to them. On a much broader spectrum, chances are that American amateurs will enjoy just knowing how it is done in another country.
Should anyone wish further information, please feel free to write to me personally at the address given above.


\section*{THE NETHERLANDS}

Henk Meerman PDODDV
Zandvoorterweg 33
2111 GR Aerdenhout
The Netherlands
In the December, 1983, issue of this magazine, I told you about the NBTVA (the Narrow Bandwidth Television Association), a club with only a handful of enthusiastic members with two things in common: ham radio (most of the NBTVA members are hams) and a desire to construct mechanical television equipment.
The parts that they use are Nipkov disks, mirror drums, motors, etc. As a member of this association, I made a recent visit to the meeting that they hold once a year. This year the meeting was held in the southern part of my country, in the city of Eindhoven. I'll give you a full report of what there was to see.

On the 18th of March, some fellow hams and my YL and myself, of course, drove by car to Eindhoven. Because it was on an early Sunday morning when we started, it was very quiet on the roads and that's why we had a safe journey to Eindhoven and the club where the meeting was. All we had was the address, but, as promised, a friendly operator was listening for any visitors, and when we gave a shout on 145.15 MHz , we got an immediate response from PA@PWA, who talked us to the right spot.

\section*{DIRECTION FINDING?}
\(\star\) Doppler Direction Finding
\(\star\) No Receiver Mods
\(\star\) Mobile or Fixed
\(\star\) Kits or Assembled Units
\(\star\) 135-165 MHz Standard Range

\(\star\) Circular LED Display
* Optional Digital Display
* Optional Serial Interface
* 12 VDC Operation * 90 Day Warranty

New Technology (patent pending) converts any VHF FM receiver into an advanced Doppler Direction Finder. Simply plug into receiver's antenna and external speaker jacks. Use any four omnidirectional antennas. Low noise, high sensitivity for weak signal detection. Kits from \(\$ 270\). Assembled units and antennas also available. Call or write for full details and prices.

DOPPLER SYSTEMS,
5540 E. Charter Oak,
Scottsdale, AZ 85254
(602) 998-1151
\(-425\)

\section*{With SmART PATEH} You are in CONTROL


> With CES 510SA Simplex Autopatch, there's no waiting for VOX circuits to drop. Simply key your transmitter to take control.


SMART PATCH is all you need to turn your base station into a personal autopatch. SMART PATCH uses the only operating system that gives the mobile complete control. Full break-in capability allows the mobile user to actually interrupt the telephone party. SMART PATCH does not interfere with the normal use of your base station. SMART PATCH works well with any FM transceiver and provides switch selectable tone or rotary dialing, toll restrict, programmable control codes, CW ID and much more.

> To Take CONTROL with Smart Patch - Call 800-327-9956 Ext. 101 today.

COMMUNICATIONS ELECTRONIC SPECIALTIES, INC.
P.O. Box 2930 • Winter Park, Florida 32790

Phone (305) 645-0474 • Order Only (800) 327-9956


A. Meller and his Nipkov disk.

A. Melier and his NBTV monitor.

When we entered the bullding, we got a warm welcome from Mr. A. Meijer, the president of NBTVA, and his wife. He had brought some nice gear: a camera and separate monitor, both with Nipkov disks, all homemade and all in working condition. Most members use Nipkov disks made by Mart Schouten PAOMJS.
Mart, who in daily life is a mechanical designer, makes the Nipkov disk with an almost unbelievable accuracy. He uses aluminium for less weight. Since it is a hell of a task to make a good Nipkov disk, most of the members knock on Mart's door to buy one from him.
Mart brought a single monitor (television) with an antiquestyle wooden cabinet and a combined camera/monitor which was a real piece of craftsmanship. We also had a chance to see a part of the original equipment as used in the early days of TV by PA0DXY. PA0DXY made broadcasts with narrowband TV in 1935 and 1936. Before we went home, I got good advice from Mart about how to improve my equipment, and I bought one of his new-design disks.

\section*{THE EVOLUON}

Being in Eindhoven, we took the opportunity to visit the Evoluon. Evoluon is the name of a building where a permanent exhibition is held about science, communications, computers, energy, and mathematics. When you visit Holland, it is a must to see it. It gives you a good example of the state of the Dutch electronics industry to day, and it is presented in a popular way so that even minors can enjoy it.
The Evoluon is owned by Philips Company, the well-known manufacturer of elec. tronic equipment in Holland. It has its own amateur-radio station with the callsign PE2VO; it is active on most of the ham bands.

After this visit we drove home, arriving at 6:00 pm. We looked back on a very interesting and nice day, although we were all a little bit tired because we had an early start.


\section*{NEW ZEALAND}

Des Chapman ZL2VR
439 Kennedy Road
Napler
New Zealand

\section*{SIX METERS DEADI}

\section*{SUNSPOT CYCLE 21 GONE}

That's what everyone was saying, but after the ZL summer "silly" season, six meters is far from from dead, even if sunspot cycle 21 has gone. From Kerry ZL2TPY, New Plymouth, this report on some of the six-meter activity over the period mid December to the end of February shows that 6 was very active in this area.
Within that period, Kerry worked about 720 QSOs with just over 200 different stations in 29 countries, which included VKs 1 through 6, 8, and 9, JAs 0 through 7, FK8 FK0, H44, 3D2, YJ8, ZL8, ZL4/C, and all ZL Districts. All the contacts were worked using 10 Watts USB into a home-brew 5 element yagi, 50 feet up on a hill, one mile from the sea at New Plymouth.

New Plymouth, on the west coast of ZL's North Island, appears to be the "Hawail of the South" for ZL-VK contacts. (It must be the iron sands or Mt. Egmont attracting the signals.) Many VKs commented that ZL2TPY was the first and last signal heard each day on 6 meters from ZL and one of the strongest stations heard in many years.

The same location appears to be favorable also for 2 meters and 70 cm with over 50 VK2 and VK4 2 -meter SSB simplex contacts notched so far.
As this sunspot cycle 21 dies away, spo radic- \(E\) and \(F_{2}\) were thought to increase, which seems to be borne out by this year's summer activities, and ZL1MQ, one of our long-standing 6 -meter enthusiasts, says it's the most intense sporadic-E summer he's known in 30 years of 6 -meter work.
Some of the highlights of Kerry's summer activities included working backscatter propagation on several occasions with VK and ZL. stations; the QRM and pileups on 51.1 MHz with JA were just about unbelievable-about 20 times worse than a DX Field Day contest on HF. Of the back-scatter contacts, Kerry worked VK2DFW, both beaming \(260^{\circ}, 5 / 7-5 / 9\) signals for about 10 minutes, no signals at all beaming direct, and on a couple of occasions made contacts west to east coasts of the North Island lasting about 45 minutes, all stations beaming \(30^{\circ}\), again with no direct-path signals whatsoever. On another occasion, back-scatter was found in all directions for more than two hours, and Kerry was able to work ZL1BXH, Kaitaia, about 400 miles to the north in a direct line, both stations beaming north for a QSO which lasted about 20 minutes.
As Kerry says, "A most exciting and unpredictable band, 6 meters, and it's not dead yet."
Another possible first during all this 6 -meter activity was the ZUNK YL-to-YL QSO when Mary VK4PZ, Rockhampton, Queensland, worked Carol ZL2VO at Kerry's QTH in New Plymouth. Another 6 meter report from Bill ZL2CD, a long-time 6 -meter man, confirms Kerry's information. Bill says the summer's sporadic-E season was one of his best for many years, with the appearance of some rare DX stations. The large number and the intensity of the openings made the band more like 20 than 6 at times.
In all, during December, Bill worked numerous VKs on 24 of the 31 days in the month, as well as the following DX stations: VK0 (McQuarrie Island), VK9 (Norfolk Island), ZL4/C (Chatham Islands), FK8, P29, 144, JA, and FO8. The most common VK beacon that Bill ZL2CD in Wellington could copy almost every day in December was VK2RSY, 52.42 MHz , as well as the VK television sound on 51.74, 51.75, and 51.76 MHz .
And still with the very high frequencies, another oid ZL record was broken on January 15,1984 , when the 19 -year old 144 MHz overseas record changed hands. ZL3AFN, Westport, South Island, made contact with H44SR, Malaita, Solomon Islands, a distance of 3769 km ( 2341 miles), but before the record can be ratified, confirmation has to be received of the QSO.

\section*{BITS ' \(N\) ' PIECES}

By the time this column goes to press, the successful Kermadec DXpedition will be an historical event. They are there at the time of this writing and have ZLs 1AMO/ 8AMO (Ron), 1BQD/BBQD (Rolly, 1AASI 8AAS (John), and ZLOAJW/B, otherwise known as W6REC (Deane Ausherman, who was invited to take VK9NS's place) in the DX team. From the sounds on the bands, they are being made to work hard and long, but then that's what DXpeditions are all about when the country is so sought after by amateurs all over the world. I did hear that one member of the team fell asleep during a personal QSO with home, and as you can imagine, that didn't do down too well with the XYL But all was rectified with a phone call the next day when he was refreshed and awake.


\section*{ASCII—USA/AX. 25 HDLC CONVERTER}

USAIAX. 25 is the AMRAD approved digital format STANDARD used on amateur packet radio networks.
PAC/NET board only
\(\$ 80.00\) Assembled/Tested. NoICs. 90 day warranty
Package of all IC s except 2-2716 EPROMs
\(\$ 80.00\)

PACINET SYSTEM
PAC/NET SYSTEM \(\$ 240.00\)
System Tested \(4.5 \times 6\) " board complete with all IC s and programmed EPROMS personalized for each purchaser. Requires only single \(8-10\) volt \(1 / 2\) amp power. 1 year guarantee of hardware/software/AX. 25 standard RS232 serial ASCII at any user baud rate.RS232 HDLC for 202 modem used for AFSK or direct to RF equipment for FSK.

Custom Systems Custom Programming
Bill Ashby
AND SON
K2TKN-KK2OEG 201-658-3087
BOX 332 PLUCKEMIN N.J. 07978

\section*{CALL LONG DISTANCE ON YOUR HANDHELD}

The Model 335A will deliver 35 watts of power using the latest state-of-the-art circuitry. The amplifier will operate SSB or FM and is compatible with most handheld transceivers, including the TR2400, TR2500, IC-2AT, Yaesu, Santec, and TenTec. Only 300 mw input will deliver 5 watts out; 3 watts in will deliver 35 watts out. Maximum input drive level
 Our products are backed by prompt factory service and technical assistance. To become familiar with our other fine products in the amateur radio market, call or write for our free product and small parts catalog.

Model 335A
Kit \$69.95
Wired \& Tested \$89.95


REPEATER
OONTROLLER


\section*{PAGING}

Ever want to turn your radio off to cut out the chatter on your busy repeater? Now you can and still be available. While you're at work or with the family, you can be "on call" with the RC-850 Repeater Controller and a pocket pager.
"About 20 of our users have pocket pagers", says K1DR. "Carrying a pager is more convenient than taking an HT everywhere. And we don't have to monitor the repeater all the time. When someone wants us, they just activate our pager and we can get on the air."
The RC-850 controller can activate pocket pagers retuned to amateur frequencies in response to your Touch-Tone commands. Two-tone sequential signalling, including group call tones can be generated that are compatible with lots of low cost surplus tone and tone/voice pagers. Now, our Version 3 Firmware supports the five tone sequential format as well, opening another wave of low cost surplus pagers compatible with your system.
And if you're looking for the ultimate in convenience and high technology, the RC-850 controller also supports display paging, using the HSC tone signalling format, compatible with any existing repeater system. Display pages allow you to leave a telephone number, or a time and a frequency, or any other numeric message in a friend's pager. Even repeater generated messages, such as the site alarms, can leave messages in your display pager.
Paging - one of the innovative features of the RC-850 controller that's changing what repeaters are all about.

The RC-850 Repeater Controller's autopatchACC's solutions to old problems with innovative state-of-the art technology.

Call or write for detailed specifications
 advanced computer controls, inc.

\section*{1984 CALLBOOKS}


\section*{Order today! \\ NEW 1984}

\section*{RADIO AMATEUR CALLBOOKS}

Known throughout the world for accuracy, the 1984 Callbooks are a better value than ever before. The U.S. Callbook contains over 433,000 listings; the Foreign Callbook has over 413,000 . More than 100,000 changes have been made in each edition since last year. Special features include call changes, Silent Keys, census of amateur licenses, world-wide QSL bureaus, international postal rates, prefixes of the world, and much more. You can't beat this value! Order your 1984 Callbooks now.
\begin{tabular}{lrrrr}
\hline & Each & Shipping & Total \\
\hline U.S. Callbook & \(\$ 19.95\) & \(\$ 3.05\) & \(\$ 23.00\) \\
Foreign Callbook & 18.95 & 3.05 & 22.00
\end{tabular}

Order both books at the same time for \(\$ 41.95\) including shipping within the USA.

Order from your dealer or directly from the publisher. Foreign residents add \(\$ 4.55\) for shipping. Illinois residents add \(5 \%\) sales tax.

Keep your 1984 Callbooks up to date. The U.S. and Foreign Supplements contain all activity for the previous three months including new licenses. Available from the publisher in sets of three (March 1, June 1, and September 1) for only \(\$ 12.00\) per set including shipping. Specify U.S. or Foreign Supplements when ordering. Illinois residents add \(5 \%\) sales tax. Offer void after November 1, 1984.

\section*{RADIO AMATEUR ||book INC. \\ Dept. B}

925 Sherwood Dr., Box 247 Lake Bluff, IL 60044, USA

\footnotetext{
\(-61\)
4-6600
VISA
mastercory
}

But, remember, if you failed to work this group, don't forget Warwick ZL8AFH is resident on Raoul as a member of the Met station team located there, and, work load permilting, he will be operating as often as he can for several months yet. We all hope his rig troubles reported in the Australian col umn in the April 73 have been resolved.

The Kermadec islands are situated about 600 miles northeast of ZL , and apart from the Meterological Station, are an uninhabited Nature Flora and Fauna Reserve area administered by the New Zealand Lands and Survey Department. The largest northern-most island, Raoul Island, the location of the Met Station, is also known as Sunday island ( 7260 acres of volcanic origin with a large crater occupying much of its area). Though the highest point is only 1760 ', its surface is broken by deep ravines and rocky spurs that end at the sea as steep cliffs, which make landing a very difficult operation. The Met Station is serviced once each year by boat for main stores, etc., but there are periodic servicings of the station with mail and consumable stores by air drop from an Air Force Transport plane.

The DXpedition group travelled to the Kermadec islands aboard the 15.5 -meter yacht, Shiner, captained by an Englishman, John Taylor. Besides the amateurs, there were five scientists from Auckland University on board led by Dr. John Craig, who intended to carry out scientific studies on Raoul island. Landing at Raoul island is always extremely difficult because there is no safe beach area, shelter, or anchorage, but only rocky steep cliffs right to the water's edge and difficult sea swells most of the time. It is possible to tand only in good weather conditions. After unloading is completed, the crew of the boat must stay aboard at all times in order to move the boat out should the weather deteriorate.

A few days after the party had arrived and established itself on Roaul, the weather caused the yacht's captain to move from the area near the Met Station around to the southwestern coast of the island to Boat Cove to shelter. However, the wind and seas increased and forced the Shiner onto the rocks at Boat Cove. The crew was able to land safely, but the Shiner's ferroconcrete hull was badly holed and the yacht is now a writeoff.

Plans have now to be made to evacuate the yacht's crew, the team of scientists, and the amateur DXpedition from the island when a suitable vessel is available to be diverted to Raoul Island to effect the rescue operation.

Over the years there have been amateur operators serving with the Met Station team, but the first occasion that Raoul island was put on the air was in 1947 when Lew Sharman ZL2IC of Napier, then ZLITZ, the Post Office radio operator with the station team, fired up the station CW transmitter on 80 and 40 meters. Later, after pondering how to get on phone with a CW-only transmitter, Lew found a way to use the modulator of the long-wave phone transmitter sitting next to the HF CW rig he was using to allow him to operate 80 phone as well. The method used (not recommended normally, of course) was to couple the HT from the CW transmitter to the modulator of the LW transmitter via a twin power cable and a wafer switch and so modulate the CW transmitter with the LW rig's modulator, Lew had many enjoyable QSOs from April to the end of the year when his tour of duty on Raoul Island ended. He was forlowed by another amateur in the 1948 team, when George Bourne ZL8UO was stationed on the island, but George was not very active during his tour of duty.

Old-Timers Club 50 -year certificates were issued recently to O. W. Martin ZL2OZ of Dannevirke and C. J. Barnes ZL2OH of Masterton, marking milestones in their respective amateur careers.


\section*{POLAND}

Jerzy Szymczak
78-200 Bialogard
Buczka \(2 / 3\)
Poland

\section*{FM IN POLAND}

Very popular in West Europe is a developed system of relay-station communication on ultra-short waves. Phased-out professional USW equipment usually gets to hams. Radiotelephones working on 144 MHz are no longer taken to pieces but are returned and used as local communications facilities. The USW Convention in Krzeszowice allocated frequencies of the FM subband 144 MHz to each province of Poland. This enabled directional antennas for attempts at long-distance communications and reduced the number of radiofrequency interferences.

The Polish firm Omig produced, and PRAA (Polish Radio Amateurs Association) distributed, several hundred sets of quartz-
crystal resonators for different frequency channels. During several years of FM activity, Polish radio amateurs established many local contacts using nondirectional antennas with vertical polarization. They have been using radiotelephones as auxiliary means of communication trying to work on CW and SSB, too.

To not have too many irons in the fire, the greatest number of channels for every transceiver is necessary. Some attempts with variable-frequency oscillators or frequency synthesizers have been made. But at present it is not even possible to increase the number of channels by reduc tion of frequency spacing from 25 MHz to the European standard, 12.5 kHz , by reason of too broad quartz-crystal resonators or lack of them. The PRAA is going to repeat the order for crystals from Omig to improve the situation in some measure. For the time being, only one relay station, SR9E, working on RO channel (input 145 MHz , output 145.6 MHz ) enables a few hams to increase the range of their communication on the \(144-\mathrm{MHz}\) band. Polish hams expect that in the future they will be able to get newer types of radiotelephone and quartz-crystal resonators for 10.7 MHz , with frequency spacing at 12.5 kHz . This would create new possibilities.

\section*{NEWS HEADLINES}

State Radio Surveillance informed PRAA of rules of operational use of the amateur band, 1.8 MHz . The interval between 1830 and 1850 kHz is available for holders of the


DXpedition to Berlenga Island, CTOBI. From left, Luiz CT4NH, Paulo CT4UW, Commander Patricio, and Paiva CT1AFN, REP's vice-president.
first-class licenses without limitation of power. The intervals between 1750 and \(1800 \mathrm{kHz}, 1810\) and 1830 kHz , and 1850 and 1930 kHz can be given if seriously requested by interested individuals.
Licenses are being brought up to date in great numbers although there are some cases of refusals. The main Verification Board at PRAA took over the function of Appeals Committee.
Work on a revision of articles for PRAA has begun.
The Presidium of PRAA has initiated preparations for elections for the National Congress of PRAA.


PORTUGAL
Luiz Miguel de Sousa CTAUE
PO Box 32
S. Joao do Estoril

2765 Portugal

\section*{QRZ. THIS IS CTOBI,} BERLENGA ISLAND, QRZ
As we said before, REP members CT1AFN, CT4NH, and CT4UW were active from Berlenga Island. We just received an update report about that event.
Having our very successful conversations with the Portuguese Navy and local telecommunications authorities, we got the necessary permission to operate from Berlenga Island (a natural reserve where one can find thousands of seagulls, rabbits, one donkey-known as Gerusaand its favorite food, a very rare specimen of little flowers) with the special (very) callsign, CT0BI. It was assigned for the first time ever, so was a new one for everybody; also, the island was valid for the IOTA Award, with IOTA's reference number being EU-40.
Berlenga is the biggest of a group of islands (Archipelago das Berlengas) 10cated 8 miles off the west coast of Portugal, at the location of the city of Peniche (50 miles north of Lisbon). It is famous for the surrounding transparent waters, making it the ideal spot for underwater exploration. There are monumental grottos like cathedrals of rock that in some cases cross through the island from one side to the other. It is 800 meters long and 300 wide, with the highest point at about 80 meters, where a lighthouse is located, under Navy jurisdiction.

Paulo CT4UW, Paiva CT1AFN, and I, and Frigate Commander Patricio, representing our sponsor (the Portuguese Navy), left for Berlenga in an old fishing boat, the liha da Berlenga, in bad weather-it was raining. with high winds, and the Atlantic Ocean was very hungry! After an hour of travel, we faced the problem of carrying all boxes, bags, masts, antennas, cables, etc., two miles to the top of the island. Fortunately (for us), Gerusa, the fat donkey, stopped for a while to eat those rare flowers and helped us with that job.
Very soon after our arrival, CT4UW and Patricio were erecting our TH3JR on the top of an existing \(40^{\prime}\) aluminum tower, still under strong winds and rain. In the meanwhile, I put up 40 - and 80 -meter half-wave dipoles, hanging them from the top of the lighthouse.

On March 14, at dawn, commemorating our first evening on the island, we experienced a terrible storm and a lightning hit directly on the top of the lighthouse, exactly 40 meters from the place we were sleeping! Fortunately, all rigs were left discon-

\section*{ \\ THE FIRST NAMEIN ELEGTRONIC TEST GEAR}


\section*{NEW FROM RAMSEY-20 MHz DUAL TRACE OSCILLOSCOPE}

Unsurpassed quality at an unbeatable price, the Ramsey oscilloscope compares to others costing hundreds more. Features include a component testing circuit that will allow you to easily test resistors, capacitors, digital circuits and diodes - TV video sync filter • wide bandwidth \& high sensitivity • internal graticule \(\cdot\) high quality rectangular CRT
- front panel trace rotator \(\bullet Z\) axis • high sensitivity \(x-y\) mode \(\bullet\) very ow power consumption \(\bullet\) regulated power supply \(\bullet\) built-in calibrator - rock solid triggering \(\bullet\) high quality hook-on probes
\(\$ 39995\)



\section*{RAMSEY D-1100 VOM-MULTITESTER}

Compact and reliable, designed to service a wide variety of equipment. Features in clude • mirror back scale - double-jeweled precision moving coil • double overload protection - an ideal low cost unit for the beginner or as a spare back-up unit
\(\$ 1995\)
test leads and battery
included


RAMSEY D-2100 DIGITAL MULTITESTER
A compact easy to use unit designed to operate like a pro. Featuring indicator - all range overload protection e overrange indi cation - auto-polarity - Transistor tester - dual-slope integration - vinyl carrying case
\$5495
\(h_{\text {FE }}\) test leads, battery \& viny carrying case included


RAMSEY D-3100 DIGITAL MULTIMETER
Reliable, accurate digital measurements at an amazingly low cost e In-line color coded push buttons, speeds tilt stand e recessed input jacks - overload protection on all ranges - \(31 / 2\) digit LCD display with auto zero, auto polarity \& Iow BAT indicator
\(\$ 5995\)
test leads and battery included


CT-70 7 DIGIT 525 MHz COUNTER

Lab quality at a breakthrough price. with pre amp - dual selectable gate times - gate activity indicator - \(50 \mathrm{mV} @ 150 \mathrm{MHz}\) typical sensitivity - wide frequency range - 1 ppm
accuracy

\section*{\$11995}
wired includes AC adapter
CT-70 kit .......


\section*{DM-700 DIGITAL MULTIMETER}

Protessional quality at a hobbyist price. Features include 26 differen ranges and 5 functions e \(31 / 2\) digit, \(1 / 2\)
inch LED display automatic decimal inch LED display e automatic decim placement • automatic polarity

\section*{\(\$ 11995\)}
wired includes AC adapter
DM-700 ki
\(\$ 99.95\)
4.95


CT-90 9 DIGIT 600 MHz COUNTER
The most versatile for less than \(\$ 300\) Features 3 selectable gate times • 9 - 25 mV @ 150 MHz typical sensitivity - 10 MHz timebase for WWV calibra-

\section*{\$14995}
wired includes AC adapter
CT-90 kit .
\(\$ 129.95\) OV-1 0.1 PPM oven timebase . . 59.95


PS-2 AUDIO MULTIPLIER
The PS-2 is handy for high resolution audio resolution measurements, multone measurements • multiplies by 10 or \(100 \cdot 0.01 \mathrm{~Hz}\) resolution \& built-in signal preamp/conditioner

\section*{\$4995}
wired

PS-2 kıt
\(\$ 39.95\)


\section*{CT-125 9 DIGIT} 1.2 GHz COUNTER

A 9 digit counter that will outperform units costing hundreds more. - gate sensitivity•9 digit display 1 ppm accuracy - display hold • dual inputs with preamps

\section*{s16995}
wired includes AC adapter
BP-4 nicad pack ................... 8.95


\section*{CT-50 8 DIGIT} 600 MHz COUNTER
A versatile lab bench counter with optional receive frequency adapter which turns the CT-50 into a digital eadout for most any receiver - 25 mv 150 MHz typical sensitivity -8 digit splay • 1 ppm accuracy

\section*{\(\$ 16995\)}

\section*{wired}

CT-50 kit . . . . . . . . . . . . . . . . . . . . \(\$ 139.95\)
RA-1 receiver adapter kit ........ 14.95


PS-1B 600 MHz PRESCALER
Extends the range of your present counter to 600 MHz • 2 stage preamp 25 mV (a) 150 MHz e BNC connectors - drives any counter

\section*{\(\$ 5995\)}
wired includes AC adapter
PS-1B kit

TERMS: - satistaction guaranteed • examine for 10 days: if not pleased, return in original form for refund • add \(6^{\circ}\). for shipping and insurance to a maximum of \(\$ 10.00\) • overseas add \(15^{\circ}\) a for surlace mail • COD add \(\$ 2.50\) (COD in USA onlV) - orders under \(\$ 15.00\) add \(\$ 1.50\) • NY residents add 7 " sales tax • 90 day parts warranty on all kits - 1 year parts \& labor warranty on all wired units.
\begin{tabular}{|c|c|}
\hline  & \begin{tabular}{l}
RAMSEY ELECTRONICS, INC. \\
2575 Baird Rd. \\
Penfield, N.Y. 14626
\end{tabular} \\
\hline
\end{tabular}
nected from antennas and power, so we had no damage, contrary to what happened in the lighthouse where all the electric cables and motors were burned.
Due to the fact that we were authorized to use the CT0BI call only on March 16, 17, and 18 , we spent two days visiting the island with its marvelous landscapes and fishing and finished final details in our shack, located in the ex-radio room of the lighthouse.
Our rigs (FT-107M, FT-DX500, FT-101E, Drake VHF gear, etc.) looked very insignificant next to the Marconi transmitters and respective power supplies. Like big refrigerators, they "looked" at our Yaesu gear with a glance of superiority.

Testing 40 and 80 , we noticed a high static level (crown effect in all coax cables) which led us to reduce our activity on those bands, avoiding burnout of the finals, saving them for the other 3 bands.
Our meals were splendid because our friend, Commander Patricio, was definitively a super cook! Dish of the day: beans.
At 0000 Friday the 16 th, we began CT0BI operation. The first QSO on 40 was with CT1ALF

To be on the other side of the pileup (a sensation already experienced by the author during contests) was a new experience for the other two fellows, CT4UW and CT1AFN, respectively on HF and VHF, where they proved to be keen operators.
Being called by "hot DX" like HV3SD, T77V, and UVs on 40 , plus being asked about QSL information... it's too much! We made 4071 QSOs, 1152 of them with US hams, a score possible due only to the fact that they really were very good operators.
The nice QSL cards were graciously offered by the Municipality of Peniche, and to end the story, I would like to thank Fonseca CT1CGO, who helped us from the beginning.
QSL information for CT0BI: CT4NH and CT4UW.
A brand new QSL card has been published by the Portuguese National Tourist Office, to be distributed free to licensed hams in this country. The front cover shows us a portrait of an antique map, as background, and an old Portuguese caravel of the 15 th -17 th century period. This color card has a very fine look, and we're really hoping for a second issue. Another effort of REP and PNTO,


\section*{WSLFL VISITED SWEDEN}

Together with other astronaut colleagues, Dr. Owen Garriott W5LFL visited Sweden early in February. It was a short stay without publicity, but Radio Sweden International had a brief interview with Dr . Garriott on the DX program, "Sweden Calling DXers," on February 28, SCDX is aired every Tuesday as a regular and very popular DX program on shortwave.

Owen Garriott had been in Sweden once before, in 1953, when he was in the Navy aboard the Vincennes. On both occasions, W5LFL and Henry SM5WK met each other in Stockholm. Over 30 years had passed be tween these two meetings. Friendship through ham radiol isn't it fantastic?

\section*{NRAU MEETING IN STOCKHOLM}

The member societies of the Nordic Radio Amateur Union, NRAU, are EDR Denmark, FRA Faroe Islands, IRA Iceland, NRRL Norway, SRAL Finland, and SSA Sweden. This time SSA hosted the meeting held in Stockholm on March 17 and 18 1984. It is of great value to get together and to be able to discuss common matters on a personal basis. We were especially happy that also Martin Haasen OY7ML and Kristjan TF3KB were able to travel this far to participate in the meeting.
Beside the Nordic matters, like review of the rules for the Nordic Championship in Amateur Radio Direction Finding (ARDF and coordination of 2 -meter repeater channels for repeaters located close to national borders, most of the time was spent on the hundreds of motions from Region 1 member societies to the International Amateur Radio Union conference in Celafu, Italy, mid-April.

The wide variety of topics included a motion from the Radio Sports Federation, Soviet Union, "Compulsory of hosting national flags and playing anthems at the ceremony of awarding championship winners" in contrast to the one from Radio Society of Great Britain about uniformity in "the mea surement and presentation of performance data on amateur HF receivers"!

\section*{ARDF NORDIC CHAMPIONSHIP}

The Finnish SRAL is holding its annual summer-camp Field-Day week in Kuopio, Finland, which is in the OH7 call area. This time the Nordic Championship in Amateur Radio Direction Finding will take place during that event on July 21-22, 1984.

\section*{ANNABODA MEETING 1984}

VHF-UHF-SHF enthusiasts have their summer get-together in Annaboda, a few miles west of the city of Orebro, Besides the fun of eyeball QSOing, there are a lot of antenna project activities. The antennagain competition is very popular. This year
there will even be fox hunting (ARDF) on 10 GHz . Usually there are visitors coming also from the other Nordic countries and West Germany. This year it might be a little too early for the tourists as the dates for the meeting are June 8-10.


\section*{TRINIDAD AND TOBAGO}

\section*{John L. Webster 9Y4JJW}
co Department of Soll Science
University of the West Indies
Trinidad
West Indies

\section*{9Y LICENSES FOR NONRESIDENTS}

We often are asked by amateurs planning to visit Trinidad and Tobago about the possibility of getting a gY license to allow them to operate during their visit. I shall attempt this month to outline what is involved and mention the problems faced.

At this time, the Republic of Trinidad and Tobago has reciprocity with only one other country in the world-the USA. Prior to 1976, the year that Trinidad and Tobago became a Republic, reciprocal agreements were in effect with all member countries of the British Commonwealth (UK, Australia, Canada, etc.). After 1976, these agreements were automatically cancelled. Unfortunately, the government here has not yet found it possible to renew these agreements, and this has complicated the issue of amateurradio licenses to visiting hams. Each application from a non-US ham is, therefore, treated individually.

The TTARS has tried on several occasions to have the matter rectified but has had little success. This is apparently due to
the fact that the new Telecommunications Act is being prepared.
Any US citizen visiting Trinidad and To bago and wishing to operate here should be prepared to submit bona fide proof of US citizenship, along with both the original and photocopy of their US amateur-radio it cense, to the Telecommunications Officer in Port-of-Spain, the capital city, Only Gen-eral-class or higher US licenses are submissible. It is not possible to apply for a license via mail, prior to arrival, as the interested party must apply in person to the officer for the license.

If the Telecommunications Officer approves, the applicant is given a letter to be taken to the Wireless Division of the De partment of Custorns and Excise who will then issue the license upon payment of the appropriate fee. A gY license costs T \(\$ 14.50\) (or about US \(\$ 5.95\) ) when first issued and is renewed annually on its anniversary date at a cost of TT\$9.60 (or about US \(\$ 4.00\) ). Visitors will be issued only a portable calligign, Le., home calligy, unless they can provide proof that they will be resident in the country for a period of one year or more.

Any non-US amateurs visiting Trinidad and Tobago who would like to apply for a 9 Y license are advised to bring with them all possible documentation to prove their qualifications, e.g., City and Guilds RAE certificate, in addition to their local license and passport. As mentioned before, each case is dealt with on its own merits and the TTARS is unable to assist in the matter.
There is, however, a more serious problem encountered by the visiting ham who wishes to enter the country with amateurradio equipment. Unless the visitor has a valid 9 Y license, the Customs Department at the port of entry will not allow the equipment to enter the country, and it will be detained until the license is obtained and produced. When the license is presented to Customs, the detained equipment will be released only either upon payment of Customs duties ( \(30 \%\) of market value), with Purchase Tax of \(45 \%\) payable on certain items such as linear amplifiers, or by posting a bond which is refundable after the equipment has been exported from the country. There are several catches related to the posting of the bond that are worth noting:
(a) The paperwork involved takes an average of ten days to complete.
(b) The services of a Customs broker are required to prepare the necessary documents.
(c) The broker must be paid for his services.
(d) it takes a minimum of three months, after the equipment is exported, before the bond is refunded.
(e) Refund of the bond cannot be made through the mail.
Unfortunately, the TTARS is unable to assist in this process at this time, although individual amateurs may be able to lend limited assistance if contacted and arrangements are made sufficiently in advance of the anticipated arrival.

\section*{NEW EXECUTIVE ELECTED}

The Annual General Meeting of the TTARS was held on Monday, March 12 , 1984. The following members were elected to office to serve for the 1984/85 year: president, "Nick" Percival 9Y4NP; vice-president, lan Hart 9 Y 4 IH ; secretary, Bernard Ashby 9Y4BA; treasurer, AI Christopher 9Y4LF, and committee members, "Tony" Lee Mack 9Y4AL, Neil Wilson 9Y4NW, Frank Brooker 9Y4VU, Arnim Rudder 9Y4AR, coopted, and Edward Hay and Denise Lee, associates.

\section*{RAMSEY ELECTRONIC'S \\ PARTS WAREHOUSE \\ We now have available a bunch of goodies too good to bypass. Items are limited so order today \\ MINI KITS - YOU HAVE SEEN THESE BEFORE NOW HERE ARE OLD FAVORITE AND NEW ONES TOO. GREAT FOR THAT AFTERNOON HOBBY.}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
FM MINI MIKE \\
A super high performance FM wireless mike kit! Transmits a stable signal up to 300 yards with exceptional audio quality by means of ite built in electret mike. Kit includes case mike on-oft switch antenna battery and super instructions This is the finest unit available
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
Color Organ \\
See music come alive! 3 different lights flicker with music One light each for high. mid-range and lows Each individually adjustable and drives up to 300 W runs on 110 VAC. \\
Complete kit, ML-1 \(\$ 8.95\)
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Video Modulator Kit \\
Converts any TV to video mohitor Super stable tunabie over ch \(4-6\) Runs on 5 15V accepts sta ndeosignal Bestuniton the market! Complete kit VD-1 \\
37.95
\end{tabular}} &  \\
\hline & & \multicolumn{2}{|l|}{Led Blinky Kit A great attention getter which alternately flashes 2 jumbo LEDs Use for name badges. buttons, warning panel lights, anything' Runs on 3 to 15 volts. Complete kit. BL-1 \(\$ 2.95\)} & \begin{tabular}{l}
Super \\
A super sen fier which pin drop at for monito room or as pose amplit rms output 15 volts us speaker Complete k
\end{tabular} & \begin{tabular}{l}
ve ampli- \\
pick up a \\
eet' Great \\
Dabys \\
Full 2 W \\
8 -45 ohm \\
N-9 \\
\(\$ 5.95\)
\end{tabular} \\
\hline FM-3 Kit
FM-3 Wired and Tested \(\begin{array}{r}\mathbf{\$ 1 4 . 9 5} \\ \hline 29.95\end{array}\) & & \multicolumn{4}{|l|}{\begin{tabular}{l}
CPO-1 \\
Runs on \(3-12 \mathrm{Vac} 1\) wall out. 1 KHZ qood for CPO Alarm. Audio Oscillator Complete kit \(\quad \$ 2.95\)
\end{tabular}} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
FM Wireless Mike Kit \\
Transmits up to \(300^{\prime}\) to any FM broadcast radio. uses any type of mike Runs on 3 to 9 V Type FM-2 has added sensitive mike preamp stage
\[
\text { |FM-1 kit } \$ 3.95 \quad \text { FM- } 2 \mathrm{kit} \quad \$ 4.95
\]
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Whisper Light Kit \\
An interesting kit, small mike picks up sounds and converts them to light. The louder the sound, the brighter the light Includes mike controls up to 300 W , runs on 110 VAC Complete kit. WL-1 \(\$ 6.95\)
\end{tabular}}} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Tone Decoder \\
A complete tone decoder on a single PC board Features \(400-\) 5000 Hz adjustable range via 20 turn pot voltage regulation. 567 IC Useful for touchtone burst detection. FSK etc Can also be used as a stable tone encoder Runs on 5 to 12 volts Complete kit. TD-1 \(\quad \$ 5.95\)
\end{tabular}}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{8}{*}{\begin{tabular}{l}
Universal Timer Kit \\
Provides the basic parts and PC board required to provide a source of precision timing and pulse generation Uses 555 timer IC and includes a range of parts for most timing needs UT- 5 Kit \\
\(\$ 5.95\)
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{8}{*}{\begin{tabular}{l}
Mad Blaster Kit \\
Produces LOUD ear shattering and attention getting suren like sound Can supply up to 15 watts of obnoxious audio Runs on 6-15 VDC \\
MB-1 Kit \\
\(\$ 4.95\)
\end{tabular}}} & \multicolumn{3}{|l|}{\multirow[t]{6}{*}{\begin{tabular}{l}
Siren Kit \\
Produces upward and downward wail characteristic of a police siren. 5 W peak audio output. runs on 3-15 volts uses \(3-45\) ohm speaker \\
Complete kit: SM-3 \\
\(\$ 2.95\)
\end{tabular}}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{IC SPECIALS}

\title{
THE MOST AFFORDABLE REPEATER
}

\section*{ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES}
(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!)
\(\qquad\) JUST LOOK AT THESE PRICES!
\begin{tabular}{|c|c|c|}
\hline Band & Kit & Wired/Tested \\
\hline 10M,6M, 2M, 220 & \$680 & \$880 \\
\hline 440 & \$780 & \$980 \\
\hline
\end{tabular}

Both kit and wired units are complete with all parts, modules, hardware, and crystals.
CALL OR WRITE FOR COMPLETE DETAILS.
Also available for remote site linking, crossband, and remote base.

\section*{FEATURES:}
- SENSITIVITY SECOND TO NONE; TYPICALLY 0.15 uV ON VHF, O.3 uV ON UHF.
- SELECTIVITY THAT CAN'T BE BEAT! BOTH 8 POLE CRYSTAL FILTER \& CERAMIC FILTER FOR GREATER THAN 100 dB AT \(\pm 12 \mathrm{KHZ}\). HELICAL RESONATOR FRONT ENDS. SEE R144, R220, AND R451 SPECS IN RECEIVER AD BELOW.
- OTHER GREAT RECEIVER FEATURES: FLUTTERPROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER \& CONTROL.
- CLEAN, EASY TUNE TRANSMITTER; UP TO 20 WATTS OUT (UP TO 50W WITH OPTIONAL PA).

\title{
HIGH QUALITY MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.
}

HIGH-PERFORMANCE RECEIVER MODULES

- R144/R220 FM RCVRS for 2 M or 220 MHz . 0.15 uV sens.; 8 pole xtal filter \& ceramic filter ini-f, helical resonator front end for exceptional selectivity, more than -100 dB at \(\pm 12 \mathrm{kHz}\), best available today. Flutter-proof squelch. AFC tracks drifting xmtrs. Xtal oven avail. Kit only \$138.
- R451 FM RCVR Same but for uhf. Tuned line front end, 0.3 uV sens. Kit only \(\$ 138\).
- R76 FM RCVR for \(10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}, 220\), or commercial bands. As above, but w/o AFC or hel. res. Kits only \$118. Also avail w/4 pole filter, only \(\$ 98 /\) kit.
- R110 VHF AM RECEIVER kit for VHF aircraft band or ham bands. Only \$98.
- R110-259 SPACE SHUTTLE RECEIVER, kit only \(\$ 98\)

TRANSMITTERS

- T51 VHF FM EXCITER for \(10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}\), 220 MHz or adjacent bands. 2 Watts continuous, up to \(2^{1 ⁄ 2} \mathrm{~W}\) intermittent. \(\$ 68 / \mathrm{kit}\).

- T451 UHF FM EXCITER 2 to 3 Watts on 450 ham band or adjacent freq. Kit only \(\$ 78\).
- VHF \& UHF LINEAR AMPLIFIERS. Use on either FM or SSB. Power levels from 10 to 45 Watts to go with exciters \& xmtg converters. Several models. Kits from \(\$ 78\).
- A16 RF TIGHT BOX Deep drawn alum. case with tight cover and no seams. \(7 \times 8 \times 2\) inches. Designed especially for repeaters. \(\$ 20\).

\section*{ACCESSORIES}

- COR KITS With Audio mixer, speaker amplifier, tail \& time out timers. Kit only \(\$ 38\).
- CWID KITS 158 bits, field programmable, clean audio, rugged TTL logic. Kit only \$68.
- DTMF DECODER/CONTROLLER KITS. Control 2 separate on/off functions with touchtones \({ }^{*}\), e.g., repeater and autopatch. Use with main or aux. receiver or with Autopatch. Only \(\$ 90\)
- AUTOPATCH KITS. Provide repeater autopatch, reverse patch, phone line remote control of repeater, secondary control via repeater receiver. Many other features. Only \(\$ 90\). Requires DTMF Module.

- HELICAL RESONATOR FILTERS available separately on pcb w/connectors.
HRF-144 for \(143-150 \mathrm{MHz} \$ 38\)
HRF-220 for \(213-233 \mathrm{MHz} \$ 38\)
HRF-432 for \(420-450 \mathrm{MHz} \$ 48\)


Hamtronics Breaks the Price Barrier!
*

FEATURES:
- Very Low Noise: 0.7 dB VHF, 0.8 dB UHF - High Gain: 18 to 28 dB , Depending on Freq. - Wide Dynamic Range for Overload Resistance - Latest Dual-gate GaAs FET, Stable Over Wide Range of Conditions
- Rugged, Diode-protected Transistors
- Easy to Tune
- Operates on Standard 12 to 14 Vdc Supply
- Can be Tower Mounted
\begin{tabular}{|c|c|c|}
\hline MODEL & TUNES RANGE & PRICE \\
\hline LNG-28 & \(26-30 \mathrm{MHz}\) & \$49 \\
\hline LNG-50 & \(46-56 \mathrm{MHz}\) & \$49 \\
\hline LNG-144 & \(137-150 \mathrm{MHz}\) & \$49 \\
\hline LNG-220 & \(210-230 \mathrm{MHz}\) & \$49 \\
\hline LNG-432 & \(400-470 \mathrm{MHz}\) & \$49 \\
\hline LNG-40 & \(30-46 \mathrm{MHz}\) & \$64 \\
\hline LNG-160 & \(150-172 \mathrm{MHz}\) & \$64 \\
\hline
\end{tabular}

\section*{ECONOMY PREAMPS}

Our traditional preamps, proven in years of service. Over 20,000 in use throughout the world. Tuneable over narrow range. Specify exact freq. band needed. Gain \(16-20 \mathrm{~dB} . \mathrm{NF}=\) 2 dB or less. VHF units available 27 to 300 MHz . UHF units available 300 to 650 MHz .
- P30K, VHF Kit less case \(\$ 18\)
- P30W, VHF Wired/Tested \$33
- P432K, UHF Kit less case
- P432W, UHF Wired/Tested

HELICAL RESONATOR PREAMPS


Our lab has developed a new line of low-noise receiver preamps with helical resonator filters built in. The combination of a low noise amplifier and the sharp selectivity of a 3 or 4 section helical resonator provides increased sensitivity while reducing intermod and cross-band interference in critical applications. See selectivity curves at right. Gain = approx. 12 dB .
\begin{tabular}{|c|c|c|}
\hline Model & Tuning Range & Price \\
\hline HRA-144 & \(143-150 \mathrm{MHz}\) & \$49 \\
\hline HRA-220 & \(213-233 \mathrm{MHz}\) & \$49 \\
\hline HRA-432 & \(420-450 \mathrm{MHz}\) & \$59 \\
\hline HRA-( ) & \(150-174 \mathrm{MHz}\) & \$69 \\
\hline HRA-( ) & \(450-470 \mathrm{MHz}\) & \$79 \\
\hline
\end{tabular}


Models to cover every practical if \& if range to listen to SSB, FM, ATV, etc. NF \(=2 \mathrm{~dB}\) or less.
\begin{tabular}{|c|c|c|}
\hline & Antenna Input Range & Receiver Output \\
\hline VHF MODELS & 28-32 & 144-148 \\
\hline \multirow[t]{11}{*}{Kit with Case \$49 Less Case \$39 Wired \$69} & \(50-52\)
50 & 28-30 \\
\hline & 144-146 & 28-30 \\
\hline & 145-147 & 28-30 \\
\hline & 144-144.4 & 27-27.4 \\
\hline & 146-148 & 28-30 \\
\hline & 144-148 & 50-54 \\
\hline & 220-222 & 28-30 \\
\hline & 220-224 & 144-148 \\
\hline & 222-226 & 144-148 \\
\hline & 220-224 & \(50-54\) \\
\hline & 222-224 & 28-30 \\
\hline UHF MODELS & 432-434 & 28-30 \\
\hline \multirow[t]{2}{*}{Kit with Case \$59} & \(435-437\) & 28-30 \\
\hline & 432-436 & 144-148 \\
\hline Less Case \$49 & 432-436 & 50-54 \\
\hline Wired \$75 & 439.25 & 61.25 \\
\hline
\end{tabular}

SCANNER CONVERTERS Copy 72-76, 135-\(144,240-270,400-420\), or \(806-894 \mathrm{MHz}\) bands on any scanner. Wired/tested Only \(\$ 88\).

\section*{SAVE A BUNDLE ON} VHF FM TRANSCEIVERS!

FM-5 PC Board Kit - ONLY \$178
complete with controls, heatsink, etc. 10 Watts, 5 Channels, for 2 M or 220 MHz .


For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 Watts output vhf, 1 Watt uhf.


VHF \& UHF LINEAR AMPLIFIERS. Use with above. Power levels from 10 to 45 Watts. Several models, kits from \(\$ 78\).

\section*{LOOK AT THESE ATTRACTIVE CURVES!}


Typical Selectivity Curves of Receivers and Helical Resonators.

\section*{IMPORTANT REASONS WHY YOU SHOULD BUY FROM THE VALUE LEADER:}
1. Largest selection of vhf and uhf kits in the world.
2. Exceptional quality and low prices due to large volume.
3. Fast delivery; most kits shipped same day.
4. Complete, professional instruction manuals.
5. Prompt factory service available and free phone consultation.
6. In business 21 years.
7. Sell more repeater modules than all other mfrs. and have for years. Can give quality features for much lower cost.
- Call or Write for FREE CATALOG
- (Send \$1.00 or 4 IRC'c for overseas mailing)
- Order by phone or mail © Add \$3 S \& H per order (Electronic answering service evenings \& weekends) Use VISA, MASTERCARD, Check, or UPS COD.

65-D MOUL RD. • HILTON NY 14468
Phone: 716-392-9430
Hamtronics \({ }^{\circ}\) is a registered trademark

\title{
DEALER DIRECTORY
}

\section*{PROPAGATION}
J. H. Nelson

4 Plymouth Dr.
Whiting NJ 08759

\section*{EASTERN UNITED STATES TO:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ALASKA & 14 & 14 & 7A & 7 & 7 & 7 & 7 & 7A & 14 & 14 & 14 & 14 \\
\hline ARGENTINA & 21 & 14 & 14 & 7A & 7 & 7 & 7A & 14 & 14A & 21A & 21 A & 21 \\
\hline AUSTRALIA & 21 & 14 & 7A & 7B & 7B & 7B & 7 & 7 & 7 & 7B & 14 & 14A \\
\hline CANAL ZONE & 14 & 14 & 7A & 7 & 7 & 7 & 7A & 14 & 14 & 14 & 21 & 21 \\
\hline ENGLAND & 14 & 7 A & 7 & 7 & 7 & 7A & 14 & 14 & 14 & 14A & 14A & 14 A \\
\hline Hawall & 21 & 14 & 14A & 7 & 7 & 7 & 7 & 7 & 14 & 14 & 14 & 21 \\
\hline INDIA & 14 & 14 & 7 B & 7B & 7 B & 7B & 7A & 14 & 14 & 14 & 14 & 14 \\
\hline JAPAN & 14 & 14 & 14B & 7B & 7B & 7B & 7B & 7B & 14B & 14 & 14 & 14 \\
\hline MEXICO & 14 & 14 & 7 A & 7 & 7 & 7 & 7 & 14 & 14 & 14 & 14A & 14 \\
\hline PHILIPPINES & 14 & 14 & 14B & 7B & 7B & 7B & 78 & 14 B & 14 & 14 & 14 & 14 \\
\hline PUERTO RICO & 14 & 14 & 7 A & 7 & 7 & 7 & 14 & 14 & 14 & 14 & 14A & 14 A \\
\hline SOUTH AFRICA & 7 & 7 & 7 & 7 & 7 B & 14 & 14 & 14 & 14A & 14 A & 14 & 14 \\
\hline U. S.S. R. & 7A & 7 & 7 & 7 & 7 & 7B & 14 & 14 & 14A & 14A & 14 & 14 \\
\hline WEST COAST & 14A & 14A & 14 & 7 & 7 & 7 & 7 & 14 & 14 & 14 & 14A & 14 A \\
\hline
\end{tabular}

CENTRAL UNITED STATES TO:
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ALASKA & 14 & 14 & 14 & 7 & 7 & 7 & 7 & 7 & 7 A & 14 & 14 & 14 \\
\hline ARGENTINA & 21 & 14 & 14 & 7 A & 7 & 7 & 7 A & 14 & 14 A & 21 A & 21 A & 21 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ALASKA & 14 & & & & \\
\hline ARGENTINA & 21 & 14 A & 14 & 7 A & 7 & 7 & 7 A & 14 & 14 A & 21 A & 21 A & 21 \\
\hline AUSTRALIA & 21 & 14 & 7 A & 7 B & 7 B & 7 B & 7 & 7 & 7 & 7 B & 14 & 14 A \\
\hline CANAL ZONE & 21 & 14 & 7 A & 7 & 7 & 7 & 7 A & 14 & 14 & 14 A & 21 A & 21 \\
\hline ENGLAND & 14 & 7 A & 7 & 7 & 7 & 7 & 7 A & 14 & 14 & 14 & 14 A & 14 \\
\hline HAWAII & 21 & 14 & 14 A & 7 & 7 & 7 & 7 & 7 & 14 & 14 & 14 & 21 \\
\hline INDIA & 14 & 14 & 7 A & 7 B & 7 B & 7 B & 7 B & 7 A & 14 & 14 & 14 & 14 \\
\hline JAPAN & 14 & 14 & 14 & 7 B & 7 B & 7 B & 7 B & 7 B & 14 B & 14 & 14 & 14 \\
\hline MEXICO & 14 & 14 & 7 & 7 & 7 & 7 & 7 & 7 & 14 & 14 & 14 & 14 \\
\hline PHILIPPINES & 14 & 14 & 14 & 7 B & 7 B & 7 B & 7 B & 14 B & 14 & 14 & 14 & 14 \\
\hline PUERTO RICO & 14 & 14 & 14 & 7 & 7 & 7 & 14 & 14 & 14 & 14 & 14 A & 14 A \\
\hline SOUTHAFRICA & 7 & 7 & 7 & 7 & 7 B & 7 B & 14 & 14 & 14 & 14 A & 14 & 14 \\
\hline U.S.S.A. & 7 A & 7 & 7 & 7 & 7 & 7 B & 14 B & 14 & 14 A & 14 & 14 & 14 \\
\hline
\end{tabular}

\section*{WESTERN UNITED STATES TO:}

\section*{Columbus OH}

The biggest and best ham store in the Midwest featuring Kenwood and other quality products with working displays. We sell only the best. Authorized Kenwood service. Universal Amateur Radio, Inc., 1280 Aida Dr., Reynoldsburg (Columbus) OH 43068, \(866-4267\).

\section*{Dallas TX}

IBM PC/XT kits, supplies, expansion prod ucts; video restorer kits for pay TV, CATV, satellite hobbyists' electronic project kits/appnotes. More than 9000 parts in stock: semiconductors, ICs, discretes, video accessories tools, audio, automotive, cabinets, computer peripherals. Please write for your free 60 -page catalog: Sabet Electronics, 13650 Floyd Rd., Ste, 104, Dallas TX 75243; 783-4950 (formerly IE.).

\section*{DEALERS}

Your company name and message can contain up to 25 words for as little as \(\$ 150\) yearly (prepaid), or \(\$ 15\) per month (prepaid quarterly). No mention of mail-order business or area code permitted. Directory text and payment must reach us 60 days in advance of publication. For example, advertising for the October ' 84 issue must be in our hands by August 1st. Mail to 73 Magazine, Peterborough NH 03458. ATTN: Nancy Ciampa.

\section*{Albany, New York UPSTATE NEW YORK}

Kenwood, ICOM, Ten-Tec, Belden, Cushcraft, Larsen, Hustler, ARRL, Hy-Gain, B\&W, MFJ, Mirage. New and used equipment. Serving the amateur community since 1942. Adirondack Electronics, Inc., 1991 Central Avenue, Albany NY 12205, 456-0203 (one mile west of Northway exit 2 W ).
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ALASKA & 14 & 14 & 7 A & 7 & 7 & 7 & 7 & 7 & 14 & 14 & 14 & 14 \\
\hline ARGENTINA & 21 & 14 A & 14 & 14 & 7 & 7 & 7 & 14 & 21 & 21 A & 21 A & 21 \\
\hline AUSTRALIA & 21 A & 14 A & 14 & 14 & 7 A & 7 A & 7 & 7 & 7 & 7 B & 14 & 21 \\
\hline CANAL ZONE & 2 1 & 14 & 7 A & 7 & 7 & 7 & 7 A & 14 & 14 & 14 & 21 A & 21 \\
\hline ENGLAND & 14 & 7 A & 7 & 7 & 7 & 7 & 7 B & 7 A & 14 & 14 & 14 & 14 \\
\hline HAWAII & 21 A & 14 A & 14 & 14 & 7 A & 7 & 7 & 7 & 14 & 14 & 21 & 21 \\
\hline INDIA & 14 & 14 & 14 & 7 A & 7 B & 7 B & 7 B & 7 A & 14 & 14 & 14 & 14 \\
\hline JAPAN & 14 A & 14 A & 14 & 14 & 14 B & 7 B & 7 B & 7 B & 14 B & 14 & 14 & 14 \\
\hline MEXICO & 14 & 14 & 7 A & 7 & 7 & 7 & 7 & 14 & 14 & 14 & 14 A & 14 A \\
\hline PHILIPPINES & 14 A & 14 & 14 & 14 & 14 B & 7 B & 7 B & 14 B & 14 & 14 & 14 & 14 \\
\hline PUERTO AICO & 14 A & 14 & 7 A & 7 & 7 & 7 & 7 & 14 & 14 & 14 & 14 A & 14 A \\
\hline SOUTH AFRICA & 7 & 7 & 7 & 7 & 7 B & 7 B & 7 B & 14 & 14 & 14 A & 14 & 14 \\
\hline U. S. S. R. & 7 B & 7 B & 7 & 7 & 7 & 7 & 7 B & 14 B & 14 & 14 & 14 & 14 \\
\hline EAST COAST & 14 A & 14 A & 14 & 7 & 7 & 7 & 7 & 14 & 14 & 14 & 14 A & 14 A \\
\hline
\end{tabular}

\section*{\(A=\) Next higher frequency may also be useful.}

B = Difficult circuit this period.
First letter = night waves. Second = day waves.
\(\mathrm{G}=\mathrm{Good}, \mathrm{F}=\mathrm{Fair}, \mathrm{P}=\) Poor. * = Chance of solar flares.

\section*{\# = Chance of aurora.}

NOTE THAT NIGHT WAVE LETTER NOW COMES FIRST.
July

 equipment is designed with you in mind! New advances in computer-aided design and robotics manufacture help you save money while being assured of the best... from Yaesul!

\section*{Affordable Excellence}

\section*{GENERAL COVERAGE}

Continuous coverage on Rx from 500 kHz to 29.99 MHz in 10 Hz steps, with easy modification for MARS TX outside the Ham bands. WARC bands factory installed.

ACOESSORIES FACTORY PACKED
Electronic keyer, 600 Hz CW filter, speech processor, AM and FM units, alt-mode squelch Woodpecker noise blanker, and receiver preamp
all included in the base price. not expensive options!

FULL PERFORMANCE
Full CW QSK, full 100 watts output at \(100 \%\) duty cycle (SSB/CW/FM), and full microprocessor control with dual VFOs eight memories with bilateral memory VFO swap, and personal computer (CAT System) compatibility make the F. 757 GX a winner, of home or oway.

FT-757 Cx ACeFçORIES
FP-757 ©X Switching Power Supply. FP.757HD Heavy Duty Power Supply (for \(100 \%\) duty cycle operation), FC-757AT Automatic Antenna Tuner with Memory. FAS-1-4R Remote Antenna Selector, SP-102 Speaker with Audio Filters, MD-188 Desk Mic. MH-188 Hand Mic. FIF-232C Computer Interface Module.

\section*{The Compact Companion}

\section*{ULIRA-COMPAET DESIEN}

Chip components installed by Yaesu's assembly robots significantly reduce circuit board size, resulting in a rugged, reliable transceiver with a weight of only 450 g , including the standard FNB-3 battery.

\section*{HANDS-FREE VOX}

A VOX (voice-actuated transmil) unit is built-in. allowing hands-free operation when the optional YH-2 Headset is used Ideal for tower work public satety, or other applications where manual PII control is inadvisable. Level control provided.

\section*{FULL FLEXIBILITY}

Built-in S-meter, thumbwheel trequency programming. HI LOW power switch, busy channel and transmit indicators are standard. DIMF Encoder versions, as well as 220 MHz and 440 MHz lines, are coming soon!

Next time you're in the market for a better rig, ask about Yaesu. Designed with care and buill with pride, your Yaesu will get you through!

Prices and specifications subject to change without notice or obligation

\title{
KENWOOD
}
pacesetter in amateut radio

\section*{Scan the World. R-2000}

Kenwood's R-2000 receiver has opened the doors to a new world in the \(150-\mathrm{kHz}\) to \(30-\mathrm{MHz}\) HF bands with microprocessor controlled operating features and an UP conversion PLL circuit for maximum flexibility and to enhance the excitement of listening to stations from east to west. and from pole to pole. An optional VC-10 VHF converter, for 118 to \(174-\mathrm{MHz}\), allows access to police. aviation, marine, commercial, and two meter Amateur frequencies. With dual digital VFO's, ten memories that store frequency, band and mode information, memory scan, program. mable band scan, fluorescent tube digital display, and dual 24 -hour clock with timer, this outstanding radio has the versatility needed to reach out and catch those distant and elusive stations in the most remote areas of the world.

The R-2000 receives in the USB. LSB, CW, AM, and FM modes, and its ten memories allow moving from band to band without concern for mode of operation. The programmable band scan feature permits scanning over operator selected
limits, reducing scan cycle time. Memory scan allows the operator to scan all, or only specific memories. Lithium battery memory backup (Estimated 5 year life) is built-in. With the sensitive R-2000, only the best in selectivity will do. It has three built-in IF filters, with NARROWIWIDE selector switch, and an optional \(500-\mathrm{Hz}\) narrow CW filter is available. A noise blanker, and an all-mode squelch circuit further enhance the operators control of his listening environment. An AGC switch, and an RF attenuator switch allow selection of the best signal-to-noise ratio. It has a large, front mounted speaker, a tone control, an "S" meler, high and low impedance antenna terminals, and operates on \(100 / 120 / 2201240\) VAC. or on 13.8 VDC , with an optional DCK-1 DC cable kit. Other features include a record output jack, an audible "beeper," a carrying handle a headphone jack, and an external speaker jack.

The R-2000 places the world at your finger lips.

\section*{R-2000 optional accessories:} VC-10 VHF converter e HS-4, HS-5, and HS-6 headphones • DCK-1 DC cable kit • YG-455C 500-Hz CW filter.


R-1000 High performance receiver - \(200 \mathrm{kHz}-30 \mathrm{MHz}\) • digital displayl clockitimer - 3 IF filters • PLL UP conversion • noise blanker * RF step attenwator • 120-240 VAC (Optional 13.8 VDC)


R-600 General coverage receiver
- \(150 \mathrm{kHz}-30 \mathrm{MHz}\) - digital display
- 2 IF filters - PLL UP conversion * nois blanker * RF attenuator * front speakel - 100-240 VAC (Optional 13.8 VDC).

More information on these products is available from authorized dealers of Trio-Kenwood Communications 1111 West Wainut Street, Compton, California 90220.```

