

for DXers, contesters, other advocates of the super signal

KLM "Big Sticker" monobanders
with double driven elements

full gain, low VSMR: CW/phone operation without retuninge

and, for a heavy-duty rotator that will point them... and keep them pointed... under tough weather conditions, use the KLM-1500 HD-

KLM 1500-HD Rotator

KLM beams with double driven elements continue to be the choice of amateurs throughout the world. They are performance proved. . .clearly superior. . . and there are good reasons for this superiority.
Unlike most other multi-element yagis, KLM's "Big Sticker" series of monobanders operate at high efficiency over the entire CW and phone portions of any given amateur band without retuning. Forward gain is high, the pattern is clear, VSWR is low across the band limits specified. Among other advanced design considerations, KLM uses log-periodic techniques with double driven elements to assure full excitation and low VSWR on beams covering the full 40,20,15 and 10 meter amateur bands. In addition, the frequency response of KLM "Big Stickers" rolls off very rapidly beyond band extremes thereby minimizing harmonics and adjacent channel interference.
These are husky, well constructed beams that use strong, lightweight elements and booms of 6063-T832 weatherresistant aluminum. Hardware is top quality stainless steel. The insulated mounting brackets (pictured below), an exclusive KLM design, are molded of GE polycarbonate "Lexan," a material that has excellent insulating qualities and very high mechanical strength.

Available monobanders: 4 element, 40 meters. 5 and 6 element, 20 meters. 6 element, 15 meters. 5 and 6 element, 10 meters.

At your dealer. Full specifications on request.
$K L M_{\text {oeseroneses ine }}$

mE-S microminiakure lone encoder

Compatible with all sub-audible tone systems such as: Private Line, Channel Guard, Quiet Channel, etc.

\$29.95 each
Wired and tested, complete with K-1 element
communications specialists
P. O. BOX 153

BREA, CALIFORNIA 92621
(714) 998-3021

K-1 FIELD REPLACEABLE, PLUG-IN, FREQUENCY DETERMINING ELEMENTS

That's all, Folks! All you need for All Mode Mobile, that is.

All Mode Mobile is now yours in a superior ICOM radio that is a generation ahead of all others. The new, fully synthesized IC-245/SSB puts you into FM, SSB and CW operation with a very compact dash-mounted transceiver like none you've ever seen.

- Variable offset: Any offset from 10 KHz through 4 MHz in multiples of 10 KHz can be programed with the LSI Synthesizer.
- Remote programing: The IC245/SSB LSI chip provides for the input of programing digits from a remote key pad which can be combined with Touch Tone* circuitry to provide simultaneous remote program and tone. Computer control from a PIA interface is also possible.
* a registered trademark of AT\&T.

SPECIFICATION\$ freolemer contarie wors gian Mow metsor Travericr
[2thers mintill

- FM stability on SSB and CW: The IC-245/SSB synthesis of 100 Hz steps make mobile SSB as stable as FM. This extended range of operation is attracting many FM' ers who have been operating on the direct channels and have discovered SSB.

The IC-245/SSB is the very best and most versatile mobile radio made: that's all. For more information and your own hands-on demonstration see your ICOM dealer. When you mount your IC-245/SSB you'll have all you

24 Build the Omni-OSCAR! - practical omnidirectional antenna K20Vs
28 Get Set For OSCAR 8 - details on the new bird! W3HUC
32 Build An OSCAR 2 m Transvertor make ORP days a success/ W2GN
34 Predicting OSCAR Propagation - not always simple G3IOR
40 Try OSCAR Mobile - the ultimate DX test! W2GN
44 Tic Tac Touchtone - a new method? W9CGI
50 Visual OSCAR Finder - mice side of. focts! WB2BWJ
54 Cheap Ears For OSCAR - an effective satellite antenna WacGI
58 Track OSCAR With Your SR.52 - requires the PC 100 option WGUIX
62. Try A T.R For OSCAR 8 - turnstile over rafloctor system W9CGI
64 Track OSCAR In Real Time - with your HP-67 calculator W9iJ
66 Logical Thoughts Ahout OSCAR meaningfut to computers? OAGAD
72 OSCAR DX - a new challenge W3TMZ
76 OSCAR Frequency Relationships now, where is iny downlink? WIZAW
80 Calculate OSCAR Orbits - with your HP. 25 calculator VE7BGX
82 CB to OSCAR - from 10 to the sky? W9CGI
86 Track OSCAR 81 - step-by-step method K2ZRO
96 Build A 2 m Power Amp - good for OSCAR Luplink. W4MNW

\#206 NOV 1977
98 Build A General Purpose Preamp - uses common components!
W4NVK
16
100 Receive CW With A KIM - now, if only the FCC. . .
WB3GCP, WB8VQD
106 Build This SSTV Pattern Generator - micro-controlled, of course? K7SBK
116 Super Baud Bumper - for your SWTP 6800 WB4GXE
120 QRZ - P.K4! - relax with ham chess W9CQD
122 Digital Timer Goes Mobile - battery power keeps it trucking! K7QCM
135 Straining the Wind - simple wind speed indicator Staff
136 Find That Meter Resistance - with this simple bridge N2RG
144 VE6 DXer Tells All! - what to do all winter VE8NS
170 Ramote Spaker Mike for Your HT this one's for the Wilson W2DNY
172 Split Your IC-22S - adding sp/inter frequencies WA60MH
174 Remote Monitor for Your Scanner complete with lights K ICCK
176 Electronics Study Guide - remember when. . .?
Wilson
178 Low Cost Tone Decader - for repeater control WBOVSZ
182 Huffo Counter Kit - report from a happy user WA2LPB
184 A Single Tone Can Do it - simple tone control system W7JSW
186 Eye On the Weather? - following weather satellites WAAWDL

	6	Never Say Die
	16	Letters
	17	De WA3ETD
18	Contests	
	19	AMSAT
	20	Looking West
	21	FCC Math
	22	Naw Products
	23	Hamburglar
\cdots	53	FCC
	53	Oscar Orbits
	71	RTTY Loop
	81	Corrections
	81	Ham Heip
	188	Social Events
	226	Propagation

COVER: AO-8. Rendering by R. Michael Smithwick WAGTUF: photo courtesy of AMSAT.

> 73 Magazine is published monthly by 73. Inc., Peterbarough NH 03458. Subscription rates in the U.S. and Canada are $\$ 15$ for one year, $\$ 26$ for two vears, and $\$ 36$ for three vears. Outside the U.S. and Canada, write for rates. Second class postage paid at Peterborough NH 03458 and at additional malling offices. Publication No. 700420 . Phone: 603-924-3873. Entire contents copyright 1977 by 73 . Inc. INCLUDE OLD ADDRESS AND ZIP CODE WITH ADDRESS CHANGE NOTIFICATION.

Microfilm edition - University Microfilms, Ann Arbor Mi 48106.

 NEVER SAY DIE

MICROCOMPUTING: HOW'S IT DOING?

In addition to the uses of microcomputers in amateur radio, I looked upon this new field as an opportunity for radio amateurs to get into a new business which had the prospects of growing in an extraordinary way over the next few years. It seemed to me that amateurs were ideally suited to take advantage of this opportunity.

As a result of the large number of articles in 73 during 1975 and 1976, an estimated 25,000 amateurs have gotten interested in microcomputers and become involved with them. Quite a few of them have gone on to try for the golden ring through manufacturing or distributing microcomputers and peripherals.

Has the field grown as I predicted? For ance my optimism was about equal to history instead of ahead of it and, yes, it has grown. By way of example, the first computer store opened in August, 1975. Not only is it still going, but by August, 1976, there were 50 computer stores around the country. By August, 1977, there were about 500 computer stores and no sign of any letup in growth. Have you heard of Nashua, New Hampshire? Well, there are two stores in that city. with a third getting ready to open!

What does it take to get into this business? If you go àbout it right. . . and I wrote a book on this subject a few years ago ... you can start out with very little and build it quickly. You can also start out with a lot las an investmenti and let a managing firm hire the experienced people for you ... and there already is such a firm in the business. Figure on about $\$ 250,000$ if you go the straight investment route.

Perhaps typical of the underfinanced system of starting a store is the experience of a chap who wrote me recently. He opened his computer store in a major city with less than $\$ 1000$ in the bank. His sales the opening month were $\$ 51$. The second month he sold $\$ 5,500$ worth of equipment and books. The third month it was $\$ 14,000$ in sales. $\$ 27,000$ the fourth month, and $\$ 31,500$ the fifth month. Sales were slowed down a bit due to slow deliveries from many manufacturers, pius a growing need for cash for expansion. By the sixth month, he was ready to open a second store in the area.

Growth is a little slower out in the boondocks, but it is still heaithy and very forgiving. More and more stories are coming in from readers of Kilobaud who have walked into one com-
puter store after another with a big roll of money in their pocket with the intent of buying a computer system only to be turned away by the utter neglect of the "salespeople." The fact is that few stores are run by people experienced in marketing and sales . . . as yet.

How has it been for people entering the manufacturing part of the business? Probably not untypical is the firm run by two young chaps I know. They got interested in microcomputers a couple years ago, but didn't have the money to shell out for an Altair system ... so they built and programmed their own. I visited them in early August, 1976, and they had a working system which they had put together in a workshop in one corner of the garage. It looked good to me and I suggested that they show it at the next computerfest.
Dealers liked it at the show and placed orders ... and they are going strong today. Not bad for a couple of 20 -year-olds. Their systeri really had the crowds gathered around at Computermania . . and every ane of the television news teams made sure to include it on their coverage of the show,

Another youngster is 16 -year-old Jeff of Jefftronics. He selis parts and small circuits. You'll see him at just about every computerfest in the country with his booth.

THE MARKET IS CHANGING

Microcomputing is a lot more complicated a hobby than amateur radio, so it is limited in its appeal. An awful lot of people won't spend the time and effort necessary to tackle this hobby. The result of this has been the inevitable dropping off of beginners in computing. There are a lot of new hobbyists, but not the flood that came into the hobby last year. . a good part of which were radio amateurs responding to the articles in 73.

This drop in hobbyists has, as I predicted, been taken up by the increasing interest of businessmen in microcomputers as ways to save money for their firms. Few computer stores now report less than 50% of their business going this route and many are experiencing up to 90% business sales. The hangup on earlier sales to business was the lack of suitable programs and dependable equipment. Now that these obstacles are being overcome, the increase in sates to this market should overshadow the hobby market completely.

There is still a big need for more equipment and more programs. My prediction is that we will see programs being sold in large numbers . . . perhaps about the way phonograph records and books are sold today. After all, once you have a computer, you can use it for business, for games, to write music, to generate creative art, to study any subject ever known to man, etc. There are hundreds of thousands of programs needed. I think we will see sales volumes on the order of $\$ 75$ million per day just in programs within the next ten vears . . . and I may be very low with that figure.

THE PIRATES ARE COMING! THE PIRATES ARE COMING!

While l've had a fem beefs about CBers - in particular the HFer branch of the CBers - getting adventurous and coming into the ham bands, these have all been verbal reports - no one has written as yet about it. I'll take the problem a little more seriously when I have a few written reports on the situation in my hā̀nd.

But let's say thas it is bound to happen, so what can we do about it? What have you done or would you do if you came up against a bootlegger on the air? It isn't that tough on two meters, where repeater groups have organized their act fairly well and are generally able to talk the bootlegger into getting together for coffee, only to have him met by The Fuzz. This has helped many a ham get back his stolen two meter rig.

On ten meters, you can easily tell if the chap is coming in via ground wave or skip. If he's loca!, it is time to hook up a loop and start hunting, helped by some other local hams. A personal visit by as many of your club members as you can round up - maybe 50 ? - will create an impression that should get through to all but the most hardened cases. A mass of people can be intimidating, even without any direct threats of violence.

What about reporting the miscreant to the FCC? Sure, complete with tape recordings, but don't expect much . . if anything. The fact is that most of the responsibility for preserving our bands is in our hands. If we act to keep bootleggers out, we may succeed. We've seen how powerless the FCC is to keep some 100,000 or so HFers out of a band, even though they have a list of most of the people involved.

If you or your club has had any success with discouraging bootleggers,

Continued on page 183

Kenwood has done it again! We've combined the fine, time-proven characteristics of the original TS-700A together with many of the ideas and comments for improvement from amateurs worldwide. Check out the new "built-ins": digital readout, receiver pre-amp, VOX, semi-break in, and CW sidetone! Of course, it's still all mode, $144-148 \mathrm{MHz}$ and VFO controlled.

Features: Digital readout with "Kenwood Blue" digits • high gain receiver pre-amp * 1 watt low power switch - built in VOX. semi-break in on CW . CW sidetone \cdot Operates all modes: SSB (upper \& lower), FM, AM and CW - Completely solid state circuitry provides stable. long lasting, troublefree operation * AC and DC capability (operate from your car, boat, or as a base station through its built-in power supply) = 4 MHz band coverage (144 to 148 MHz) Automatically switches transmit frequency 600 KHz for repeater operation. Simply dial in your receive fre-
quency and the radio does the rest . . . simplex, repeater, reverse - Or accomplish the same by plugging a single crystal into one of the 11 crystal positions for your favorite channel - Trans$\mathrm{mit} /$ Receive capability on 44 channels with 11 crystals.
VFO-700s
The perfect companion to the TS700S1 This handsomely styled unit provides you with extra versatitity and the luxury of having a second VFO in your shack.
Great for split frequency operation and for tuning off frequency to check the band

The function switch on the VFO700 S selects the VFO in use and the appropriate frequency is displayed on the digital readout in the TS7005. In addition, a momentary contact "frequency check" switch allows you to spot check the frequency of the VFO not in use

K=NWOOD
 ... pacesetter in amateur vadio

AND DE-5 DIGITAL FRERUENGY BISPLAY

The TS-520S
ofrbines all of the fine. field-provan chirractertetias of the original TSis20 together with ruany of the idass and Euggustions for inprovement from emeteurn worldwide.

Full coverage transceiver The TS-520S provides full coverage on all amateur bands from 1.8 to 297 MHz Kenwood gives you 160 meter capability. WWV on 15.000 MHz , and an suxit lary band position for maximum flexibility. And with the addition of the TV-506 transventer. your TS-520S can cover 160 meters to 6 meters on SSB and CW DIGITAL. DISPLAY DG 5 (option) The Kenwood DG-5 provides easy, accurate readout of your operating frequency while transmitting and receiving

OUTSTANDING RECEIVER SENSITIVITY AND MINIMUM CROSS MODULATION

The TS-520S incorporates a 3SK35 dual gate MOSFET for outstanding cross modulation and spurious response characteristics. The $35 K 35$ has a low noise figure (3.5 dB typ.) and high gain (18 dB typ.) for excellent sensitivity.

NEW IMPROVED SPEECH PROCESSOR

An audio compression amplifier gives you extra punch in the pile
ups and when the going gets rough.

VERNIER TUNING FOR FINAL

 PLATE CONTROLA vernier tuning mechanism allows easy and accurate adjustment of the plate control during tune-up.

FINAL AMPLIFIER

The TS-520S is completely solid state except for the driver (128Y7A) and the final tubes. Rather than subsitute TV sweep tubes as final amplifier tubes in a state of the ars amateur transceiver,

Kenwood has employed two husky S-2001A (equivalent to 6146B) tubes These rugged time-proven tubes are known for theit long life and supertilinearity.

An effective nuise blanking cricuit developed by Kenwood that vil tually elminates ygrition morse is built into the TS-520S:

The TS-520S has a buit in 20 dB attentuator that can be.activated by a push button swich conveniently lecated on the front panel.
ERUNISON FUR EXTERNAL REEEUVER
A special jack on the rear panel of the TS-520S provides receiver signals to an external receiver for increased statron versitility. A switch on the rear panel determines the signal path ... the receiver in the TS-820 or any external receiver.

VFOIE20-NEW BEMOTE VFQ:
The VFO 520 remote VFO matches the styling of the TS5205 and provides maximum operating flexibility on the band selected on your TS-520S.

AC POWER SUPRLY

The TS-520S is completely selfcontained with a rugged AC power supply built-in. The addition of the DS-1A DC-DC converter (optional) allows for mobile operation of the TS-520S

EASY PHDNE PATCH CONNECTION
The TS-520S has 2 convenient RCA phono jacks; on the rear panel for PHONE PATCH IN and PHONE PATCH OUT.

CW-520-CW FI TER (OPTION)
The CW-520-500 Hz filter can be easilly installed and will provide improved operation on CW.

AMPLIFIED TYPE AGC CIRCUTI
The AGC circuit has 3 positions (OFF, FAST, SLOW) to enable the TS-520S to be operated in the optimum condition at all times whether operating CW or SSB

The TS-520S retains all of the features of the original TS-520 that made it tops in its class: AIT controf - 8 -pole crystal filter -Built-in 25 KHz calibrator - Front panel carrier level control - Semi-break-in CW with sidetone. VOX/PTT/MOX - TUNE position for low power tune up * Built-in speaker - Built-in Cooling Fan Provisions for 4 fixed frequency channels - Heater switch.

TS-520

Hilectications
Anstey Bands: 15010 metert phiswind (ratencoriv) Modes: US8 LSB, CW Antenna impadance, 50 江 Uhinis Freageace Stability: withiu Niz uning one houl after one ainste of लarme-im and withir 380 Hz duringany 39 meme berisi thereater
Tubet \& Semicondoctors
Thities
(S200AA $\times 2,12 \mathrm{By}$ (2A $)$
frankistars
FETs
Diodes 101
Power Requiremeats: $120 / 2$
RC $50 / 60 \mathrm{~Hz}, 13.8 \vee \mathrm{DC}$
(mith aptional DS:A)
Pawer Collsumplian: Trasemit
20 Watts Reveive: 26 Watts (wift heater off)
Dimension: $333(135) \mathrm{W} \times 153$ ($6 \cdot \mathrm{C}$) H $\times 335(13 .(133 / 55) \mathrm{D}$ momanch)
Weight $15.0 \mathrm{~kg}(35.2 \mathrm{lbs})$
TRANSMITER
RF Iiput Power: SS6: 200 Watts PEP GK I60 Watts DE
Carier Suppresson: Better than $-40 \mathrm{~dB}$
Sidiband Suppression Better than - 50 dB Spurious Radiatiog: Better than 40 dB
Micsoplone mapdane 50e Dhims AF Rescanse: 490 if $2,600 \mathrm{kz}$ RECEIVER
Sensitivity: 025 uv for 15 d 13 $\langle\mathrm{S}+\mathrm{N}\rangle / \mathrm{N}$
Selectivity. $556.2 .4 \times \mathrm{Hz} /-5 \mathrm{~d}$. $44 \mathrm{kHz} / 60 \mathrm{~dB}$
Selectrity: CN: $0.5 \mathrm{kHz} / 6 \mathrm{ctB}$, $1.5 \mathrm{kHz} / 60188$ (with optional CW 5ce filter)
Image Ratio: Better than 30 dB IF Rejection: Better than 50 dB Af Dutput Power: 10 Watt 18 Ohm had, with less than 10% Jistortioi)
Af Output Impedance 4 ta 36 Ohms
DG-5
SPECIFICATIONS
Measuring Range, 100 Hz to 40 MHz
liput Impedance 5 k otms Cate Time: 0.1 Sec tuput Sensitioty 100 Ht to 40 MHz 200 mv mis ur over, 10 BHz to 10 MHz . 50 my or cuer
Measuring Accuracy: Ietermal lime trase atteracy ± 0.1 oount
Thies gase 10 MHz
Operating lemperature -10^{*} to
50° 6/15 122° F
Power Requilement: Supplied fram IS 5205 or 12 to 16 VDC. (nominal 13.8 VDC)
Dimensions 167(6976) W * $43(1-11 / 56) \mathrm{H} \times 268(109 / 16) 0$ min(insth)
Weight $13 \mathrm{~kg}(29 \mathrm{lbs})$

몬동

The fuxury of digizal ceadout is available on the TS-52uS by connucting ttin DQ. 5 readoit fontion). More than juct the average mptom dreulle inis countir mixes the carrier, VFQ. and hotarodyril fingummies to give ob yodi exact frequency. This handsombly-atylad nccustory went be sut ahimse anypiace in your shack for easy In read operation ...or şorit on the aush-
 display your operating fequency while you traismif ami roanvo. Complote with DH (display hold) swifel for frequenay memoty umd 2 pobicion intensily selactor. The DGS can also bo used as a normal frequency cotrutor up vo do MHz ar the zouch of a switch. (Inpus pable providedi)
NOTE: TS-520 owrrers can use the DGiE with a DK-520 atapter his,

K=NNOOD
 piacevelter in amutew radio

We told you that the TS-820 would be best. In little mare than a year our promise has beceme a fact: Now, in response to hundreds of requests from amateurs. Kenwood offers the TS3205°. . . the same superb transceiver, but with the digital readout factory Installed. As an owrter of this beautiful rig. you will have at your fingertips the combination of controls and features that aven under the toughest operating conditions make the TS-820S the Pacesetter that it is.

Following are a few of the TS-820S many exciting features.
PLL - The TS-820S employs the latest phase lock loop circuitry. The single conversion receiver section performance offers superb protection against unwanted cross-modulation. And now PLL allows the frequency to remain the same when switching sidebands (USB. LSB. CW) and eliminates; having to recalibrate each time.
DIGITAL READOUT - The digital counter display is employed as an integral part of the VFO readout system. Counter mixes the carrier VFO, and first heterodyne frequencies to give exact frequency. Figures the frequency down to 10 Hz and digital display
reads out to 100 Hz . Both receive and transmit frequen cies are displayed it easy to read, Kenwood Blue digits. SPEECH PROCESSOR • An
RF circuir provides quick time constant compression using a true RF compressor as opposed to an AF clipper. Amount of compression is adjustable to the desired level by a convenient front panel control.
IF SHIFT - The IF SHIFT control varies the IF passband without changing the receive frequency. Enables the operator to eliminate unwanted signals by moving them out of the passband of the receiver. This feature alone makes the TS 820 S a pacesetter.
'The TS-820 and DG-1 are stall available separatoly

Experience the excitement of 6 meters．The TS－600 all mode trans－ ceiver lets you experience the fun of 6 meter band openings．
This 10 watt，solid state rig covers $50.0-54.0 \mathrm{MHz}$ ．The VFO tunes the band in 1 MHz segments．It also
has provisions for fixed frequency operation on NETS or to listen for beacons．State of the art features such as an effective noise blanker and the RIT（Receiver Incremental Tuning）circuit make the TS－600 another Kenwood＂Pacesetter＂．

An easy way to get on the 6 meter band with your TS－520 520S．TS－820／820S and most other transceivers．Simply plug it in and you＇re on ．．．full band coverage with 10 watts output on SSB and CW

TRーミスロ0

Experience the luxury of 450 MHz at an economical price．
The TR－8300 offers high quality and superb performance as a result of many years of improving VHF／ UHF design techniques．The trans－
ceiver is capable of F_{3} emission on 23 crystal－controlled channels （ 3 supplied）．The transmitter out－ put is 10 watts．
The TR－8300 incorporates a 5 section helical resonator and a
two－pole crystal fifter in the IF section of the receiver for improved intermodulation characteristics．
Receiver sensitivity，spurious response，and temperature characteristics are excellent．

Chock out she new "buit-ins": digital readout, recelver pre-amp. VDX, semi-break in, and CW sidetonel Of coursio, it's atill all mode, 144-148 MHz and VFO cantrolled,

Features: Digital readout with "Kenwood Blue" digits " High gain receiver pre-amp - 1 watt lower power switch Built in VOX - Semi-break in on CW - CW sidetone Operates all modes: SSB (upper \& lower), FM, AM and CW - Completely solid state circuitry provides stable, long lasting, trouble-free operation AC and DC capability (operate from your car, boat, or as a base station through its built-in power supply) 4 MHz band coverage (144 to 148 MHz) . Automatically switches transmit frequency 600 KHz for repeater operation Simply dial in your receive frequency and the radio does the rest . . simplex, repeater, reverse - Or accomplish the same by plugging a single crystal into one of the 11 crystal positions for your favorite channel Transmit/Receive capability on 44 channels with 11 crystals

VFO-700S

Handsomely styled and a perfect companion to the TS-700S. This unit provides you with the extra versatility and the luxury of having a second VFO in your shack. Great for split frequency operation and for tuning off frequency to check the band. The function switch
on the VFO-700S selects the VFO in use and the appropriate frequency is displayed on the digital readout in the TS-700S. In addition a momentary contact "frequency check" switch allows you to spot check the frequency of the VFO not in use.

TR-7400A

Features Kenwood's unique Continuous Tone Coded Squelch system, 4 MHz band coverage, 25 watt output and fully synthesized 800 channel operation. This compact package gives you the kind of pertormance specifications you ve always wanted in a 2 -meter amateur rig.
Outstanding sensitivity, large-sized helical resonators with High Q to minimize undesirable out-of-band interferance, and give a 2 -pole 10.7 MHz monolithic crystal filter combine to give your TR-7400A outstanding receiver performance. Intermodulation characteristics (Better than 66 dB). spurious (Better than -60 dB). image rejection (Better than -70 dB) and a versatile squelch system make the TR 7400A tops in its class.
Shown with the PS 8 power supply
(Active filters and Tone Burst Modules optional)

$18-7500$

This 100 channel PLL synthesized $146-148 \mathrm{MHz}$ transceiver comes with 88 pre-programmed channels for use on all standard repeater frequencies (as per ARRL Band Plan) and most simplex channels. For added flexibility, there are 6 diode-programmable switch positions. The 15 KHz shift function makes these 6 positions into 12 chánnels. 10 watt output, $\pm 600 \mathrm{KHz}$ offset and LED digital frequency display are just a few of the many fine features of the TR-7500. The PS-6 is the handsomely styled, matching power supply for the TR-7500. Its 3.5 amp current capacity and built-in speaker make it the perfect companion for home use of the TR-7500.

Dependable operation, superior specifications and excellent features make the R-300 an unexcelled value for the shortwave listener. It offers full band coverage with a frequency range of 170 KHz to 30.0 MHz • Receives AM .

SSB and CW . Features large, easy to read drum dials with fast smooth dial action. Band spread is calibrated for the 10 foreign broadcast bands, easily tuned with the use of a built-in 500 KHz calibrator. Automatic noise limiter -

3 -way power supply system (AC/Batteries/External DC) take it anyplace - Automatically switches to battery power in the event of $A C$ power fatlure.

Fine equipment that belongs in every well equipped station

820 Serios	
TS-8205	TS-820 with Digital Instailed
T5-820	10-160 M Deluxe Transcelver
	Digital Frequency Display for TS-820
VFO.820	Deluxe Remote VFO for for TS-820/820S
CW 820	500 Hz CW Filter for TS-820/820S
DS 1 A	DC-DC Canverter for 520/820 Series
520 Series	
TS-520S	160-10 M Transceiver
$\text { DG } 5$	Digital Frequency Display for TS-520 Series
VF0.520	Hemote VFO for TS 520 and TS-520S
SP-520	External Speaker for $520 / 820$ Series
CW 620	500 Hz CW Filter for TS-520/5205
DK-520	Digital Adaptor Kit for TS-520
5990 Series	
R-599D.	$160-10 \mathrm{M}$ Solid State fiecelver
T-5990	80-10 M Matching
	Transmitter
S-599.	External Speaker for 5990 Series

CC-29A.... 2 Meter Converter for
CC-69... 6 Meter Converter for R-599D
FM-599A. FM Filter for R 5990
R-300 General Coverage SWL Receiver
TS-600 .. 6 M All Mode Transceiver

TS-700S . . 2 M All Mode Digital Ttanscieiver
VFO-700S Remote VFO for TS-700S
SP-70..... Marching Speaker for TS-600 700 Series
TR-2200A, 2 M Portable FM Transceiver
TR-7400A 2 M Synthesized Deiuxe FM Transceiver

TR-7500 . 100 Channel Synthesized 2 M FM Transceiver
TR-8300. 70 CM FM Transceiver (450 MHz)
TV-506 ...6 M Transverter for 520/820/599 Series

HS-4 Headphone Set
MB-1A Mounting Bracket for TR-2200A
MC-50.... Desk Microphone
PS-5 Power Supply ior TR 8300
PS-6 Power Supply for TR-7500
PS-8... .. Power Supply for TR-7400A
VOX-3.... VOX for TS 600/700A

Trio-Kenwood stocks a compleve line of replacement parts. accessories, and manuals for all Kenwood modes.

Description	Madel $=$	For use with
Rubber Helical Antenna	RA-1	TR-2200A
Telescoping Whip Anterma	T90-0082-05	TR-2200A
Ni.Cad Batery Pack (set)	PB-15	TR-2200A
4 Pin Mic. Connector	EO7-0403-05	All Models
Active Filter Elements	See Service Manual	TR-7400A
Tone Burst Modules	See Service Manual	TS-700A:TR-7400A
AC Cables	Specify Model	All Models
DC Cables	Specify Model	All Madels

The Kenwood $\mathrm{HS}-4$ headphone set adds versatility to any Kenwood station for extended pertods of wear the HS 4 is coinfortably padded and is completely adjustable. The frequency response of the HS-4 is tallored specifically for amateur communication use (300 to 3000 Hz .8 ohms)

TRIO KENWOOD COMMUNICATIONS INC.
1111 WEST WALNUT/COMPTON, CA 90220
The MC-50 dynamic microphone has been designed expressiy for amateur radio operation as a splendid addition to any Kenwood shack. Complete with P Π and LOCK switches, and a microphone plug for instant hook-up to any Kenwood rig Easily converted to high or low impedance. (600 or 50 k ohm)

NEVER SATISFIED

Two FCC policies, both in contradiction to FCC rules, have led to a gross inequity in the reassignment of two-letter W and K callsigns. Rule section 97.53 (j) states that, "Callsigns which have been unassigned for more than one year are normally available for reassignment."
An existing Commission policy does not conform to the spirit or to the letter of that rule. The contradictory policy came to light when an amateur requesting a specific twoletter callsign previously held by a silent key received a "no action" response from the Commission. The following is an excerpt from a letter written by Charles A. Higginbotham, Chief, Safety and Special Radio Services Bureau, to the amateur's congressman. The specific callsign in volved has been deleted as the action is currently being reviewed by the FCC. In that letter, Mr. Higginbotham stated, "Although the amateur station license with callsign K... did expire on December 15, 1975, Commission procedure is such that callsign K... will not be purged from Commission records, and thus be available for reassignment, until some time in the future. We purge our records at irreg ular intervals. For this reason, we are unable to predict when callsign K
will become avaiable." That letter was written in July, 1977, a full eighteen months after the callsign holder's license expired.

That policy, in and of itself, would not be so bad except for another Commission policy. That policy, as set forth in Mr. Higginbotham's letter, is that ". . . we do not 'hold' applica tions in anticipation of the availability of callsigns."

That second policy results in the following scenario: An eligible amateur desires a specific twoletter callsign; he researches the status of the callsign and finds that the prior holder is deceased or has let his license expire and a period of twelve months has elapsed; the amateur immediately makes application for the specific two-letter callsign; the Commission, upon receiving the application, returns it with a "no action" letter because the callsign has not yet been "purged" for reassignment. We all know how long it takes from the time an application is sent off until the time a response is received. In the interim, a less diligent amateur puts in a request for the same callisign. By chance, the callsign is "purged" the day before the second amateur's application is reached. An inequity has resulted.

The result of such Commission policies is that amateurs requesting
2. To say that giving up any amá teur frequency would be compensated for by the availability of cheap radios seems to imply that amateurs cannot now use those frequencies, but will wait for the cast-aff and surplus of a citizen's band instead of building or buying equipment intended for amateur service. That would be a sad commentary on the technical and financial state of radio amateurs if it were true. Nobody's making any more frequency spectrum, and to trade this precious resource for a few cheap CB sets that could be converted would be a bad deal for amateurs.
3. My answer to "CB really needs more room ..." is to look at what they are doing with the frequencies they now have. I am deeply embarrassed to think that people all over the world with shortwave receivers can tune across 11 meters during an opening and form their opinion of American mentality and demeanor from what they must hear from CB operators. If I had the power. I would move all CB operation to a single channel at 10 kilohertz, where they could share the frequency on a nonexclusive basis with Project Sanguine!

Jerold R. Johnson WA5RON
Austin TX ceived prior to another application they will be assigned such specific callsign when it becomes available.
Concerned amateurs are urged to write the FCC and demand that these policies be changed so that fairness exists with respect to the assignment of specific two letter callsigns.

Kenneth S. Widelitz WA6PPZ President
Personal Communications
Foundation
Los Angeles CA

Many thanks for printing my letter asking for someone to monitor the Novice exam. I was able to contact a helpful ham and I was successful on my first attempt.
might add that the exam was one of the hardest | have taken ciealing with communications. Many of the questions do not appear in any of the guides I bought.
F. Cuillo WA2ROA

Wassaic NY

UNGHARACTERISTIC

I was moved very near to anger and rage ivery uncharacteristic) by the letter of one M. P. Lewton appearing in the August issue, favoring the loss of part of the $220-225 \mathrm{MHz}$ amateur band to the citizen's service. After several days, I have calmed sufficiently to write this letter briefly stating my objections to Mr. Lewton and his three points, as follows:

1. His statement that "we amateurs . could operate on the lost frequencies with our CB license" falsely assumes that I either have such a license now, or would ever stoop so low.
break-in are severe and swift. So is the fine for illegal CB operation, some times as high as DM 3,000 ($\$ 1,300$) plus imprisonment.

Sgt Charles E. Martin WA4YRA/DA1NR

APO NY

ACTION

I finally am getting off my rear to write. I have been faithfully reading 73 since I gave up my membership (and sub) to another organization. I think you are publishing the best ham radio magazine on the market.

Now, a proposal, strictly food for thought. How about a new, completely independent amateur radia league (call it what you like) - an organization that would represent its membership and not just use their money, an organization that thinks more of its duties to its members for WARC rather than a new building, an organization that listens to its members and answers their letters. I could go on and on, but I think you have the idea. Can you imagine a headquarters in New Hampshire? Unheard of! How about some response from 73 readers on this?

Keep up the objectivity of your magazine. A little controversy is great and helps keep the air cleared. Keep up the good work and best of luck.

Chuck Coffee WAGFLV
Rota, Spain

ANTI-RY

1 just received my September issue of 73 and am sorry to say I don't like it at all; it is all one-sided for RTTY. 1 have nothing against RTTY, but a whole issue of it is too much.

I have noticed in the past few months that you are-specializing on one field in each issue. I hope that this is not going to be your practice. I think the magazine will be a total loss or a bore to other readers who are not interested in that field.

One more thing I would like to see in your magazine is an article on amplifiers, especially on 15 and 10 meters: They are bad enough on 20m: let's hope they keep it there. I want everybody to enjoy ham radio, not just the ones with high power.

Donald Laroche WA2FXO Syracuse NY

HOT STUFF

f just wanted to send off my kudos to Miark Clark WB4CSK for his letter (Sept. 1977). I used to be a CBer, but I learned and studjed and worked at the darn thing until I finally started getting regular correspondence from Uncle Charlie lin the form of up graded licenses! / almost regularly.

I'm 14 years old (I got my Novice and Tech while I was 13) and first got my Novice and Tech back in the fall

Continued on page 48

De WA3ETD

John Molnar WA3ETD
Executive Editor

SPECIAL ISSUES

This issue of 73 is dedicated to OSCAR users, present and future. As you probably know, the newest amateur satellite launching is planned for the first of the year - details are in this issue. This bird will feature a UHF downlink for the first time, in the international amateur satellite band, no less! Many existing Mode B stations will be able to use their equipment with no problems. Hopefully. the new AMSAT entry will promate interest in UHF receiver design and techniques!

Even if you are not interested in satellites, the antenna and equipment referenced in the OSCAR articles can be used for stanclard VHF/UHF communications - who knows, the antenna you've been looking for might be described in an OSCAR article.

I have had several complaints about the special interest 73 issues this summer. Okay, I agree, not everyone is interested in RTTY and OSCAR. However, the content of the articles is applicable to all aspects of amateur communication. Please don't close your mind to new technology - satellites are becoming more and more commonplace in the amateur community; future AMSAT shots are going to provide hemisphere repeater operations - think about it!

At any rate, there are no more special issues in the mill right now. All suggestions for the same are appreciated!

THE COVER

The cover shot on this issue of 73 is an artist's rendition of the new bird it really has not been launched yet! Credit to R. Michael Smithwick WAGTUF for the cover.

TAKE COVER

An article slipped into the RTTY issue last month that needed an editor's comment. The article, "RTTY Local Loop," is not really perfect for beginners. An isolation transformer is
definitely required to isolate the loop from the power line! Otherwise, a shock could resuit from contact with the loop jacks if the plug is incorrectly polarized. In order to be safe, the isolation transformer should be inserted between the bridge and the power line. Be carefui!

AN APOLOGY

Due to the extra demands placed on the 73 staff by Wayne's Computermania show, I have failen behind in processing new manuscripts. I am currently about two weeks behind - take heart, your manuscript is not lost. As this is our deadline week, I will make a super effort to read all manuscripts by next week. Expect to have heard from me by the time you read this.

NEW TRENDS

Let me know what you think about the Gunnplexers and microwave information. If the general readership is not especially interested in new things, I will cease - however, until then, prepare yourselves! The experiments with the Gunnplexers are continuing; hopefully, in a month I will be able to write about the Doppler radar system I'm developing. This system is based on a counter with a modified timebase that will allow direct readout of range, speed, or whatever. Again, Computermania cut deeply into my free time!

I obtained a Hughes neon-helium laser tube the other day, and am attempting to integrate it into some kind of experimental communications system. So far, a power supply using an automotive ignition coil is under construction. By the way, ignition coils are a good source \{cheap\} for high voltage at low current. A 24 volt transformer and variac can be used to drive the coil, which is nothing more than an autotransformer. It was very easy to obtain the 1200 volts required to fire my laser using such a scheme.
My wife is beginning to wonder what's up at our home - between the microwaves and now the laser, she's thinking about building a copper
screen around the living area. Be careful when playing with these devices!

DEIMOS

So, you think SSTV is only good for transferring QSL cards and pix of the shack? This picture is courtesy of 73 associate editor Dave Ingram K4TWJ. Dave obtained the picture from the "N6V" gang at the Jet Prooulsion Laboratory. This picture is computer processed, and formerly unreleased. Dave has been doing considerable work in slow and fast scan television with JPL - so without additional comment, I'll let the Viking News Center (Pasadena CA) tell the story:
"This is a computer-generated color
picture of Deimos, smaller of the two satellites of Mars. A pair of images of Deimos from Viking Orbiter 1 - one taken through the camera's violet filter, the other through the orange filter - were combined in this single image to search for color differences on the surface of Deimos. Resolution in this picture shows objects as small as 200 meters. Deimos is a uniform gray color; slight tints of orange on the rims of some craters are artifacts of the image process. A small blur beside the large crater at the right is where scientists removed a reseau mark from the original image. The reseau marks etched on the imaging system are used to make precise measurements of the objects in the photos."

Authorized Dealer for:

DRAKE - YAESU - ICOM TEMPO - TEN-TEC KLM - DENTRON HY-GAIN - STANDARD CUSHCRAFT - WILSON

Full Service Facilities

Store hours:	
Tues - Wed. Fri.	9 a.m. -5 p.m.
Mon. - Yur.	9 a.m. 9 p.m.
Sunday	1 p.m. -6 p.m.

Drake 1525 EM Pushbutton Encoding Mich. only $\$ 49.95+\$ 1.50$ U.P.S.

We're "burning" to make Hot deals at A.R.S.O.N., Inc.
Call us at (615) 868-4956
Cost of telephone calls will be deducted from your order.
mateur Radio Supply of Nashville, Inc.
615 South Gallatin Road, Madison, Tennessee 37115

New Dema Perfect Shape Equipment - New Warranty

$1 \operatorname{COM~}^{225}$	240.00	Yaesu FTlole	81800
1 COM 245	400.00	Yoesu filiolee	550.00
ICOM 245/5S日	490.00	Yaesu FTIOIEX	498.00
COM 715	188.00	Yoesu fT22IR	505.00
Dentron 3kw Tuner	199.00	Yoery FT301	685.00
Drake R4C	500.00	Yaesu Fi3010	809.00
Droke Taxc	500.00	Yaesu FRC. 7	250.00
Drake ACA	105.00	Yaesu Fliot	445.00
Standord 148A (Kit)	289.00	Yaese FR1015	47500
Tempo One AC Supply	450.00	Yoent FR10150	570.00
Tempo 2020	855.00	Ynesu fiszob	310.00
Tempo VHF One/Plus	345.00	Yoesu GIR. 24	26.00

Eator:

Robert Baker WB2GFE
15 Windsor Dr.
Atco NJ 08004

Information on all 1978 contests should be forwarded as soon as possible directly to me for publication. Help avoid multiple contests on the same weekend with conflicting schedules by having your dates published as early as possible. Also, don't forget to send abbreviated results and any award information.

For a slight twist this year, take a listen during the OK DX contest. Last year there was good activity from Europe even though it was on the same weekend as Sweepstakes.

Anyone interested in a fine newsletter for contesters should check the National Contest Journal, published bi-monthly by the Southern California Contest Club, edited by Pete Grillo N6CJ. Subscription rates are $\$ 4 /$ year in USA, \$5/year elsewhere. For more information write: NC, PO Box 3762, Glendale CA 91201.

ARRL SWEEPSTAKES

 CWStarts: 2100 GMT Saturday. November 5
Ends: 0300 GMT Sunday, November 6 Phone
Starts: 2100 GMT Saturday, November 19
Ends: 0300 GMT Sunday. November 20
Sweepstakes is sponsored by the ARRL and is open to all amateurs in the US, US possessions, and Canada. No more than 24 hours of operation are permitted during the 30 -hour contest period. Time spent listening counts as operating time and off periods may not be less than 15 minutes. Times on and off as well as QSO times must be entered in the log. Each station may be worked only once, regardless of band.

CLASSES:

All entries will be classified as
either single or multipie operator stations. Single operator stations will be further classified by input power: Class A $=200$ Watts cic or less, Class B $=$ above 200 Watts. All ARRL affilbated clubs may also participate in the club competition.

EXCHANGE:

Number, precedence, your call, CK, and ARRL section. Send A for precedence if power is 200 Watts dc or less, othervise send B. For CK, send the last 2 digits of the year you were first licensed.
SCORING:
Score 2 points for each completed QSO. Final score is sum of QSO points multiplied by the total number of ARRL sections plus VE8 (max. 75).

AWARDS:

Certificates will be awarded to the highest scoring Class A entry and the highest scoring Class B entry in each section, provided there are at least 3 single operator entries or the score is 10,000 points or more. Certificates will also be awarded for high scoring Novices and Technicians. Multioperator entries are not eligible for certificate awards and will be listed separately in the results.

FORMS:

It is suggested that contest forms be obtained from ARRL, 225 Main St., Newington CT 06111. All entries with 200 or more OSOs must have a cross check sheet to check for duplicate OSOs. Each log must show date, OSO time, times on/off, exchanges sent and received, band and mode.

Note: These rules were taken from last year's contest.

RSGB 7 MHz DX CONTEST Phone

Starts: 1800 GMT Saturday, November 5
Ends: 1800 GMT Sunday. November 6

EXCHANGE:

Report and serial number, starting with 001.

SCORING:

Non-British Isles stations score 5 points for each contact with the British Isles; those outside Europe score 50 points. All may claim a bonus of 20 points for each British isles numerical prefix worked $/ G, G C$. GD, GI, GM, GW - $2,3,4,5,6)$. Contacts with stations using GB prefixes will not count for bonus points. AWARDS:

Non-European stations must make at least 10 OSOs to qualify for an award.
LOGS:
Logs and entries must be addressed to the HF Contests Committee, c/o J. Bazley G3HCT, Brooklands, Ullenhali, Solihull, West Midlands, England, to arrive no later than December 29.

MISSOURI OSO PARTY Starts: 1800 GMT Saturday, November 12
 Ends: 2300 GMT Sunday, November 13

The 13th annual QSO party is sponsored by the St. Louis Amateur Radio Club in an effort to activate some of the hard-to-get Missouri counties. The same station may be worked once per band and mode. Missouri mobiles will count separately from each different county.
EXCHANGE:
QSO Number, RS(T), and QTH; county for MO stations; state, province, or country for others. MO mobiles start with \#1 from each county activated.

FREQUENCIES:

3540, 3910, 7040, 7240, 14040. $14270,21110,21360,28110,28600$, 50-50.5.

SCORING:

Score 1 point per QSO; MO stations multiply contact points times number of states, provinces, and countries; others multiply by number of MO counties (115 max). MO mobiles total separate score from each county activated.

AWARDS:

Certificates to top scores in each state, province, country, top 10 MO entries, and top 3 MO mobiles. ENTRIES:

Mailing deadline for logs is Decem. ber 15. Address all entries to: St. Louis ARC - K 0 LIR, 842 Tuxedo Blvd., Webster Groves MO 63119. Include an SASE for results.

DELAWARE OSO PARTY
Saturday, November 12 0001 to 0600 and 1600 to 2200 GMT
Sunday, November 13
0001 to 0600 and
1600 to 2200 GMT
Sponsored by the Delaware ARC, contest is open to all amateurs. Sta
tions may be worked once per band/ mode for QSO points.

EXCHANGE:

QSO number, RSITI, and OTH county for DEL, ARRL section or country for others.

SCORING:

DEL stations score one point per QSO and multipiy total by number of ARRL sactions and countries worked. Others score 5 points per DEL OSO and multiply by 1 if one DEL county is worked, 3 if two counties worked, and 5 if all three counties worked (counties = Kent, New Castle, and Sussex.

FREQUENCIES

CW - 3560, 7060, 14060, 21060, 28160.

Phone - 3975, 7275, 14325, 21425, 28650.

Novice - 3710, 7120, 21120, 28160.

ENTRIES AND AWARDS:
Appropriate awards given top scorers and a special certificate to all stations working all three Delaware counties. Mailing deadline is Dec. 31 to John R. Low K3YHR, 11 Scottfield Drive, Newark DE 19713. Ia clude an SASE for results or W-DEL certificate.

EUROPEAN DX CONTEST RTTY

Starts: 0000 GMT Saturday, November 12
Ends: 2400 GMT Sunday. November 13
Rules for the contest are the same as for the Phone section, with one exception: In the RTTY section, contacts with one's owr-continent are permitted and count 1 point per QSO. Muitipliers will be counted as before.
Complete rules appeared in the August issue on page 22. Briefly, the basic rules are as follows:
Use all bands 3.5 through $28 \mathrm{MHz}_{\text {, }}$ with only 36 hours of operation out of the 48 -hour contest period for single operator stations. The 12 -hour rest period may be taken in up to 3 periods. Classes include single operator (all band), and multi-operator with single transmitter.
EXCHANGE:
RST and progressive QSO number starting with 001. SCORING:

Each QSO will count 1 point. A station may be worked once per band. Each OTC (given or received) counts 1 point - see August issue. The multiplier for non-European stations is the number of European countries worked on each band. Europeans will use the ARRL countries list. In addition. each call area in the following countries will be considered a mulàplier: JA, PY, VE, VO, VK, W/K, ZL, ZS, UA9/UAD. The multiplier on 3.5 MHz may be multiplied by 4; the multiplier on 7 MHz may be multiplied by 3 ; the multiplier on
$14 / 21 / 28 \mathrm{MHz}$ may be multiplied by 2. The final score is the total OSO points plus QTC points, multiplied by the sum total multipliers from all bands.
AWARDS:
Certificates to highest scorer in each country, reasonable score provided. Continental leaders will be honored. Certificates will also be given to stations with at least half the score of the continental leader. LOGS:

Use a separate log sheet for each band. Logs for the RTTY section should be mailed no later than December 1. North American stations may send their contest logs to: H. E. Weiss WA3KWD. 762 Church St., Millersburg PA 17061, USA All others should send their logs to: WAEDC Committee, D-895 Kaufbeuren, Postbox 262, Germany.

IPA CONTEST

Saturday, November 12
0800 to 1000 and
1400 to 1700 GMT
Sunday, November 13
0800 to 1000 and
1400 to 1700 GMT
Sponsored by the international Police Association Radio Club German Section (IPARC), the contest is designed to enable participators to work the Sherlock Holmes Award (SHA). The contest is open to all radio amateurs and SWLs. Members may work anyone, non-members may only work members. General call is "CQ IPA." Cross-band and cross-mode contacts are not allowed. All contacts must be on CW or SSB.
EXCHANGE:
Non-members send RS(T) and serial number. Members send IPA, RS(T), and serial number.

SCORING:

Every completed OSO counts 2 points on $80 / 40$ meters, 4 points on 20/15/10 meters. Stations may be worked once per band. Multiplier is number of DXCC countries; every band counts separately. Final score is OSO points times multiplier.
FREQUENCIES (as allowed):
SSB - 3650, 7075, 14295, 21295. 28650.
$C W-3575,7025,14075,21075$, 28075.

AWARDS AND ENTRIES:

Certificates to winners and three highest scores. Any amateur fulfilling the conditions of the SHA50, SHA100, or SHA200 during the contest may apply with application sheet, Approval of 2 licensed hams is not necessary for contest application. SHA rules, IPARC membership list, SHA application sheet, contest log sheet, and contest score or certificates are available from Vince Gambina WB40JO, 7606 Kingsbury Road, Alexandria VA 22310 - inciude an SASE, please! Contest entries must be postmarked no later than December 31 and sent to Adalf Vogel DL3SZ, Ritter-von-Eyb-Strasse 2, D-8800 Ansbach, Germany.

INTERNATIONAL OK DX CONTEST
 Contest Period:
 0000 to 2400 GMT

Sunday, November 13
The participating stations work stations of other countries according to the official $\mathrm{D} \times \mathrm{CC}$ Countries List. Contacts between stations of the same country count only as a multiplier, but 0 points. All bands from 160 to 10 meters, CW and phone may be used. (OK stations are only licensed to operate CW on 160 meters.) Crossband as well as cross-mode contacts are not valid.
EXCHANGE:
Exchanges consist of a 4 or 5 digit number indicating the RS(T) and ITU zone.

SCORING:

A station may be worked once only on each band. A complete exchange of codes counts one point, but three points for a complete contact with a Gzechoslovak station (except as noted above for stations in the same country). The multiplier is the sum of the ITU zones from all bands. Final score is then the sum total of contact points times the multiplier.
CATEGORIES:
A - single operator, all bands; B single operator, one band; C - multioperator, all bands. Any station operated by a single person obtaining assistance, such as in keeping the log, monitoring other bands, tuning the transmitter, etc., is considered as a multi-operator station. Club stations may work in category C only.

AWARDS:

A performance list of participants will be worked out by the contest committee for each country. A certificate will be awarded to the top scoring operators in each country and each category. The " 100 Ok" award may be issued to stations for contacts with 100 Czechoslovak stations, and the "S6S" award (and/or endorsements for individual bands) may be issued to a station for the contacts with all continents. Both awards will be issued upon a written application in the log. No QSL cards are required for either award.
LOGS:
A separate log must be kept for each band, and must contain date and time in GMT, station worked, exchange sent and received, points $(0,1$ or 3), and ITU zone (with the first QSO for that zone only). The log must contain in its heading the category of the station (A, B, or C), name and callsign, address, and band or bands. Also, indicate the sum of contacts, QSO points, multipliers, and the total score of the participating station. Each log must be accompanied by the following declaration:

I hereby state that my station was operated in accordance with the rules of the contest as well as all regulations estab/ished for amateur radio in my country, and that my report is correct and true to the best of my belief.

Logs must be sent to The Central Radio Club, Post Box 69, Prague 1, Czechoslovakia - postmarked no later than December 31, 1977. A list and map of ITU zones is avaitable for 2 IRCs from the same address.

> WWDXA INTERNATIONAL CW CONTEST
> Starts: 0000 GIMT Saturday,

November 19
 Ends: 2400 GMJ Sunday, November 20

Sponsored by the Worldwide DX Association and DXers Magazine, the objective is to contact as many amateurs in as many ITU zones and countries as possible using all available frequencies. All assigned amateur radio frequencies from 0.1 MHz to 25 GHz including transponders and repeaters of amateur satellites may be used. There are no contest limits; you may use complete automation devices, including tape recorders, auto keyers, readout devices, or other automatic CW devices. You must, however, follow the rules and regulations governing amateur radio in your country. Multi-operator, multi-transmitter entrants are encouraged. Single operator, single transmitter, single band entrants must state single category for special recognition. All entrants are assumed to be muiti/multi/multi unless otherwise stated. The purpose is to encourage group contesting to enhance teamwork and interaction. Shortwave listener entries are a separate category.
EXCHANGE:
All stations must exchange reports and ITU zone numbers. Mobiles changing zones during the contest period will make changes in report sent to show the new zone. Shortwave listener logs must reflect zone numbers.

SCOR ING:

3 points for contact on different continent, 1 point for contact of different country but same continent, 10 points for contact by satellite transponders or repeaters, 0 points for your country contact, but multipliers count. Multipliers are each ITU zone contacted per band and each country contacted per band. Final score is total QSO points times total multiplier. SWLs score same but on heard basis. Land and sea mobiles count as different continent (3 points).
ENTRIES AND AWARDS:
Submit your contest summary sheet to the contest committee. Do not submit your logs - only the summary sheet. Include name and callsigns of all operators and listeners. Contest committee reserves the right to request your \log to verify your entry in the event of close or tie scores. Summary sheet must be postmarked before January 1; contest
synopsis will be mailed to each entrant before February 15. Trophies, prizes, or negotiables are solicited for award within country of origin. Results of the contest committee are final. Mail entries to: Frank Jerome W5AT, 908 Holoway, Midwest City OK 73110.

ALL AUSTRIAN CONTEST Starts: 1900 GMT
 November 19 Ends: 0600 GMT November 20

The contest is open to all amateurs; power input must be in accordance with licensing regulations. All contacts must be on 160 meters, on CW only. Foreign stations use the call " CO OE," Austrian stations will use the call "CQ TEST." The authorized suballocations for Austria are: 1.823-1.838, 1.854-1.873, $1.873-1.900 \mathrm{MHz}$.

EXCHANGE:

RST and QSO number starting with 001. Each exchange must be confirmed by repeating the exchange code.

SCORING:

Every completely logged OSO foate, time in GMT, frequency in MHz , call of station, exchanges given and received) counts one point. Multipliers are 2 points for every Austrian "Bundesland" (OE 1-9), and one point for every prefix. Multiply QSO points times multipliers for final score. Every station can be contacted only once. If a station is contacted twice, the second OSO must be clearly marked as a duplicate and does not count.

ENTRIES:

Logs must be postmarked no later than December 15 and sent to: Landesverband Salzburg des OVSV, "AOEC 1977," c/o Ing. Woltgang Latzenhofer OE2LOL, Pfeifferhofstrabe 7, A-5020 Salzburg, Austria.

TEN METER GROUND WAVE CONTEST
 November 26

9 pm to 1 am Local time Sponsored by the Breeze Shooters of Pennsylvania, send an SASE to Richard Evanuik WA3LUM, 311 Evergreen Ave., Pittsburgh PA 15209, for logs and new rules. There will be separate categories for Novice/Technician classes.

AMSAT

AMSAT-OSCAR 7 ORBITAL DATA CALENDAR

In cooperation with AMSAT, Skip Reymann WGPAJ has published an improved AMSAT-OSCAR orbital data calendar containing all orbits for 1978 for AMSAT-OSCAR 7. Designed so that it may be hung on the wall, the calendar includes information on the operating schedules and frequencies for the spacecraft, and also the telemetry decoding equations. Also included is step-by-step information on how to determine times of passage of the satellite.

The orbital calendar is available postpaid for $\$ 5.00$ U.S. funds or 30 IRCs ($\$ 3.00$ to AMSAT members, and free to AMSAT Life Members). Overseas orders will be airmailed. Orders and payments should be made in U.S. currency to: Skip Reymann WGPAJ, P.O. Box 374, San Dimas CA 91773 Important - To speed up handling of your order, please include a gummed, self-addressed label.

Proceeds from the Orbitai Calendar benefit AMSAT.

Looking West

Bill Pasternak WAGITF 24854-C Newhall Ave. Newhall CA 97321

Coordinators, coordination councils, and concerned spectrum users should take note of the following date: September 23, 1978. If plans jell as it now appears they will, on that date the Southern California Repeater Association, the San Diego Repeater Association, and the 220 Club of San Diego will cosponsor this nation's first VHF/UHF National Voluntary Coordination and Band Planning Meeting in the city of San Diego, California.

It has been obvious for a long time that coordinators and coordination councils all over the nation face similar problems and that some format has to be found to get all of these peopie under one roof for a day or so to give them a chance to talk over their ideas with one another. No individual or group had made any move toward setting up such a gettagether. The initiating step took place at the August 20,1977, SCRA General Membership Meeting held in La Jolla. In his remarks welcoming the SCRA to the La Jolla-San Diego area, Sam Deer suggested that the SCRA schedule its fall, 1978, meeting so that it could be held at the 1978 ARRL National Convention that he and his staff are putting together at this time. 'Why not make it a national coordinators meeting instead?" suggested Bob Thornberg WB6JPI, and at that moment was born the idea of SCRA hosting the first meeting of this kind.

However, an event of this scope would necessitate support from as many amateurs as possible, and since this will be a seminar held in San Diego, it was felt that the amateur communicy of that city must be directly involved. Therefore, after some quick discussions and a few letters, it was decided that rather than have it be an SCRA-sponsored gathering, it would be cosponsored by the three organizations mentioned above.

Since plans are still in the formative stages, it's hard at this moment to describe any program for the meeting itself. One suggested plan is to hold two separate sessions, with technical issues discussed in the morning and matters of a political nature taken up after a good lunch. However, since it has been but two weeks since the idea itself was conceived, exact plans have vet to be formulated. In either case, it is hoped that this meeting will be astended by delegates from all voluntary coordination councils (and/or coordinators) here in the United States and worldwide, as well as individual amateurs who are truly concerned with overall VHF/UHF voluntary spectrum management

Further information on this meet ing will soon appear both here and in most other amateur publications. In the interim, if you think you might want to attend or wish to make reservations for a seat (the meeting is
free, but the sponsors would like to know how many people to expect), drop a note to the attention of Mr. Paul McClure, Secretary, Southern Califormia Repeater Association, PO Box 2606, Culver City CA 90230. Mark your envelope "Coordination Meeting Info Request," and please include an SASE. This meeting may mark a historic moment in amateur radio's future, so plan to attend.

CALL FOR PAPERS

SCRA Chairman Jim Hendershot has informed me that 1 have been "volunteered" by the SCRA to handle their involvement in the meeting. One idea that I have is to invite you who plan on attending to submit formal "papers" for consideration and/or presentation at the seminar next September. In this way, many divergent opinions and ideas could be expressed in a short time on such topics as "The Future of Voluntary Spectrum Management by Amateurs," 'Coordination Methods for Relay Communication," "The Anatomy of a Voluntary Coordination Council." "User Involvement in Repeater Coordination," "Advanced Coordination Techniques Using Microprocessors," "Possible Voluntary Coordination of Non-Relay Spectrum Operations," etc. You need not limit yourself to the aforementioned list - use your imagination, Even if you oppose the concept of voluntary spectrum management and feel you have a good argument to prove your point, go ahead and submit a presentation. Since this seems to have been placed in my lap anyhow, it is my intention to get a "judging committee" put together that will be made up of the best technical minds i can muster. Those authors whose papers are selected will be invited to present them at the meeting.

I guess that at this point some "ground rules" might be in order. First, use whatever written format you like. It's content, not veriting form, that's important. Second, it should be long enough to present your views in an easy-to-understand manner, yet not so overly long as to put everyone to sleep. One way to be sure is to read it into a tape recorder after you have finished it. If it runs no longer than, say. 15 minutes and holds your interest, then you have a potential winner. If, after listening for 45 minutes, you find yourself falling asleep, then I suspect that some text editing is in order.

Let's set a submission cutoff date of June 15, 1978. This will give the committee a chance to read and judge all submissions and notify those authors selected. However, once you find out that you are one of the chosen presenters, it's up to you to get to the meeting on your own. Neither the SCRA, SANDRA, or the 220 Club of San Diego will be responsible for providing transportation to the meeting, lodging, or any other
expenses. Costs of such would be prohibitive. However, if you are one of the "dedicated" ones, you have already planned to attend both the ARRL National and this meeting, so dust off the typewriter and get going. Send all submissions to my attention, in care of the SCRA PO box in Culver City. Also, if you want your presentation returned should it not be chosen, please enclose an SASE.

PETE HOOVER ON USER INVOLVEMENT IN REPEATER COUNCILS

Herbert "Pete" Hoover III W6ZH is probably one of the most respected members of this nation's amateur community. On August 20, 1977. Pete addressed the membership of the SCRA on the topic of "User Involvement in Repeater Councils." Here is a partial text of Pete's talk:
'I've been involved in repeaters at one time or another, of one kind or another, since I got back from Europe in 1964. I had contral station for one of them for a while, first $A M$ and now FM, I'm not a stranger to the mode of communication; however, I am not as tar aside as Stan Brokl is, who wrote the comment in here freferring to an article that appeared in various local ractio club newsletters) saying that the two meter repeaters are very close to CB activity. I wish they were in some respects.
"A week ago, I was in Dallas talking to the REACT International Convention. They have a repeater on 460 . I think they have a bunch of them. They do a good job with them. They're commercial users.
"I would much rather be stuck on the road and have to ask REACT for

Pete Hoover WGZH addresses the SCRA at La Jolla.

FCC Math

John F. Leahy WBGCKN P.O. Box 539

Gonzales CA 93926

This is the first in a series for hams and would-be hams who have trouble with math. What we'll do over the months is take the equations and other math stuff you run into in FCC exams and handle them in a relaxed yet thorough fashion, so that when you go to face the friendly executioners down at the FCC office, you'll be well prepared to breeze through any math curves thrown at you.

So, if you are a person who can handle simple adding, subtracting, multiplying, and dividing okay, but tend to shrivel up into a quivering blob when faced with math that is more demanding, this series is for you!

First, let me assure you that if you fit into this category, you have plenty of company. Recent studies have shown that better than half the adults in the country can't add. Of course, people in electronics tend to be somewhat more capable along math lines than most, but if vou're not a scientist, engineer, math buff, or something, chances are there are areas of math where you do not quite feel at home, to put it mildiy.

Since the series will start with simple stuff and progress through all the math you could possibly need to pass any FCC exam land just about anything you might run into in popular books and magazines, for that matter), you should be able to eliminate areas of difficulty with very little trouble, providing, of course, that you do what's necessary to let the series go to work on you. A good quiet nook foot the ham shack, uniess you're good at resisting temptation), far removed from shriaking kids and a hysterical XYL, plentifully supplied with paper and writing materials, is usually helpful.

No doubt some of the math of this series will be second nature to you. There's no reason why you shouldn't skip such. A quick glance through each bite-sized part as it comes along should tell you if this is an area where you need some review or not. Since each part is pretty much self-contained, skipping certain sections or jumping back and forth should introduce few problems.

One urgent recommendation: If you are one of the vast multitude for whom math has been, is now, and, you fear, ever will be a major catastrophe, RELAX! I really mean relax. The biggest single obstacle to mastery of anything is being uptight about it. If you can learn to relax away the fears, anxieties, and inner turmoil that have buitt up over the years, you will find that there is no area of math you cannot completely master, given the right approach and sufficient time.

A good way to relax with math is to consider it a game. If you like
checkers or chess or bridge, you can like math. It's just a matter of developing the right outlook. If you enjoy doodling or have ever spent time on picture or crossword puzzles, then you are indubitably a person who can enjoy, yes, take real pleasure in, math. And there is this consideration: Whereas in bridge or checkers or chess, someone has to lose the game if someone else wins, in math no one need lose. You might be delayed for a while, reviewing something you've forgotten, or distracted (that lithesome bikinied lass next door), but there's no losing unless you choose to lose. And you will find that solving a math problem in electronics is just as satisfying as winning a game of chess, if you let it be. In fact, as you progress along finding yourself mare and more successful, you may very well become almost as hooked on math (yea, verily) as you are on amateur radio. But enough of this - let's quit talking and start buidding.

As I said earlier, we'll work primarily with the equations you might well find in an FCC exam. One of the first, which appears in various forms, is $f=300,000,000$ /wavelength. We'll dally a bit on this formula so as to develop some of the approaches we'll use throughout the series.

Another way you might see it written is $:=c / \lambda$, where c is the symbol ordinarily used for $300,000,000$ meters per second, the velocity of light, and λ, the Greek letter lambda, is the symbol used by physicists, engineers, etc., for wavelength.

Before we go any further, let's see what different forms this formula can be wiggled into. To find out what kind of wiggling is legit in electronics math, we'll play around with some numbers. Take the equation $5=10 / 2$, which might be translated: 5 equals 10 divided by 2. [Any fraction can be considered a division. Divide the bottom (denominator) into the top [numeratori]. You'll notice that 5×2 $=10$ and that $10 / 5=2$. Well, if math is universally valid (let's not get into philosophical questions here), then using our formula, $f=c / \lambda$, it must be true $f \times \lambda=c$ and that $\mathrm{c} / \mathrm{f}=\lambda$. (Remember that for purposes of math manipulation, letters can be handled just as though they were numbers.) So there are three basic configurations of the formula. Which of the three should be used in a particular case depends upon whether you are trying to find the frequency or the wavelength (presumably you'll never be solving for the velocity of light).

You may have heard, somewhere. that light land other electromagnetic waves, including radio) travels 186,000 miles per second. Of course, scientists, in an effort towards uniformity and logic, use meters per second rather than miles per second. A meter, as you may know, is a lot
shorter than a mile, in fact a thousano of them is still less than a mile. To be more or less precise, a meter is 39.37 inches, a little over a yard in length la yard, you will recall, is 3 feet or 36 inches longl. Now let's take that 186,000 miles and see if it comes out to the $300,000,000$ meters of our formula. There are 5,280 feet in one mile, so there must be $5,280 \mathrm{x}$ $186,000=982,080,000$ feet in 186,000 miles. Anywhere along the line you're not quite sure of the reasoning, it might be a good idea to stop and play around with the ideas involved so as to get a clearer picture of why we do what we do. For example, why did I multiply $5,280 \times$ 186,000 instead of, say, dividing? If you're not sure, then you want to picture the relative sizes of miles yards, feet, inches, meters, etc., trying mentally to fit the smaller into the larger, asking yourself how many of the smaller fit inside one of the larger, drawing pictures representing their engths ftrying to draw to scale, if possible) and in general playing with drawings and mental pictures until it's crystal clear how we go about converting one unit of measurement into another. Now take that $982,080,000$ feet, multiply by 12 (because there are $12^{\prime \prime}$ in one foot), and we have $11,784,960,000$, the number of inches in 186,000 miles. Now all we have to do is divide that number, $11,784,960,000$ inches, by 39.37 , the number of inches in one meter, and we have 299,338,582. So 186,000 miles works out to $299,338,582$ meters, quite close to the $300,000,000$ of our formula. In fact both 186,000 miles per second and $300,000,000$ meters per second are approximations of the value for the speed of light. Approximations are all we need and, indeed, the best science can do.

A few comments are now in order. Notice the large numbers we were into above. Even with a calculator that can handle such numbers, errors are easily made. Electronics is full of computa tions with numbers larger than those we just experienced. Hence shorthand methods for handling such numbers had to be developed, and you will need to learn them if you have not already done so. We will cover such shorthands in future lessons.

That $300,000,000$, then, is the fantastic distance in meters a radio wave travels in one second. What, you might ask, has that to do with irequency and wavelengths? (Our formula, remember, says that fre quency equals $300,000,000$ divided by wavelength.) As a matter of fact everything follows logically from the meaning of the two words, frequency and wavelength. Frequency is the number of complete cycles of a particular signal that occur in one second. Wavelength is the distance a wave front travels, zipping along at the speed of light, during the time it takes the generator of that signal to produce one complete cycle.

If we take an example, we should be able to nail this all down Supposing your CW transmitter's putting out a signal at 3.625 MHz

That's $3,625,000$ cycles per second. M in MHz stands for mega, you may recall, and mega means million. With our decimal system the way it is, the 3 in that 3.625 is the millions and the 625 is therefore thousands.

Now we ask ourselves how long it would take for one cyc!e of that frequency to be produced. Obviously it would be a mighty short bit of time. Well. if there are $3,625,000$ cycles in one second, then one cycle takes $1 / 3,625,000$ of a second (just like if you travel a: 60 miles per hour, one mile takes $1 / 60$ of an hour, which just happens to be one minutel. Again, play around with these ideas, taking different examples, etc., if everything is not crystal clear to you. Notice that number, $1 / 3,625,000$. It is one over or divided by the frequency. So the time it takes for one cycle is simply 1 civided by the frequency seconds (providing, of course, that you're dealing with a frequency expressed in cycles per second). This particular configuration, 1 divided by the frequency, is called the period of the signal. And physicists use the symbol ν, the Greek letter nu, in formulas, etc., when performing calculations that require the use of a signal's period.

Next we ask how far the wave front of our signal would travel in that short period, $1 / 3,625,000$ sec., because whatever that distance is, it is the wavelength of our signal. You may recail distance equals speed times time. If I'm going 60 miles per hour, and do so for 3 hours, then l've traveled 3×60 or 180 miles all told. For our radio signal, we multiply speed $1300,000,000$ meters per second times time or period (1/3,625,000 sec.) thusly: $300,000,000 / 1 \times 1 / 3,625,000=$ $300,000,000 / 3,625,000$ which equals $300,000 / 3,625$. If you're not quite sure how we got rid of those last 3 zeros at the end of each number, and you'll find that you get the same answer as you would if you simply dropped those last zeros, providing you drop the same number of zeros from top (dividend, numerator) and bottom (divisor, denominator). The principle is simple. You're just dividing some power of ten iwe'll go into powers later on) by itself, and, as you probably realize, whenever you divide something by itself, the result (quotient) is 1 , and I times anvithing is that same anything. So just by crossing out the same number of end zeros on top and bottom, you've carried out a division and gotten rid of a hidden 1 !

Before we find what $300,000 / 3,625$ equals, you might notice that 3625 is our original frequency, but as it would look expressed in kilohertz (kHz). In other words, 3.625 MHz equals 3625 kHz (equals $3,625,000 \mathrm{~Hz}$ or cycles per second). We'li get back to this in a later lesson, and show how to use our formula, $f=300,000,000 /$ wavelength, with megahertz, kilohertz, or Hertz (as we are in this lesson) without converting the megahertz or kilohertz into Hertz.

Continued on page 23

New Products

OPTOELECTRONICS FC-50 FREQUENCY COUNTER JMPRESSIONS

Considering myself a confirmed UHF/VHF enthusiast, I wes pleased to review a new frequency counter usef ui in the UHF spectrum. My present counter is a home brew 50 MHz job constructed on perfboard, with a prescajer that starts to gasp at 450 MHz Thus, the new Optoelectronics FC-50 counter with 600 WT prescaler could not have come along at a better time!

Optoelectronics is best known for their clock kits and electronic components. I was surprised to discover that they also offer a quality counter, available in kit and pre-built form. The basic counter is the model FC-50, which will respond in the range of 10 Hz to about 65 MHz . I evaluated a factory-built model, although instructions for the kit builder were provided. The user instructions provided with the kit assume some knowledge of components and mounting techniques; even so, they are easy to follow, and are complemented with several pictorial diagrams.

The FC-50 requires five volts for operation; thus, it can be used in the field with battery power and a 309 regulator. The eight digit LED display features leading zero suppression, which means that only the significant digits of the frequency being monitored will be displayed. The suppressed display is controlled by a front panel toggle switch. The LED display features $.4^{\prime \prime}$ digits for easy reading. In addition to the leading digit suppress switch, front panel controls consist of a power switch, gate time control, and a prescale switch to enable the optional 650 MHz prescaler. The gate time control is a two-position switch which allows either a one second or $1 / 10$ sacond sample time. In effect, this allows the display to be updated on either of the time intervals. A BNC connector is provided for rfinjection.

The FC-50 counter has a claimed accuracy of $1 \mathrm{ppm}(\pm .0001 \%$). Stability after 25 minutes is also 1 ppm. Input sensitivity to 50 MHz is 10 mV rms, and impedance is 1 megohm with a load of 20 pF . If the 600 WT prescaler is used, the input requirements increase to about 150 $\mathrm{m} V \mathrm{rms}$.
Using the counter is a snap! i plugged my unit in and allowed a warm-up period of 10 minutes. My rf probe consisted of a three-inch clip lead twisted into a turn coil. This coil was attached to a short piece of coax which terminated in a BNC connector. I had a 2 m Wilson HT nearby, which provided an easy test. Presto ... the HT provided an accurate count at distances up to five feet from the counter! is was an easy job to calibrate my HT . . . sure enough, several channels were off frequency. No wander I couldn't hit one of the "locai" machines!
The real test came with the 450

MHz HT . This rig provides only 500 mW of output, and was originally calibrated by the old "tweak until you access the machine" method. Amazing - the counter immediately indicated the frequency, and, as it turned out, I was close. Without wasting any time, I checked my entire UHF setup, using the simple coil pickup in all cases.
In my opinion, the Optoelectronics FC-50 counter and 650 MHz prescaler are hard to beat for the price. The eight digit display makes accurate UHF counting possible, and the accuracy is definitely OK for amateur use. Housed in a $6^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$ plastic box, the counter is attractive and portable. The most amazing thing about the FC-50, however, is the price. The basic 65 MHz unit in kit form is a vailable for $\$ 119.95$, complete! Factory wired, the unit costs $\$ 165.95$. The prescaler kit is available for $\$ 29.95$, and mounts inside the FC-50 case. This option is controlled by the front panel prescale switch. Sockets are provided for all IC packages, and quality components are in evidence throughout the counter. Optoelectronics, Inc., Box 219, Hollywood FL 33022.

John Molnar WA3ETD

 Executive Editor
YAESU INTRODUCES THE MEMORIZER

A solid state, fully synthesized 800 channei $144-148 \mathrm{MHz}$ two meter FM transceiver, Miodel FT-227R, featuring a photo optic sensor, has been announced by Yaesu Electronics Corporation of Paramount, Calitornia. This new Yaesu product has a memory circuit to put you on any preset channel with a flip of the memory switch, and has been designated the Yaesu "Memorizer."

Frequency readout is by means of four large LEDs. Optical sensing eliminates switch problems in frequency selection. PLL techniques are used for fully synthesized frequency control in 5 kHz steps, anc a special memory circuit allows instant return to any preselected frequency within the two meter band. Plus or minus 600 kHz offsets, plus any odd split within the two meter band, can be achieved using the memory circuit.

The new FT-227R has automatic final protection, PLL uniock protection, and a busy channel indicator. It provides built-in tone burst, plus optional tone squelch-decoder, and selectable ten Watt or one Watt output. It exceeds the latest FCC requirements with spuries well below the minus 60 dB down requirement with superior cross modulation, overload, and image rejection. Compact ($180 \mathrm{~mm} \times 60 \mathrm{~mm}$ $\times 220 \mathrm{~mm}$), lightweight (2.7 kg .), the FT-227R requires 800 mA on receive and 2.5 Amps on transmit at 13.8 V ds plus or minus ten percent. And, best of all, it is priced at under $\$ 300$! The Yaesu FT-227R is scheduled for late September delivery to all authorized Yaesu dealers. Yaesu Elec-

tronics Corporation, 15954 Downey Ave., P.O. Box 498 , Paramount CA 90723, (213) 633-4007.

WIRE-WRAPPING WIRE

The finest industrial quality AWG $30(0,25 \mathrm{~mm})$ wire-wrapping wire is now available on compact, convenient $50^{\circ}(15 \mathrm{~m})$ rolls. Perfect for small production applications, prototype iobs, or amateur electronics projects, the wire is silver-plated OFHC copper with Kynar insulation. This premium insulation combines excellent electrical and mechanical characteristics with easy stripability and is available in 4 colors (red, white, blue, and yellow), packaged on $1-5 / 8^{\prime \prime}(40 \mathrm{~mm})$ diameter spools for easy handling and storage. Available for immediate delivery. O.K. Machine and Tool Corm poration, 3455 Conner Street, Bronx NY 10475.

CURRENT TRACING METER INTRODUCED BY

INTEGRAL ELECTRONICS CORPORATION
A current tracing meter. MICROPROBER Model 42, recently introcuced by Integral Electronics Corporation, is specifically intended for isolating defective ICs on assembled printed circuit boards. The new instrument is especially useful in the troubleshooting of bus-oriented circuitry, such as encountered in
microprocessor assemblies. Detection of random solder shorts on printed circuit boards and location of extra neous wires in back planes and wirewrap assemblies are greatly simplified with the aid of this device. The sensitivity of the current tracer. spanning a $10,000: 1$ range, permits equally effective fault isolation of TTL, DTL, CMOS, and ECL circuits. The instrument is portable and powered by a single 9 -voit battery, providing up to 300 hours of continuous operation.

Available from stock to 45 days at $\$ 94.50$ each. For further information, contact Marcy Talbot, Sales Manager, Integral Electronics Gorporation, P.O. Box 286, Commack NY 11725, telephone (516) $269-9207$.

NEW TWO WAY

 TEST SET INCLUDES COMPLIMENTARY CARRYING CASEA Thruline ${ }^{\text {® }}$ directional RF wattmeter and a Bird 100 W dry load constitute the core of the new mode! $4300-064$ test set. Selected especially for convenience in servicing mobile communications equipment, accessories include an if sampier with variable level control for signal frequency, spectrum and envelope analysis, two UHF connectors, two N connectors fon the Model 43 watt-

- Continued on page 168

The "Memorizer" from Yaesu Electronics Corporation.

Looking West

from page 20

more and more often. And who from? Your users. And how many users are there versus how many suppliers? Repeater operators (owners): You don't stand a chance.
"Okay, what's the answer? You can't do it by legislation. It has to be done in a voluntary manner. No two ways about it. You have to have an end objective, and your end objective must be to make better use of the one resource you have, the spectrum. You have to relate what you are doing to the users of your service. You have to ally yourselves as repeater operators (owners) with the organizations that your users belong to - Red Cross, Salvation Army, ARES, RACES. Sure, RACES is part of the repeater operators group. I can think of two RACES repeaters that in times of disasters turn themselves off!
"Suggestion (it's been made before. but please give it some serious thought): You've got some very competent people here. Consider, over a period of two years, phasing in something like the following, which is modeled primarily after the commercial FM broadcast practice. You have class $A, 8$, and C stations, from very low power local machines land this is akin to JR's comment about it being
installed in someone's sub-basement, running a half a Watt to a wet noodlel to the 'clear channel stations' (wide coverage), maybe like a $34 / .94$ on Mt. Wiison. Who knows? Chances are excellent that if you approach it from the same allocations viewpoint that the FCC has in the past used for allocation of FM irequencies (commercial ones for broadcastl, you can increase the number of repeaters on the air by three- or fourfold without increasing your spectrum. But you are going to have to instill in your members a discipline that currently does not exist. It will have to be done by cooperation. This is probably going to require an alliance with users, and I am delighted to see someone from northern California here (referring to NARC Chairman Dave Merts), 'cause that's where it begins.
"As a start, the only repeater that I am presently a user of is the ANY repeater in Pasadena. Talking to the people on that repeater, I understand that there is a potential conflict with AOD here in the Claremont area of San Diego. We are willing in Pasadena to reduce our ERP to 1 Watt. That will give us the possibility of covering the San Gabriel Valley and a portion of Los Angeles. We challenge AQD to do the same thing. This kind of thing, I think, will lead to a lot fewer
headaches for your technical committees, and probably will give you a better system ali around. That and aligning yourself with the Red Cross or any other communications user. Remember, you are only in business because your users let you stay in business. The moment they tire of you, there goes your toy. No longer can you put these things (repeaters) on the air for your own personal amusement - which is what most repeaters are on the air for, I'm sorry (to say).
"That's the end of my general comments; I was delighted to see SCRA members at the L.A. Council of Radio Clubs meeting. To my knowledge, that's the first they had ever attended a meeting. I hape it accurs more often. Okay, enough of the lecture; any questions?"
This was transcribed directly from tape recordings made at the time and, with the exception of the deletion of his opening remarks pertaining to WARC ${ }^{\prime} 79$, is presented totally unedited. Comments on the foregoing can be made either directly to Mr. Hoover or to him through this column.

THE BIG FIRE

By now, most of you are aware of the fact that this summer California suffered some of the worst wide-area fires in the state's history. They seemed to spring forth without warning to consume hundreds of thousands of acres of valuable land. In the case
of the big Santa Barbara fire, hundreds were left homeless in the fire's wake.

I have received many reports of how amateur radio - both HF and VHF - has been working at the front lines to provide the necessary communication when called upon to do so. As I write this, the giant Marble Cone fire has just been "contained." and the weary firefighters are into their final "control" phase of the fight. It still will be many days before it's out.

Two people who have supplied information for us are Bob Couger WOKPS, who lives up near the Santa Maria area, and Bob Jensen WGVGQ, who was up in the fire area with a film crew. Their information, along with input derived from a report given to the SCRA by Southwestern Division Director John Griggs W6KW, make up the background for what you are about to read.

The most important aspect of ama teur radio's irvolvement in the fire fighting efforts was that amateurs arrived "ready to set up communications" - but were not pushy about it. They simply let those in charge of the overall effort know of their availability, and then waited to be asked to participate. They did not have to wait very long for the call. The fire being in the type of terrain it was, very little land-based communication already existed - and what there was in the

Continued on page 27

FCC Math

from page 21

Now back to that $300,000 / 3,625$. Dividing out, we get 82.8 , the length of one wavelength of our 3.625 MHz signal in meters. I leave to the reader the exercise of converting 82.8 meters to feet. Just remember there are 39.37 inches in a meter. The answer is below." You may have noticed that I did not carry the division above out beyond one decimal point. The reason is simple. There's no reason to be more accurate than that here. You get a feel for proper degree of accuracy as you increasingly bump into reality.

Finally, let's tie everything together so we can see what we've done and where we've been. We started, you recall, with the formula $f=$ $300,000,000$ iwavelength, which, with further symbolism, is $t=\mathrm{c} / \mathrm{h}$. This can be tortured into the two variant forms: $f \times \lambda=c$ (or simply $f \lambda=c$; multiplication sign need not be written between two letters, and two letters next to each other are understood to be a multiplication) and $\mathrm{c} / \mathrm{f}=$ λ. Then we took our elementaryschool formula, distance $=$ speed times
*271.7 feet. We multipiv 82.8 by 39.37 to get 3259.8 , the number of inches in 82.8 meters. Then divide by 12 , getting our answer.
time, and applied it to our case, getting wavelength $=300,000,000$ times perjod. And since period is 1 over frequency, we derived, really, the formula, wavelength $=300,000,000 / \mathrm{f}$ or $\lambda=c / f$, which, as you can see, is the second variant above, only written with the symbols interchanged from one side of the equal sign to the other (aiter all, it doesn't make much difference whether you say $2 \div 2=4$ or $4=$ $2 \div 2$, does ir?). So really, you don't need to remember the formula: fre quency $=300,000,000 /$ wavelength . All you need is distance equals speed times time, remembering that in our case distance is wavelength, speed is $300,000,000$ meters jer second, and time is 1 over frequency. And if you can't remember what variants the formula can take, go back to a simple problem, e.g., $2 \times 3=6$, so $6 / 2=3$ and $6 / 3=2$, but notice that 6×3 does not equal 2 , nor $6 \times 2,3$, nor does $3 \div$ (divided by) $2=6$, etc. Only variations that work with numbers will work with letters. So, fc $\neq \lambda 1 \neq$ means "does not equal" $", \mathrm{f} / \mathrm{c} \neq \lambda$, etc.

Now, with all this logic and all these tricks under your belt (if you'll pardon the mixed metaphor), here are a couple for you to work out. Check yourself against the answers (and work) below.

1. What is the free space wave-
length of a 146.94 MHz signal (meters and feet)?
2. What is the frequency of a signal whose free space wavelength is 5 inches?

Answers

1. We use the farmula $\lambda=c / f$. The 146.94 MHz is $146,940,000$ cycles per second. So we have: $300,000,000 / 146,940,000$ $30,000 / 14,694=2.04$ meters. Multiply 2.04 $\times 39.37$ and we have 80.31 inches. Divide by 12 and we have 6.69 feet.
2. Here we are looking for frequency, so we use the formula $\ddagger=$ e λ. Our formula requires meters, remember. rather than inches. So we must first convert 5 inches
into meters. Since there are 39.37 inches in one meter, we are here dealing with a lot less than one meter. In fact we are dealing with $5 / 39.37$ of a meter. Divide that out and we have 0.127 meters. Slipping that into the formula, we have $t=300,000,000 / 0.127=$ 2,362,204,000. Again, we need not carry the division all the way out. Just put in the correct number of zeros ziter working it out a reasonable amount, so as zo get us into the right magnitude. $2,362,204,000$ eycles per second is 2362.204 MHz , which is our answer. This matter of how far to work a problem out is not terribly important fo. our purposes, since FCC exams are multiple choice and once you flave the first couple of cligits and know the size of the answer (whather hundreds, millions, or whatever), you can easily select the correct answer.

Tracking the Hamburglar

STOLEN: Collins KWM 2, s/n 11023. Johnson Viking 250 Watt matchbox, swr bridge, Eico tube checker, electro voice dynamic mobile mike, volt ohmmeter, and all my old 73 magazines starting from the first issue through about 1969. Contact Richard M. Olson, 5123 Mezzanine Way, Long Beach CA 90808.

PURLOINED: Heath HW202 with GE mic and BNC ant conn. on back. WB8TDW, Ohio lic. No. NA228853, and SS No. 232-72-8842 marked in metal of case. Rig was removed from
car in Las Vegas. Nevada. Contact Chuck Young WB8TDW/7, 2165 E Rochelle $=79$, Las Vegas NV 89109 . (702) 733.8248.

SHANGHAIED: Heath Model 2021 handie-talkie with Model 201 touch tone pad built-in. Channel switch wired wrong in that chamels 3,4, and 5 go to crystal sockets 3,2 , and 1 . Crystalled for 146.52 (ch. 3), 146.655 (ch. 4), and 146.94 (ch. 5). Stolen July 23, 1977 in Westport CT. S. W Daskam K1POK, 38 Settlers Trail, Stamford CT 06903, (203) 329-0187.

Build the

Omni-OSCAR!

- practical omnidirectional antenna

Jay Buscemi K2OVS

8 Wexford Ct
St. James NY 11780

Due to the extremely good sensitivity of the receiver on Mode B, OSCAR 7, extensive antenna arrays with high gain for the 432 MHz uplink are hardly required. In fact, excessive erp due to the use of high gain arrays by ground stations has been a problem for some time. High uplink erp causes the agc on board OSCAR 7 to
desensitize the receiver, thus preventing weaker stations from accessing the satellite. Also, the batteries may be excessively drained by the high current demand, shortening their life.

Therefore, simple low gain antennas with omnidirectional characteristics are appropriate for use on this mode. 50-70 Watts of rf into a unity gain antenna will fully access OSCAR 7 for all but the most marginal conditions. The use of an omnidirectional uplink antenna is a tremendous advantage during a satellite pass, as it eliminates the need to track the satellite

Turnstile over ground plane (432 MHz).
in azimuth with a directional array. In addition, certain of the antenna designs described here also provide good overhead coverage. Gain arrays perform poorly at high elevation angles unless an elevation rotator is also provided for the antenna.
\because
All the antenna types described here may be con-
structed for either two meters or 432 MHz . Dimensions for both bands are given in Table 1 and refer to the dimensions designated by A, B, C, etc. in the figures.

Quarter Wave Monopole

The simplest omnidirectional antenna is called the quarter wave monopole (also called the vertical ground plane), which consists of a single vertical element, onequarter of a wavelength long, mounted over a ground plane of at least one-half wavelength on a side (Fig. 1). This antenna produces a doughnut shaped pattern with a null directly overhead and the pattern falling to zero at the horizon. Obviously, the omnidirectional term as applied to this antenna is only meaningful in the azimuth plane. Its elevation plane pattern is symmetrical but certainly not omnidirectional. This antenna becomes quite ineffective at elevation angles greater than 40 degrees from the horizon, making it almost useless on satellite orbits which pass close (up to 300 miles) to the ground station. Still, its simplicity makes it useful for some applications.

Construction of the monopole is nearly trivial - mount

Fig. 1. Quarter wave monopole.

Sloped turnstile over ground plane (432 MHz).

a panel-mount BNC or N connector in the center of an aluminum or copper sheet and solder a quarter wave long piece of \#8 or \#10 bus wire to the center pin. The vswr should not exceed 1:5 to 1 without further matching. Trimming the length of the wire will permit a closer match, if desired.

Dipole Over a Ground Plane (Fig. 2)

Another simple antenna which works well on overhead passes of the satellites is the half wave dipole over a ground plane. This antenna provides some gain ($1.5-2 \mathrm{~dB}$) overhead, but has nulls off its ends and near the horizon. Like the simple quarter wave monopole, it is [inearly polarized (horizontal), so fading due to rotation of the satellite with respect to a ground station is still present. Manual switching between a vertical and horizontal antenna can be done during satellite passes to pick the. best polarization at any given time.

In order to minimize the effect of the nulis off the ends of the dipole, this antenna should be oriented so it favors NNW-SSE (in the continental US), as most ascending node passes go out to the NNW during the evening, local time.

No balun is required. The
antenna pattern may be slightly skewed, but no real advantage is gained by feeding the antenna in a balanced mode. Purists can add a quarter wave decoupling sleeve over the upright feedline.

As with the quarter wave vertical, the vswr as constructed will generally not exceed 1.5 to 1 , and the dipole element lengths may be trimmed to achieve a perfect match. The spacing of the dipole off the ground plane has been chosen for

Top view. Sloped turnstile over ground plane.
best omnidirectional coverage in the elevation plane. Some gain can be achieved by varying this spacing at the expense of pattern symmetry.

The dipole elements are constructed from $1 / 8^{\prime \prime}$ diameter copper or aluminum tubing, flattened at the end and fastened to a plastic or printed circuit board disc with \#4 screws. The feedline (and vertical support) is made from a length of semirigid coaxial cable (RG-405 or equivalent) which is soldered to a coaxial connector
mounted on the ground plane. Do not ground the coax connector to the ground plane - it should be mounted on insulated spacers. Cut a clearance hole in the ground plane to provide connector access from the bottom.

Turnstile Over Ground Plane

A worthwhile improvement over the simple dipole may be had by adding an additional dipole fed 90 degrees out of phase to the simple dipole described above. This provides two

Fig. 2. Dipole over ground plane.
advantages: the antenna will be circularly polarized overhead, and the nulls off the ends of the simple dipole are eliminated, providing a more uniform azimuth pattern.

This antenna, commonly called a turnstile, has been extensively used for HF and VHF ground communications, but its major advantage is in satellite communications - circular polarization overhead is not a factor in ground communications use. Circular
polarization minimizes polarization fading overhead when the satellite tumbles or rotates. Near the horizons, this advantage is lost and the antenna exhibits essentially horizontal polarization unless it is aimed at the satellite with an elevator rotator. Obviously, an azimuth rotation is of no advantage, as its azimuth pattern is essentially omnidirectional.

Construction of the turnstile is merely an extension of
the technique used for the single dipole over a ground plane (Fig. 2). Two additional dipole elements are installed on the plastic disc at right angles to the original dipole (see Fig. 3). To obtain circular polarization, a onequarter wavelength phasing line fabricated from RG-405 rigid coaxial cable is connected between the dipole elements. This phasing line is bent into a loop and supported by its solder joints.

Fig. 3. Turnstile over ground plane.

Fig. 4. Sloped turnstile over conformal ground plane.

Detail X of Fig. 2 is also applicable for mounting and feeding this antenna configuration.

If the element lengths, line lengths, and spacings listed in Table 1 are used, vsw should not exceed 2 to 1 over the satellite bandwidth. A near perfect match may be achieved by trimming the element lengths and their spacing off the ground plane. Adjusting the phasing line length for perfect circularity overhead is possible but not critical in this application, as some ellipticity overhead will be of little consequence.

Sloped Turnstile Over Conformal Ground Plane

A developmental antenna presently in use at K2OVS was designed and constructed to overcome one of the major drawbacks of the antenna previously described. All the monopole and dipole configurations exhibit either all vertical (monopole) or all horizontal polarization on the horizons, thus creating polarization fading when the satellites tumble and rotate. A combination of vertical and horizontal polarization (slant) at the horizons would be an advantage in obtaining the more uniform performance for all orbiting satellite orien-- - Lations.

Thus the elements of the basic turnstile were reconfigured at a 45 degree angle and the ground plane beneath them, was shaped to be parallel with each element. Overhead, the antenna is still essentially circularly polarized with slightly less (1 dB or so) gain than the simple turnstile, but the overall gain in uniform performance is worthwhile. In actual tests at this station, no measurable difference in overhead performance was observed between this antenna and the turnstile.

Basic feed and phasing line construction is identical to the turnstile (Fig. 3), and the feedpoint connector is mounted on the base ground plane similar to Detail X in Fig. 2. The elements (Fig. 4)
are bent down at a 45 degree angle to the horizontal and a conformal ground plane is fabricated from either aluminum sheet or thin copper or copperclad printed circuit board material. The use of thin copper sheet allows the ground plane assembly to be soldered together with a 250-300 Watt soldering iron or torch.

Again, dimension adjustments may be required if close matching is desired. Furthermore, slight adjustments (± 10 degrees) in the element droop angle will also affect the vswr (and the pattern). This angle adjustment should be used only as a final tune-up step. Element lengths have the largest effect on vswr.

Results from this antenna were surprising. The 432 MHz prototype was completed five minutes before a Mode B pass favoring US east coast-Europe contacts. A six-foot piece of RG-58 was temporarily connected to the antenna and the KLM Echo 70 (10 Watts output). Three western European stations were worked on that pass with no difficulty. No inference is intended that this design is the uftimate omnidirectional antenna. Rather, it is presented as an example of an unorthodox design which can serve as a starting point for further development and experimentation.

Summary

As with all antennas, good horizon coverage is a function

ReferenceA^{*}	Figures$1,2,3$	Use Ground plane edge size						
			146 MHz		432 MHz		435 MHz	
			IN	CM	IN	CM	IN	CNI
			40.5	102.8	13.7	34.7	13.6	34.5
B	1,2,3,4	Radiator length	20.2	51.4	6.9	17.4	6.8	17.2
C	2,3,4	Ground plane spacing	17.8	45.2	6.1	15.3	6.0	15.2
D **	3,4	Phasing line length	12.1	30.8	4.1	10.4	4.0	10.3
E	4	Triangle height	28.5	72.4	9.6	24.5	9.5	24.3

Table 7. Physical dimensions. "Minimum sizes. **Note: Assumes velocity factor $=0.6$. For different coax, use $1 / 4$ wovelength electrical length.
of the height of the antenna. These antennas perform well overhead and at higher elevation angles almost independently of their physical height above ground, but performance out at 2,000 miles (satelitite near the horizon) could be severely compromised by terrain blockage. Good low angle (DX) coverage is best accomplished with a unidirectional array, such as a yagi or collinear, mounted high and in the clear. An existing VHF array with azimuth control in conjunction with an omni type antenna for higher radiation angles is an ideal combination for all-around satellite work.

As stated before, the antennas described here are hardly the ultimate in omnidirectional types. Further development and experimentation is most rewarding with antenna design. For example, the sloping turnstile might be further improved by extending or reshaping the ground plane, adding an additional set of dipole elements at a 45 degree angle above the horizontal, adjusting the droop angle, etc. Accurate
comparisons of several antenna designs can be made quite easily using the satellites themselves as an antenna range signal source. A typical pass of $20-25$ minutes permits switching between the antennas under test and evaluation of the results. Modification may be accomplished in time for the next pass. The actual pattern of an antenna may be estimated by physically holding the antenna (particularly 432 MHz versions) and rotating it while pointed at the satellite (to estimate circularity), chang ing its elevation orientation, etc. Fading effects from the satellites themselves tend to be of relatively slow duration (3-4 minutes), so measurements or comparisons madë within 2-3 minutes effectively eliminates errors caused by the satellites or atmospheric conditions.

Gain estimates for higher gain VHF arrays may also be made using the satellite by switching back and forth between a reference antenna (e.g., dipole) and the antenna under test while observing the received signal level on the
station receiver. A caljbrated attenuator will permit more accurate measurements. Set a level with the reference antenna, switch to the gain array, and insert attenuation in the antenna line until the received level is the same as it was with the reference antenna. The gain of the array may then be read off the attenuator dial. Obviously, different line losses must be accounted for and the polarization of both antennas should be the same.

The present OSCAR satellites are providing the amateur fraternity with a unique opportunity for VHF-UHF antenna experimentation. Future "stationary" (geosynchronous) satellites may serve as permanent antenna ranges in the sky, permitting extended devefopment, adjustment, and measurement times for antenna work.

It is hoped that the ideas presented here will encourage further experimentation and development in VHF-UHF antennas and fill a need for the present OSCAR satellites.

Looking West

from page 23
way of phone service was being overloaded with traffic. Much of the communications handled by amateurs was what might best be termed of the "health and welfare" variety, permitting firefighters to get word to their relatives as to where they were, locating people for other people, etc. It should be noted that firefighters came from all over the USA, and for many there was but one way to get a message to the "folks back home": via
amateur radio. Amateur communica tions was not limited to this small aspect, however - not by a long shot.

Both VHF repeaters and HF point-to-point were used to relay informa tion to and from areas where the fire was being fought, relay firefighting orders, and hande just about every conceivable form of traffic that you might imagine, in all, over three hundred amateurs (under the direction of Ed Gribi, emergency coordinator for the areal from all over the
state (and even from out-of-state) volunteered their services at one time or another. I am told that no offer of help was turned down.

Repeater systems served well and continue to do so. At least two machinies were brought into the area by concerned amateurs who realized the communications need. One came from a group at Vandenberg AFB, and was installed at the Hunter-Liggett Military Reservation near Paso Robles, to give coverage from the Questa Grade to Salinas. Its channel pair is .28/.88, and it's under the trusteeship of W6LIO. I've also been told that the $.84 / .24$ group out of the Bay area literally "smoke tested" their new

Motorola repeater (destined for service atop Mt. Diablo) by installing it in a portable configuration at a point near the northern tier of the fire area. It performed flawlessly. Again, it's hard to know exactly what's transpiring since 1 am forced to report from secondhand information rather than from an eyewitness viewpoint. Suffice it to say that amateur radio and its people have done and are doing their share and more to aid in the formidable effort to stop the raging infernos. They are giving their time, talent, and equipment because there is a need and a job to be done. I am proud of each and every one of them. They know and they care. They're getting the job done.

Get Set For OSCAR 8

-- details on the new bird!

Fig. 7. Up, up, and away! This photo of the OSCAR 7 launch shows what's in store for AMSAT-OSCAR D.

Gary L. Tater W3HUC 7925 Nottingham Way-
Ellicott City MD 21043

FIive, four, three, two, one, blast-off! Soon a new amateur satellite will be carried into Earth orbit. Are you ready to start making contacts via this new satellite? If not, read on, and you'll discover what you need to use AMSAT-OSCAR D (to be called AMSAT-OSCAR 8 after a successful launch).

Why AMSAT-OSCAR 8 ?

Because AMSAT's Phase III spacecraft will not be operational until early 1980 and OSCAR 6 cannot be counted on until then, AMSAT felt that AMSATOSCAR 8 would provide a continuation of the existing amateur satellite program and insure that amateurs would have a reliable satellite for communications over the next few years.

One major objective of the AMSAT-OSCAR 8 (AO-8) mission is to provide a satellite for use as an educational tool in schools. Other objectives include the continuation
of demonstrations by stations in the amateur satellite service, experimenting with the feasibility of using satellites with small amateur terminals for bush communication, emergency communication, communication between medical centers and isolated areas, aeronautical, maritime, and land mobile communications, direct satellite to home voice broadcasting to simple amateur receivers, and other similar applications. Further objectives are to demonstrate special operating techniques that enhance the usefulness of low orbits for these satellite applications and to test a new communications transponder frequency combination for improved operation for moderate power amateur stations.

Building the Satellite

For longer than a year now, AMSAT members from many countries have been planning, designing, and building a satellite called AMSAT-OSCAR D. Because a project like this is extremely complex, it takes many amateurs, pooling all their knowledge and abilities, to turn the stringent design and reliability requirements into a ready-to-launch satelite.

Some of the complex issues that had to be settled and turned into hardware were the receivers and transmitters for the transponders, the antennas and antenna deployment system for the large antennas, the satellite stabilization system, the power system, and hardware both in the satellite and on the ground for commanding the satellite. As a user, you're primarily concerned with the transponders that make satellite communications so much fun, but there are really eleven major subsystems in AO-D:

1. 2 m to 70 cm transponder;
2. Two to ten meter transponder;
3. Morse code telem-
4. Japan AMSAT Association 2 m to 70 cm Transponder - Mode J

- Input frequency passband between 145.90 and 146.00 MHz
- Output frequency passband between 435.10 and 435.20 MHz .
- Power output is 4 Watts PEP.
- Downlink passband is inverted from uplink passband.
- Linear operation - SSB and CW are preferred modes.
- Morse code telemetry beacon at 435.095 MHz .

2. AMSAT Two to Ten Meter Transponder - Mode A

- Input frequency passband between 145.85 and 145.95 MHz .
- Output frequency passband between 29.40 and 29.50 MHz .
- Downlink passband is not inverted from uplink passband.
- Linear operation - SSB and CW are preferred modes.
- Morse code telemetry beacon at 29.40 MHz .

Table 1. Summary of AMSAT-OSCAR D transponders.
etry system;
4. Satellite command system;
5. 10 m antenna deployment system;
6. Battery charge regulator;
7. Solar cells;
8. Instrumentation switching regulator;
9. Magnetic attitude stabilization system;
10. Satellite structure, wiring, and rf cabling; 11. $14-28$ volt power switching regulator.

Building a satellite like AO-D proceeds pretty much along the same lines as most electronic projects do. First, each electronic system is tested as a breadboard and then laid out for a printed circuit board. To insure that the satellite functions reliably for years, each integrated circuit, transistor, and diode is screened by burning the part in by applying power to the part for several hundred hours. Then the component is mounted onto a printed wiring board. After each system is mounted in the satellite structure, the satellite is tested under the vacuum conditions and temperatures it will see in space. Because amateur satellites are launched on a space available basis, they are mounted on the launch vehicle neatly tucked under the primary satellite as you can see from the accompanying pictures. In Fig. 3 you can see Dave W60AL inspecting the electrical connections for the pyrotechnical shears which, when fired, cut the Marmon clamps that released OSCAR 7 from the Delta launch
vehicle. A heavy duty spring then ejects the satellite into its orbit path. A few seconds later, the ten meter antenna is deployed by a pyrotechnical shear mechanism aboard the spacecraft.

Getting Ready

There will be two communication transponders on AO-8 for which you will need equipment. Only one transponder will be operated at a time because of spacecraft battery constraints.

The Mode A transponder is a two to ten meter unit similar to the one on AMSAT-OSCAR 7 and has the same frequency plan (input frequency passband between 145.85 and 145.95 MHz , output frequency passband between 29.4 and 29.5 MHz). You should plan to use about 80 Watts erp made up of output power from your transmitter, coax cable losses, and antenna gain. A ten meter preamp should stand you well for copying the Mode A downlink.

The second transponder, constructed by members of the Japan AMSAT Association in Tokyo, uses a two meter input, 435 MHz output frequency combination which has not yet been flown in the AMSAT Phase II serses. This transponder, designated Mode J, operates with an input frequency passband of $145.90-146.00 \mathrm{MiHz}$, and an output frequency passband of 435.10-435.20 MHz. The power output is 4 Watts PEP, so a small 435 MHz antenna should produce a strong

Ch. 1 Total solar array current
Ch. 2 Battery charge-discharge current
Ch. 3 Battery voltage
Ch. 4 Baseplate temperature
Ch. 5 Battery temperature
Ch. 6 Rf power out. - Mode J
Table 2. Morse telemetry channels.
signal to your receiver. As noted in Table 1, the output passband is inverted, i.e., upper sideband uplink signals become lower sideband downlink signals. The same transmitter you use for Mode A can be used on Mode 1 .

Antennas

In general, simple antennas such as ten meter dipoles and four element 2 m and 70 cm beams will provide excellent results. The AO-8 Mode J 435 MHz downlink antenna is a simple monopole and will provide a linearly polarized signal. Likewise, the spacecraft's Mode A ten meter downlink antenna is a linearly
polarized dipole, oriented perpendicular to the stabilization magnet in the spacecraft as in AMSAT-OSCAR 6.

Although you can transmit on two meters to the satellite using a linearly polarized antenna and get good results, if you are a perfectionist, you might like to try circular polarization.

Both the Mode A and Mode J transponders on AO-8 use the same receiving antenna, a canted turnstile comprised of four 18 -inch lengths of $1 / 2$-inch carpenter's rule fed by a hybrid and matching network so as to develop circular polarization. One port of the hybrid feeds the Mode A receiver such that

Fig. 2. Jan W3GEY inspecting OSCAR 7 on the Delta launch vehicle.
left-hand circular polarization is required by users in the Northern Hemisphere and right-hand circular polarization in the Southern Hemisphere. A second port of the hybrid is connected to the Mode J receiver such that right-hand circular polarization is required in the Northern Hemisphere, and lefthand circular polarization in the Southern Hemisphere.

Telemetry System

So that everyone can watch the status and health of the spacecraft, AMSAT. OSCAR 8 will contain a six channel Morse code telemetry system. The Morse telemetry on 29.40 or 435.095 MHz will be set at 20 words per minute, but you can slow it down by recording it and playing it back at a slower rate. You will hear the telemetry as three digit numbers
with the first digit being the channel number and the next two digits being the telemetry value. A sample telemetry frame would look like this: 120255380451551660 HI 120255.

Although the equations to convert the telemetry values to engineering units have not been finalized as of this writing, the channel selections have been made and they are listed in Table 2.

Using AMSAT-OSCAR 8

Once AO-8 becomes operational and you've assembled your station, you can begin to make contacts picking up new states and countries each time you get on the satellite. If you need help, contact AMSAT at Box 27, Washington DC 20044 for the name of the nearest AMSAT Area Coordinator who, as an experienced satellite user, can

Fig. 3. W6OAL puts the finishing touches on AMSAT-OSCAR 7.
give you a hand.
In addition to making contacts and working new states through the satellite, AMSAT hopes that you will consider using AMSATOSCAR 8 to perform experiments and educational demonstrations. These efforts gain amateur radio much needed beneficial publicity and provide AMSAT with documented facts to support requests for future launches.

Your experiments might begin with such simple experiments as using a power meter to plot the minimum power needed to hear your return signal in the downlink from your earliest acquisition of signal to loss of signal. Possibly you could measure the frequency change in the beacon due to the Doppler effect of the satellite's veloc-
ity.
As a guide to what you can do with AO-8, other experiments are listed in Table 3. Perhaps you can add some interesting experiments to this list. When you complete an experiment, be sure to write to AMSAT with your results, you will be contributing to the future of amateur radio.

Conclusion

If you are already a user of OSCAR 6 and OSCAR 7, then you're set to operate through OSCAR 8, and you know how exciting satellite communications are. If you are not ready for OSCAR 8, then now is the time to get your station ready to join the fun. See you on AMSATOSCAR 8!
A) Educational demonstrations in schools and for youth groups.
B) Ranging (distance measurement) experiments to determine satellite or user position.
C) Doppler (range rate) measurements to determine satellite or user position.
D) Emergency Locator Transmitter (ELT) experiments to locate downed aircraft or ships in distress.
E) Small terminal user experiments using hand-beld equipment, or mobile terminals operated from an automobile, airplane, boat, motorcycle or bicycle.
F) Emergency communications demonstrations with portable equipment.
G) Medical data transmission experiments, including the transmission of analog or digital physiological data (e.g., ECGs and EEGs).
H) Data collection from remote, unattended ground terminals (rain gauges, wind gauges, etc.).
I) ASCII data transmission experiments, including remote accessing of digital computers.
J) Slow scan and medium scan television experiments.
K) Remote control experiments (such as radio control aircraft, garage door opener, remotely controlled kitchen ovens, etc.)
L) Transponder interlinking experiments between AO-7 Mode B and AO-8 Modes A and J.
M) Multiple access experiments (such as quantitative experiments to evaluate the effects of power sharing with different modulation techniques).
N) Ground station automation (closed loop monitoring of downlink signals and automatic adjustment of uplink power and frequency).
O) Broadcast demonstrations using the transponder in a single access mode, evaluating performance for different modulation modes.
P) Extended range communications experiments to attempt transmission or reception beyond the normal maximum satellite range.
R) Low power (ORP) user experiments to determine the minimum power needed to sustain communications.
S) Traffic nets scheduled on the satellite.
T) Automatic tracking of ground station antennas in azimuth and elevation (either on an open loop or closed loop basis).
U) Unattended, automatic telemetry data collection (e.g., using tape recorders for later analysis).
V) Unattended online or offline computer processing of received Morse code telemetry data, with printout of parameter values and units. Automatic decoding of Morse code characters in the presence of noise-
W) Experiments involving physical parameters, e.g., determination of spacecraft spin characteristics and orientation from telemetry data-
X) Traffic handling with RTTY using autostart techniques.

Table 3. Experiments that can be performed using the transponders and telemetry system aboard AMSAT-OSCAR 8.

You... AND AMSAT PHASE III

An exciting new era in amateur radio is about to begin... the era of AMSAT PHASE III OSCAR satellites.

Many of you are familiar with the benefits of the AMSAT OSCAR satellites, notably OSCAR 6 and 7. These satellites, with a combined total of over 8 years in orbit, have provided communications between amateurs throughout the world. They have also provided a capability for an educational program in space sciences and many interesting experiments.

AMSAT, with members and contributing groups worldwide, and headquarters in Washington, D. C., has been responsible for our current satellite program. Many people feel that perhaps the greatest value of the amateur satellite program is the dramatic demonstration of amateur resourcefulness and technical capability to radio spectrum policy makers around the world.

The value of this aspect of amateur radio as we prepare for the 1979 World Administrative Radio Conference (WARC) is enormous.

The AMSAT PHASE II/ satellite program promises a continuing demonstration that amateur radio is at the forefront of modern technology. PHASE III satellites will routinely provide reliable communications over paths of up to 11,000 miles ($17,600 \mathrm{~km}$) for 17 hours each day. You can think of them as a resource equivalent to a new band.

The cost of these PHASE III satellites is a projected $\$ 250,000$. Commercial satellites of similar performance would cost nearly $\$ 10,000,000$.

Your help is needed to put these PHASE III OSCAR satellites in orbit.

Your valued, tax-deductible contribution can be as small as one of the $5000+$ solar cells needed. A handsome certificate will acknowledge the numbered cells you sponsor for $\$ 10$ each. Larger components of the satellites may also be sponsored with contribution acknowledgements ranging to a plaque carrying your name aboard the sate/lites. Call or write us for the opportunities available.

Your membership in AMSAT is important to the satellite program, and will give AMSAT a stronger voice in regulatory matters concerned with satellites, At $\$ 10$ per year or $\$ 100$ for life, you will be making a most significant contribution to the satellite program and the future of amateur radio. You will also receive the quarterly AMSAT newsletter.

Clip the AMSAT PHASE I/I coupon below and send your support today. or call 202-488-8649 and charge your contribution to your BankAmericard (VISA) or Master Charge card.
 Box 27. Washington, D. C. 20044 202-488-8649
1 YES, I want to supporf AMSAT PHASE III OSCAR satellites. Enclosed is:
| Cs \qquad in sponsorship of solar cells (© \$70 each)
\$10 Annual membership $\$ 100$ Life membership
\square Send information on sponsoring larger satellite components.

Name	Call	AMSAT Member?	1
Street			
City	State	Zip	1

Build An OSCAR

2m Transverter

-- make QRP days a success !

There are in use on made B of OSCAR 7 possibly $20028-432 \mathrm{MHz}$ transmitting converters made originally by the Carmichael Communications Co . and more recently
by the Amateur Radio Component Service. Using an antenna system with a modest gain, with 4 to 5 Watts output on 432 MHz , these converters seem made

The complete transverter.
to order for low power satellite operation. There are many mode B users who willattest to their performance. W1NU, for example, made about 200 QSOs on mode B with this converter and a mediocre antenna during his 1976 Bermuda jaunt. Considering the successful track record of this converter on 432, its SSB capability and the improved tube performance on 144 , the idea of building a 2 meter version was attractive.

The circuitry of the two meter model, shown in block form in Fig. 1, is the same as
the 432 model except for the elimination of one stage in the LO chain and the appropriate changes in the LC elements.

The schematic, Fig. 2, illustrates the simple straightforward design characteristic of this converter. A voltage doubler circuit off the 6.3 V ac line provides the voltage for both the 2 N 4126 and the 2 N3866 stages and also the adjustable bias for the 6939 amplifier. Zener regulation is used for the amplifier screen and for the crystal oscillator. The mixer is cathode biased. Input jack J1 is terminated with a 62 Ohm resistor, which may be disconnected if the drive is too low with it in place. A 58.9 MHz crystal may be used if the available driver does not have 29.5 coverage. This will give a mixing frequency of 28.1 MHz for an output on 145.9 MHz .

Construction details are - shown in the photos. The unit is built on a Bud CU247 cast aluminum chassis, using the top as a mounting base. A brass partition lengthwise isolates the LO chain, which is built on a circuit board. The

- mixer and amplifier shielding is provided by two lateral partitions. Five small brass tabs on the partitions provide a connection to the bottom of the chassis to complete the shielding when the unit is placed in the case. Although the construction is a bit fussy, experienced builders will have no difficulty in duplicating either the 2 meter or 70 centimeter converters. For those interested in building, a complete set of information, drawings, and photos covering the two meter converter (and its 220 MHz and 432 MHz counterparts) is available from ARCOS, PO Box 546, East

Fig. 1.

Foil side, local oscillator board.

Underside of the amp and mixer.

Greenbush, NY 12061, for \$5 (to cover costs and postage). These converters are also sold by ARCOS as assembled and tested units.

For alignment, an output indicator of some kind is needed, and it is best to also have a two meter receiver tuned to the output frequency (observing the S meter as a tuning indicator). The oscillator and doubler stages may be tuned using an rf probe and meter to maximize output. A counter, if available, coupled loosely to 1.2 will confirm that the mixing frequency is correct. The rf voltage at the point of connection to the output coax from the circuit board should be 5 or more volts ac. The mixer and amplifier stages of the two meter version of this converter do not appear to have any instability problems, although there is a tendency to oscillation if the mixer grid circuit is mistuned to approach the operating frequency. Spurious outputs, with proper alignment, appear on the Tektronix L-20 to be over 40
dB down. At this low power level, interference with other two meter operations is unlikely and, at least in the Albany NY area, has not been experienced. (More than we can say for some commercial units we have tried to use for satellite work.)

If you haven't yet tried low power, there are still some surprises ahead for you in satellite operation.

Parts side, local oscillator board.

Transmitting converter amplifier and mixer. Note intercompartmental shielding utilized to insure stability.

Coil Data

$\mathrm{L} 1-9 \mathrm{~T}$ - tap at $21 / 2 \mathrm{~T}-1 / 4 \mathrm{in}$. diam. - \#18 wire $-3 / 4 \mathrm{in}$. long
L .2 - 5 T - tap at $1 \mathrm{~T}-1 / 4 \mathrm{in}$. diam. - \#18 wire $-3 / 4 \mathrm{in}$. long
L3 - not used for 144
L4-1 $1 / 2 \mathrm{~T}$ T/2 in. diam. - $1 / 2$ in. leads - \# 22 insul. wire
$\mathrm{L} 5-31 / 2 \mathrm{~T} 1 / 2 \mathrm{in}$, diam. $-11 / 8 \mathrm{in}$ l leads - \# 16 wire
L6-5T-1/2 in. diam. - $1 / 4 \mathrm{in}$. leads - \#1 6 wire
$\mathrm{L} 7-4 \mathrm{~T}-3 / 8 \mathrm{in}$. diam. $-1 / 2 \mathrm{in}$. leads $-\# 16$ wire
$\mathrm{L} 8-31 / 2 \mathrm{~T}-1 / 2 \mathrm{in}$. diam. $-11 / 8 \mathrm{in}$. leads - \#16 wire -.
L9 - $1 \mathrm{~T}-1 / 2 \mathrm{in}$, diam. $-3 / 4 \mathrm{in}$. leads - \# 22 ins. wire
Variable Capacitors - Air Type ${ }^{-\cdots}$
C1, C6-1 to 6 pF
$\mathrm{C} 2, \mathrm{C} 3, \mathrm{C4}, \mathrm{C} 5-2$ to 11 pF butterfly type

Fig. 2.

Pat Gowen G3IOR
17 Heath Cres.
Hellesdon
Norwich NR6 6 XD
Norfolk
England

Predicting OSCAR

Propagation

-- not always simple

The earliest case of unexpected radio propagation from an artificial satellite took place in early October, 1957, soon after the launch of SPUTNIK 1. Radio amateurs observed good copy of the world's first manlaunched satellite on 20.005 MHz when it was on the
opposite side of the Earth to the listener, but not always when it was to be expected, coming up over the horizon. Those observations made during the relatively short life of the spacecraft tended to indicate that good conditions, e.g., a high MUF, were coincident with both of the notice-

Fig. 7. OSCAR 729.502 MHz beacon downlink strength through time in typical different conditions (HF).
able effects. Sub-F2 layer reflections during the high sunspot years with the consequent high level ionization were apparently responsible for the antipodeal signal, with the attenuation of lower
layers limiting the signal at low angles when the maximum density path was between the beacon and the listener.

A similar effect was apparent on some of the earlier ten meter beacon OSCAR spacecraft. ${ }^{1,2}$ With the advent of the OSCAR 6 and 7 Phase II spacecraft in high orbit, well above the maximum possible F2 layers and launched during low sunspot years, similar happenings could hardly have been predicted. Although infrequent, such abnormalities have been evident. ${ }^{3,4,5,6}$

Evidence of beyond-thehorizon audibility of both the 145 and 435 MHz beacons is very rare, but early hearings and late losses have been reported, although rarely for more than three minutes from the calculated AOS or LOS time. One would hardly expect effects like forward scatter to be evident when the signal source is of less than one Watt erp due to the attenuation placing the small signal source well below the noise level at the receiving end.

There is, however, considerable evidence of the two meter uplink of OSCAR users accessing the satellites for up to seven minutes after the time when, according to path theory and calculation gcometry, the signal should have ceased to be transponded by the spacecraft. They, regrettabiy, fell far short of the thirty minute extra presence of the 29 MHz

Fig. 2. OSCAR 7 returned (145.95 MHz) signal on 29.5 MHz downlink in typical different conditions (HF).

KEY:

Fig. 3. Contour mapping of maximum distance AO-6 and AO-7A 10 meter detection on polar equidistant projection. Polar areas of no subsatellite points are marked " t " as these are non-definable. Note the distortion of horizon radius circle. This is an effect of using an equidistant projection centered on the pole axis. A stereographic projection would show a true horizon circle, but its center would not be at the observer's specific QTH. A great circle map centered on the observer's QTH would form a true circle with location center, but would further distort distant contours.
downlink, though, and rarely accessed both at the same time. ${ }^{5,6}$

Equally unfortunate is the fact that rarely does the 432 MHz uplink seem to exceed the line of sight by more than about one-and-a-half minutes, within the limitations of my experience.

What appear to be anomalies between the various frequencies' behavior patterns and the apparent contradictions to currently accepted textbook theories may be the subject of a future article when a sufficiency of data has been gathered to give a reasonably statistically sound degree of collated evidence. Already the information obtained and its relationships to ather phenomena of interest to the radio amateur are enough to show the value of the OSCAR satellites in fields other than
those of through-satellite communication alone. ${ }^{7}$

The following associations between what can be found by listening and using OSCAR for two-way communication, and what may be forthcoming by way of HF, VHF, and UHF (including the effects of aurorae, tropospheric and sporadic E in communication conditions), will be evidenced in an attempt to show that the amateur radio sateliftes can give a valuable pointer to assist those keen to exploit the improved, and in some cases impaired, propagation that is effected.

The Standard

Many means of extrapolating the precise crossing times of the satellite over one's horizon, calculated from the equatorial satellite crossing time and position,

Fig. 4. Plot of all values of extension to horizon to MUF apparent.
now exist. $8,9,10,11,12,13,14$ The relationships that I shall use are those related to my own QTH/QRA, just North of Norwich, Norfolk, Eastern England, at $52^{\circ} 40^{\prime} \mathrm{N}, 1^{\circ} 10^{\circ}$ E. For fine precision, albeit marginal in the wide field employed, the station's height above sea level plus the antenna height is given as 160 feet. With no hill higher than my elevation within the horizon curve, we may evaluate an addition as: $\mathrm{H}=$ $1.42 \sqrt{E}$, where H is the horizon extension in miles, and E is the elevation above. sea level in feet. In my case H $=1.42 \sqrt{(95+65)}=18$ miles. That is neither here nor there in terms of the 3000 mile slant range of OSCAR at horizon, but could add considerably to those in mile high cities like Denver and Mexico. Any blocks to true horizon may be found by the examination of contour maps and plotting out the height against distance on graph paper to find the true contours of the radius of true horizon around one's QTH. (Fortunately, flat old Norfolk suffers from no high hills.)

We now have a means of finding the precise time, say plus or minus 15 seconds, when the satellite comes into our capture. If there is no barometric lift, minimum solar activity, and it is well into the night, OSCAR will appear exactly on schedule, almost simultaneously on the 29.502, 145.971, and 435.1

MHz beacons. One's $432.125-$
175 or 145.900-146.000 (OSCAR 6) or 145.850-950 MHz (OSCAR 7 mode A) uplinks will appear as transponder output at almost the same time. Any deviation of these times, relative to each other or to the calculated, will indicate an anomaly and show an alternative to "no propagation" conditions.

High Frequency Conditions

Although the pariation on calculated AOS and LOS times is not always consistent, the general and average effect may be seen on the graph values of Figs. 1 and 2. At this point let me say that I do not feel that a sufficient number of measurements have been taken to fully substantiate the effect, as time, particularly during daylight hours, is very limited. Furthermore, a number of specific variables need to have attention, e.g., the path preference of normal HF communication at the time of measurement, the skip distance, and a further relationship to the time of year. It did seem that ultradistant OSCAR audibility was more consistent with short skip conditions, i.e., ionization of the lower layers, than with long skip propagation associated with the F2 layers. But more work needs to be done on this subject. What was apparent from the orbits sampled was threefold:

1. The higher the apparent
usable frequency was, the weaker the OSCAR downlink signal was on 29.502 MHz prior to horizon loss of signal predicted time, and the weaker it was at post-horizon at acquisition of signal times. 2. The increase of maximum usable frequency for HF communication was indicated also by the strength of the downink signal prior to expected AOS and after expected LOS.
2. The high frequency propagation possibilities tended to coincide with an increase of the time for which the ten meter downlink and beacon were audible both before official AOS and after its LOS.

A further factor is the increase of noise, both on the downink frequency band itself, and upon the transponder's own downlink.

At this point, two requirements must be pointed out. The first is that the observer must be equipped with a reasonably high antenna, preferably with some gain, as high gain at low angle is an essential to observe these proximate-to-horizon effects. it is assumed that the keen DXer will have this requirement. Second, it is normal to copy reasonably good signals both before and after the above-horizon transit for up to three minutes if the path is in daylight. In low MUF dark path conditions, the signal will normally extinguish promptly at the predicted LOS and arise promptly at. AOS. We may summarize by saying that the longer and slower the beacon signal decays, the better the predictor value for favorable HF conditions.

Fig. 3 shows the contour lines found at this QTH with the extra path OSCAR detection, i.e., anything observable above noise in three sets of subjective HF propagations. These are grouped into "good," shown by the continuous contour, "fair," as shown by the dashed contour, and "nil," as shown by the dotted line, which
equates the line-of-sight path to the satellite.

While we are dealing with HF conditions, let us mention that curse to the HF man, and the blessing to the VHF enthusiast - aurorae. The period leading up to an aurora will commence with an elevation of the symptoms of good conditions, with an added symptom of greatly increased noise and a marked deterioration of the quality (to use another subjective term) as the satellite nears the polar areas. Immediately preceding the actual event, transponded signals will be all but wiped out by noise and suffer from severe particulate modulation sounding like an old spark transmission. The signals may still be heard post-horizon in the noise for up to several minutes before total loss. More will follow on this subject in the VHF context.

Very High Frequency Conditions

The main indicators of VHF openings are:

1. A severe attenuation upon

Fig. 5. Mean average signal strength of beacon to apparent MUF of same values.
one's own returned signal, with marked fluttering and very rapid QSB at high maximum to low minimum values when the satellite is at low elevations, i.e., just over the horizon at both $A O S$ and LOS times.
2. A marginal sub-horizon access with the signal popping up suddenly for very brief periods prior to and post the expected path times.

The beacon at these times is marginally affected also, but not to any where near the extent of the uplink signal. With increasing elevation, the evidence decreases proportionately. At high altitudes,
the effect is virtually unnoticeable, and a normal access proceeds. To differentiate between the HF effect and the VHF effect, which do not always go together, it is necessary to alternately monitor one's own returned signal, and relate this to the beacon for comparison. To the observer, the transponded signal, even in good VHF openings, will rarely be heard more than two to three minutes at best on the downlink at extra horizon times, although other observers closer to the downlink have reported continuing copy for up to seven minutes after

Fig. 6. Horizon geometry. True line-of-sight path calculations and structure for control use. For ground range (subsatellite point to observer) (for use on great circle map), multiply Earth radius by angle formed by it and OSCAR radius in radians. This angle $=\Theta=\cos ^{-1}$ of Rad Earth/Radius OSCAR $=3964 / 4884=0.8116298=\cos \Theta=\operatorname{arcos}$ of 0.87163 in radians $=35^{\circ}$ $45^{\prime}=0.6238$ radians. $0.6238 \times 3964=2472.7432$ miles on great circle + extra horizon .

For horizon crossing point (by Pythagorus): Draw line from Earth's center to surface $=$ Earth radius $=3964$ miles (mean). Draw line from Earth's center to OSCAR $=$ satellite path radius $=3964+920=4884$ miles, which is the hypotenuse of the right angle triangle with 90° at the observer's point when "seeing" the satellite at horizon. $H^{2}=A^{2}+B^{2} \therefore$ rad. OSC2 $=$ rad. Earth ${ }^{2}+$ slant range $^{2} \therefore$ rad. OSC 2 -rad. Earth ${ }^{2}=$ slant range ${ }^{2}=4884^{2}-39642=23853456$ $15713296=8140160$ miles. $\sqrt{8140160}=2853$ miles $=$ slant range.
official extinction. It is also apparent at times of good tropospheric conduction that the predicted beam path is not always true. A swing of the beam carrying the uplink signal will often improve the downlink strength considerably by up to a 20° variation in azimuth and some 30° in elevation. The normal polarization preference roll pattern ${ }^{15,16,17,18}$ is broken, with quite rapid changes in the preferred linear horizontal or vertical normal pattern that is usually serialized.

The above effects mainly apply to characteristic behavior indicating tropospheric openings.

With sporadic E, the effects are similar, but, instead of the usual evening effects, are more normally present in the central day periods. Now the flutter and rapid fading is far more intense and takes place when OSCAR is at quite high elevations. Sudden extinction and pop-up of the uplink signal is far more evident. Observation of the VHF beacon also shows a similar pronounced effect, which, like the VHF uplink, is also subject to irregular polarization fluctuations at high elevation angles.

Aurorae produce a degree of degradation on the stability and tone of the VHF beacon as the satellite nears the auroral zone. But what are far more distinctive are the isolated uplink returns, which may be quite separately effected with a tone " A " return on the ten meter downlink. ${ }^{19,20}$ Often under auroral conditions, even separate GM stations have been observed with the characteristic auroral note, while other northerly stations have been virtually free and other more southerly stations totally free. This indicates that aurorae can be quite specific to a relatively small area, which is surprising, but readily and frequently observed. OSCAR gives a means for the early detection of forthcoming auroral openings
prior to the spread to one's parochial observance area on the direct path. An even earlier indication can be given by the follow-on of a period of high MUF conditions due to enhanced solar activity by following the post-horizon ten meter signal, followed by northerly scintillation and tonal degredation.

Ultra High Frequency Openings

Ultra high frequency openings are difficult to detect by the exclusive use of OSCAR, but some smali extension to
the normal line-of-sight path can be detected for periods of up to one minute. What is more noticeable is the slow rise of the transponded uplink signal returned down on the two meter band, as distinct from the more usual sudden arisal of the downlink. When openings are imminent, rapid flutter coupled with some difficulty of access at very low angles is observable. Possibly a better method is to calculate when stations in the workable area will be beaming at low angles over the top of your QTH as
they track OSCAR, and place your receiver on that frequency corresponding with the appropriate uplink frequency on the 432.125 to 432.175 MHz input to that of the 145.875 to 145.925 MHz downlink upon which you are hearing them, allowing for the Doppler shift. ${ }^{21}$ It is quite amazing how many openings occur at 432 MHz when no QSOs are evident upon the normal direct path frequency range. It seems many listen, but few transmit, so everyone assumes the band to be dead. OSCAR

Fig. 7. Possible theory for sub- or post-horizon audibility: At high MUF (dense ionospheric layer) times, the OSCAR signal may enter via less ionized areas according to solar-radiation points. This is thought to be unlikely as its abserved signal strength is greater than that expected by such a path.

Fig. 8. OSCAR signal may enter through a low ionized area, reflect from Earth, and then return to a refiective F2 area to be returned to observer. This is highly unlikely as signal strengths are far in excess of those expected (if any).
produces known activity on known frequencjes with known beam directions and gives a valuable guide to the state of the band.

The theories that may be advanced for the particular effects found can be numerous and complex. The number of variables are considerable, and an insufficiency of observations have taken place to fully define any one single cause, let alone the multiple associations probable. It is hoped that perhaps someone with the time and equipment available may wish to take the investi-
gations over. Ideally, he would be equipped with ionospheric sounding equipment, fine Doppler measurement for determining position and path, and narrow beam antennae. This article is intended to stimulate this approach, as well as to show readers that, whatever their field of interest within the wide framework of amateur radio, the AMSAT-OSCAR spacecraft are a valuable potential asset to their particular aspect.

Australis Oscar-5 Ionospheric Propagation Results," Ray Soifer K2OBW (now W2RS).
2. $C Q$, May 1970, p. 60, " 10 Meter Anomalous Propagation with Australis Oscar-5," K.J. Doyle.
3. Space Communications. ARRL Technical Symposium, p. 85-91. "Oscar 6 over Western Europe," Pat Gowen G3IOR, September 1973.
4. AMSAT Newsletter, Vol, VI. No. 2, 1975, "Abnormal Reception of Oscar 6 Signals on Ten Meters," report by VU2UV.
5. AMSAT Newsletter, Vol. VII, No. 4, December 1975, report of SDX OSO by Bud Schultz W6CG. 6. AMSAT Nevusletter, Vol. VIII, No. 1, March 1976, report of same SDX OSO by Pat Gowen G3IOR.

References

1. $Q S T$, October 1970, p. 74,

Fig. 9. Possible theory for sub- and post-horizon audibility: At critically ionized areas, the OSCAR signal may enter as a conduction signal upon an "open-ended" duct at the dusk daylight attenuator, hence "conduct" to permit the observer to hear re-radiated signal from the scattering ionized belt.

Fig. 10. Possible theory for sub- or post-horizon audibility: simple refraction occurring due to angulation of signal as it transmits an area of higher ionic density.
7. CQ-DL, No. 2, 1976, "Uberreichweiten bei OSCAR-Satelliten im 30-m-Band," Dr. Walter Eichenauer DJ2RE.
8. "Keeping Track of Oscar," booklet published by R.S.G.B. from article series in Radio Communication by Bill Browning G2AOX.
9. "Oscalator 6, QSL Card Orbital Calculator," Torsti Paatero OH2RK, OSCAR News No. 2. January 1974, p. 21.
10. "The Walland Calculator," OSCAR News No. 8, December 1974, p. 17, Dave Walland.
11. "The OSCAR 7 Look-up Chart," OSCAR News No. 12, September 1975, p. 21/22. Table plotter by Rudi Schoenberger DL8DF.
12. "Oscar Prediction Look-up Tables," AMSAT-UK Handout, Tony Bailey G3WPO.
13. "Oscar Tracking Computer Programmes," Jack Colsen W3TMZ, David Walland, and Martin Sweeting G3Y JO.
14. AMSAT Newsletter, Vol. VIII, No. 1, March 1976. "Shoot Oscar with a Satellite," p. 6-14, Kazimierz Deskur K2ZRO. (First published in 73 Magazine.)
15. OSCAR News No. 8, Decernber 1974, p. 5-7. Graphed Roll Patterns by G3IOR and G3PEJ. 16. OSCAR News No. 11, June 1975, p. 15. AO-7 Graphed Roll Patterns by G3IOR.
17. OSCAR News No. 12, p. 18, September 1975, "Polarization roll graph," G3IOR.
18. CQ-DL, No. 2. 1976 , "OSCAR-7-Auswertung der Tele-type-Telemetrie" Hermann Luer DL3SK, p. 38, 39.
19. OSCAR News No. 15, June 1976, p. 3. "General News."
20. AMSAT Newsletter, Vol. VIII. No. 1, March 1976, p. 27. Part of GE3IOR letter.
21. OSCAR News No. 8, December 1974, p. 12,"A calculator for finding Frequency Relationships, with positive and negative Doppler Shifts," OH2RK.

Further Reading

'OSCAR Anaprop ... Theory and Practice," G3IOR, in OSCAR News No. 5, August 1974. Pages 15-18 give the mathematical formulae reguired for true horizon slant distances and subsatellite ground distances.
Photocopies of OSCAR Nens items may be obtained from the AMSAT-UK librarian, G8KME, QTHR, at $3 p$. or equivalent in IRCs per page and postage coverage.
OSCAR News is the official journal of AMSAT-UK, Editor Dr. Arthur Gee G2UK, QTHR. Membership in AMSAT-UK is $£ 3-00$ minimum donation per annum, with forms from the Membership Secretary and Treasurer, James Keeler G4EZN, QTHR.

SCR 1000

State of the Art in VHF FM Repeaters

Quality Speaks For Itself!

".. The quality of the audio is unbelievable - a true reproduction of the input. It really does sound like simplex. The receiver sensitivity of our Spectrum system is at least twice the Motorola system we had in service. We have 24 Watts out of our Sinclair Duplexer. We all have fallen in love with your machine . . . Again, thank you for an excellent piece of equipment We are certainly glad that we purchased a Spectrum 1000 Repeater."

> Jim Wood W3WJK
> Trustee WR 3A HE
> Butler County Amateur
> FM Assoc.
> Mars PA 16046

"The Model SCR 100 Receiver has proven to be a fine unit. We have had it in operation for nearly a year and it has been entirely troublefree."
H. Townsend

Stone Harbor Amateur Radio Klub (SHARK)

Cape May NJ
"We are quite pleased with the operation of the repeater and are very proud of it. Thanks for producing such a fine product."
D. Totel W9NJM Wheaton Community Radio Amateurs, Inc.

Chicago area
"During the first part of the year I bought a repeater from your firm and I thought you might be interested to know it is working out just fine. You have a product that more than meets the specifications you claim ... In the receiver you have a winner, the intermod is negligible. . We bake many other repeaters both amateur and commercial in the area and as of vet no problem . . In closing. I would like to thank you for producing a product that does what is expected of it. In this world one seldom gets what he pays for; I feel our group has bought and received our moneys worth."

Jim Todd WA5HTT
Dallas TX

- The SCR1000 - simply the finest repeater available on the amateur market . . and often compared to "commercial" units selling for 34 times the price! This is a 30 Wt . unit, with a very sensitive \& selective receiver. Included is a built-in AC Supply, CW IDer, full metering and lighted status indicators/control push-buttons, crystals, local mic, etc. Also provided are jacks for emergency power, remote control, autopatch, etc.
- A full complement of options are available: Duplexers, Cable, 'PL', HI/LO Power, Autopatch, Racks, etc. Please Inquire.
- The Spec Comm Repeater System . . . a sound investment . . . available only by direct factory order. $\$ 950.00$ Amateur Net. Commercial price somewhat higher.
- Repeater Boards \& Assemblies Also Available: SCR100 Receiver, SCT100 Exciter/Xmtr., BA10 30Wt. Amp., CTC100 COR/Timer/Control Board, ID100 IDer - Inquire. (See previous ads in 73.)

Fred J. Merry WZGN

Try

 OSCAR Mobile

 OSCAR Mobile}

-- the ultimate DX test!

The availability of amateur radio communications via satellite has opened up an entirely new medium for reliable, long or short distance vehicular communications. The amateur radio mobile station equipped for satellite communications is no longer limited by the range of terrestrial FM repeaters, location, or HF propagation vagaries. For example, K8MYN, using the simpiest equipment in his vehicle, was able to maintain consistent contact with the

USA via the OSCAR 6 satellite from northern Canada and Alaska, when poor propagation conditions in that area rendered the HF amateur bands uscless. Other amateurs have successfully used the satellites to communicate from a boat in the Florida Keys, from an airplane over the Pacific, and from various automobile installations. The purpose of this article is to discuss how the OSCAR satellites may be used from a vehicle and give some examples of equipment arrange-

Today's equipment -3 transceivers: $2 \mathrm{~m}, 70 \mathrm{~cm}$ and low band. The $2 m$ FM is in the upper left. Solid state amplifiers for the $2 m$ and 70 cm are in the trunk. Antennas: $5 / 8$ wave for 2 m and 70 cm ; Hustler for 70 m and other low bands.
ments and antennas which have been found workable.

Fig. 1 illustrates the basic concept of mobile to base station communication via satellite. The uplink and downlink frequencies are widely separated, yielding, without filters, a built-in duplex operation. You are, therefore, able to hear not only the signals of the station you are talking to, but your own signals as well - giving a continuous indication of how well you are accessing the transponder in the satellite.

The current OSCAR 6 and 7 satellites are in approximate polar orbits at 900 miles above the earth. Both complete their orbits in about 1 hour and 55 minutes, advancing about 30 degrees of west longitude with each
south to north equator crossing. For each overhead orbit, they are in good signal range of the relatively limited capability of simple vehicular antennas for about 15 minutes. There will also be about 10 minutes of good signal strength on the orbits two hours before and two hours after the overhead pass.

Thus, for OSCAR 6 and 7, there have been three usable orbits in the evening for the south to north equator crossings and three in the morning for the north to south crossings. This yields for both satellites about two hours total communication time for a 24 hour period. The overhead orbits occur about 9 am and 9 pm local time. There are some variations to this pattern which we don't need to go into here. A vehicular station in the polar regions will access the satellites on every orbit.

To know what time to use the satellites at your location, you keep in the vehicle a table published by W6PAJ showing the time of the equator crossing and the west longitude for every orbit for every day of the year. To the equator crossing time, you add the time for the satellite to come within range. For example, at Albany $N Y$, for an overhead or nearly overhead pass, 4 minutes are added to the published equator crossing time for the evening passes and 34 minutes to the morning crossing time. These times, from experience, allow the satellite to get high enough in the sky to be readily

Fig. 1. Mobile to base station operation via satellite,

Transceiver as in Fig. 3 showing the tunable receive converter on top of the FT107.
accessible from the car antennas.

The conservative range over which you can "see" or access the OSCAR 6 and 7 satellites from a vehicle is a circle centered on your location about 2000 miles in radius. If your location is free from obstructions, you will be able to hear your own signals return from the satellite at this range and be able to communicate with any station having an overlapping range during the period of the overlap.

With regard to the mode of transmission, the linear transponders in the satellites will retransmit any mode that is offered. To conserve power and bandwidth, SSB and CW (Morse code) are the preferred modes.

OSCAR 7 Mode B has produced outstanding vehicular communications. Based on calculations by Perry Klein of AMSAT, Table 1 shows the link calculations for Mode B using experimental equipment in my car as an example.

With this brief background of how vehicle communications are established through the OSCAR 6 and 7 satellites, we now describe some equipment arrangements in the vehicle which have been used successfully.

In March of 1973, a few months after OSCAR 6 was
launched, the equipment shown in Fig. 2 was installed in my automobile. For the uplink, the equipment consisted simply of a regular amateur type 10 Watt FM transceiver, equipped with a couple of crystals in the uplink passband and arranged for keying the driver stages. An 80 Watt solid state amplifier was located in the trunk. A standard $5 / 8$ wave baseloaded whip was the antenna.

For the downlink, a common amateur band transcejver tuned to the downlink frequencies around 29.5 MHz and a loaded whip cut to this frequency did the job very well.

The first use of OSCAR 6 from a vehicle was made with this simple setup. Over a two

Power amp on 432 as in Fig. 3. There are 2 power supplies 12 V dc to $300 \mathrm{~V} d c$ and 12 V dc to 1600 V dc - and a 12 V to 115 V ac converter. That's a lot of equipment to generate a 100 Watt plus SSB signal on 432.150.
year period of operation on the road in various states here in the East, it was very effective, accounting for hundreds of contacts with other amateur radio operators all over the USA and Canada, as weli as a few contacts with Europe. The excitement of these early operations with OSCAR 6 will be long remembered by those who participated. This operation was all done with a telegraph key - not the best mode from a moving car. Practically all operation was, in fact, done with the car parked. As mentioned previously, this type operation was also accomplished by several other amateurs, using similar equipment setups readily available from suppliers of amateur radio equipment.

During March, 1975, after a few months of experience with the then new OSCAR 7, it became apparent that the outstanding signals from the Mode B transponder would provide a new level of performance from a vehicle. The first experiments used a transceiver arrangement as shown in Fig. 3.

The uplink-starts with the same regular amateur band transceiver as was previously used for receiving OSCAR 6 This is in the front of the car, so the transmit frequency can be controlled from the driver's seat. A low power output (1° Watt) available from this particular unit is cabled to the trunk, and connected to a transmitting converter (28.150 to 432.15 MHz). This converter

Uplink (at 432.150 MHz)
Transmitter power x antenna gain $=$ EIRP $=100$ Watts $\quad+50 \mathrm{dBm}$
Free space path loss tat 2000 mile range) ${ }^{-}-156 \mathrm{~dB}$
Polarization mismatch (linear on ground, circular at satellite)
Net nominal receiving antenna gain at spacecraft
Received signal at input to spacecraft transponder
$-156 d B$
-3 dB
$\frac{0 \mathrm{dBi}}{109 \mathrm{dBm}}$

Downlink (at $\mathbf{1 4 5 . 9 5 0 ~ M H z}$)

Sateliite transponder output power (with -109 dBm input signal)
Net nominal transmitting antenna gain at spacecraft
$+30 \mathrm{dBm}$
Free space path loss (at 2000 mile range) 0 dBi

Net nominal automobile receiver antenna gain \{including transmission line loss) $-146 \mathrm{~dB}$

Polarization mismatch (circular at satellite, linear on ground)
Received signal at imput to automobile receiver
Receiver noise (bandwidth $=2.4 \mathrm{kHz}$, noise figure $=3 \mathrm{~dB}$)
RECEIVED $(\mathrm{S}+\mathrm{N}) / \mathrm{N}$

+2 dBi
-3 dB
-117 dBm
-137 dBm
+20 dB

Table 1. Note: At a range of 1000 miles (satellite overhead), the $(S+N) / N$ should be 26 to 30 $d B$. From these figures it can be seen that very effective communication is possible.

W3TMZ was first QSOed from the car via OSCAR 6. The other cards are from the first few days of operation.
develops about 3 Watts on the uplink frequency. A strip. line tube type power amplifier brings this low power up to the 100 Watt level. A short run of RG-8 cable to a ground plane antenna mounted on top of a standard mobile whip completes the uplink equipment. A rather involved power supply was required to supply all the various voltages required by the tube type uplink equipment in the trunk.

The downlink receiving equipment, since this was to be a transceiver installation, required a special receiving converter to convert the 145.950 MHz passband downlink signals to 28.150 (\pm 25 kHz) for the transceiver. The crystal in this converter had to be on the high side of the signal to restore the frequency inversion created by the satellite transponder. The crystal also had to be offset to adjust for the small frequency translation irregularity in the satellite transponder and to provide continuous tuning to adjust for the Doppler effect. A crystal tuning capacitor equipped with a vernier dial was employed to facilitate this adjustment. The antenna for the downlink was the same 5/8 wave base-loaded whip previously used for uplink in the OSCAR 6 experiments.

This array of uplink and downlink equipment was
tested out thoroughly on the bench by actually communicating via the satellite. The car installation called for a lot of head scratching on equipment location - particularly for the various power supplies.

Murphy must have been looking the other way, because when I finally tried the installation out from my driveway on the first available orbit, I was rewarded with a solid SSB conversation for over ten minutes with W2BXA in New lersey.

Other than a minor problem in the high voltage power supply, this installation was in troublefree operation for more than two years with impressive results. Particularly on the morning passes, when the 7 B transponder was lightly loaded, the return SSB signals were very strong It was easy to work European stations as well as all of North America and the Caribbean.

Operation in motion is quite practicable with no observable difference from parked. On one occasion, a special test was carried out where the car was kept in continuous motion while the mike was kept continuously active for an entire orbit. The signals from the car were copied by many stations all over the East and Midwest with exceptional clarity. Inmotion operation does have a little problem with two-way

Fig. 2. Simple equipment for vehicular satellite communications.

Fig. 3. Transceiver type equipment used in W2GN mobile for SSB communications via OSCAR 7 Mode B.
contacts due to the need for frequent adjustment of the receiver to account for the Doppler shift. One hand on the steering wheel and one on the tuning dial leaves the mike in midair.

A 2 meter sideband transceiver was next installed to supplant the receiving converter described above. This yields the convenience of being able to hear your own downlink signals, an interesting and important aspect of satellite operation. In this setup, the transceiver used_to generate the SSB signal on 28.150 was installed in the trunk, taking all the clutter out of the front of the car.

A number of successful demonstrations were conducted at various hamfests and meetings here in the Northeast. The SSB voice signals coming down from the OSCAR 7 Mode B translator invariably gave good loudspeaker copy to large groups by extending an audio line from the car to the meeting hall.

432 MHz SSB transceivers and linear amplifiers became available during 1975, so we continued the .equipment saga, and, in early 1976, installed a 432 transceiver alongside the 144 unit in the front of the car and solid
state linears for both bands (2 m and 70 cm) in the trunk - going whole hog, so to speak.

A regular ham band transceiver plus the usual FM unit provides a capability for all satellite and nearly all regular modes of operation on the ham bands. The antennas continued the same - baseloaded whips on 2 m and 70 cm and center-loaded whip for ten meter downlink. We have come a long way in the equipment department since OSCAR 6 was launched in October of 1972. All of the gear mentioned takes up little space in the vehicle. The availability of satellite communications has helped to stimulate this development.

As the AMSAT program for future satellites unfolds, we can expect mobile. operation via satellite to be a regular part of the day-to-day ham operation. Continuous coverage via satellite must be held as the ultimate goal, either through use of high altitude satellites or by operating several satellites properly spaced at a lower altitude.
Once that is accomplished, there will be no barrier to communication by amateur radio from any point on the Earth at any time.

STILL

UNDER $\$ 500$

DO YOU KNOW OF ANOTHER
FULL POWER, FULLY
ASSEMBLED, HF TRANSCEIVER STILL UNDER $\$ 500$? WE DON'T!

BUT DON'T LET THE LOW PRICE FOOL YOU. THE TEMPO ONE'S QUALITY AND RELIABILITY HAVE BEEN PROVEN BY THE TENS OF THOUSANDS IN USE BY GENERAL AND ADVANCED CLASS AMATEURS.
AND NOW UNDER THE NEW FCC REGULATIONS THE TEMPO ONE BECOMES THE PERFECT RIG FOR THE NOVICE AND TECHNICIAN CLASS.

Ask any of the thousands of owners about its dependability, look at its features and specifications... and the reasons for its unparalled popularity will be obvious.
FREQUENCY RANGE: All amateur bands 80 through 10 meters, MODES OF OPERATION: SSB upper and lower sideband, $C W$ and $A M$.
SOLID STATE VFO: Very stable Colpitts circuit
RECEIVER OFFSET TUNING (CLARIFIER): Provides $\pm 5 \mathrm{khz}$. variation of receiver tuning when switched ON.
FREQUENCY STABILITY: Less than 100 cycles after warm-up, and less than 100 cycles for plus or minus 10% line voltage change. INPUT POWER: 300 watts PEP, 240 watts CW

AF BANDWIDTH: $300-2700$ eps.
RECEIVER SENSITIVITY: $1 / 2 \mu \mathrm{v}$ input $\mathrm{S} / \mathrm{N} 10 \mathrm{~dB}$
AGC: Fast attack slow decay for SSB and CW. SELECTIVITY: 2.3 khz . (-6 dB), 4 khz ($(-60 \mathrm{~dB})$ IMAGE REJECTION: More than 50 dB . AUDIO OUTPUT: i wati at 10% distortion.
AUDIO OUTPUT IMPEDANCE: 8 . hms and 600 ohms
TUBES AND SEMICONDUCTORS: 16 tubes, 15 diodes, 7 transistors ANTENNA IMPEDANCE: $50-75$ ohms
CARRIER SUPPRESSION: -40 dB or better
SIDEBAND SUPPRESSION: 50 dB at 1000 CPS
THIRD ORDER INTERMODULATION PRODUCTS:- 30 dB \{PEP
TEMPO "ONE" TRANSCEIVER
$\$ 399.00$
AC/ONE POWER SUPPLY
\$ 99.00
TEMPO VF/ONE External VFO
$\$ 109.00$
CW FILTER KIT
$\$ 46.00$

Tempo RBF-1

Wattmeter

An inexpensive, in-line Wattmeter and SWR bridge for use with any transceiver transmitter, or amplifier from 1.9 to 150 MHz . Test and tune for maximum output or for monitoring on-the-air performance. Allows selection of wattmeter scales of 0-200 watts or 0-2000 watts. Insures consistent, efficient transmitter operation.
As with ali Tempo equipment, the RBF-1 delivers performance value far beyond its price. Only $\$ 42.95$

Tempo DM-20 Desk Mike Features PTT and LOCK switches. Converts easily to high or low impedance (600 or 50 k ohm). Only $\$ 39.00$

Prices subject to change without notice
AVAILABLE AT SELECT DEALERS THROUGHOUT THE U.S.
Henry Radio.
11240 W. Olympic Blud., Los Angeles, Calif. 90064 213/477.6701
931 N. Euclid, Anaheim, Calif. 92801 $714 / 772-9200$ Butler, Missouri 64730 816/679-3127

Tic Tac Touchtone

- - a new method!

TLL levels, and from one-often code to BCD. A set of storage latches allows you to enter a six-digit number sequentially, and yet store it as six sets of parallel $B C D$ data. Now, what can you use it for?

As described, I use it to record (or enter manually) azimuth (3 digits) and elevation (3 digits) information on convenient cassette audio tape for a given OSCAR pass. Depending on how you do the recording and playback, you have enough time on one side of a 60 -minute cassette to record even the longest 24 to 28 -minute pass in real time. At real time, you would start your recording with the starting position coordinates for your antennas, and then enter new information from your calculated data for Satellabe ${ }^{\text {TM }}$) every one-half minute or so, with the tape always running. Two drawbacks! One, this can eat up a lot of tape. Two, it takes as long to record every pass as the pass really takes! I record and play back-mine a bit differently. By using a circuit very similar to Fig. 7 (R-S flip-flop wired gates) to control the tape recorder run/stop circuit via the microphone third wire, I waste no tape. You build a second Fig. .7 leaving off Rs, Cs, Rg, Cg, and both switches, since the tape control inputs will be TTL levels. The relay contacts are then wired as in Fig. 7 (a) to control the tape recorder run/stop circuit. For inputs to this added IC, refer first to Fig. 2. IC5-11 shows a lead going off to tape. Attach this lead to the new IC pin 13 , taking the place of the hold switch of Fig. 7 and forming the tape stop command. Whenever a \# is decoded from the tape or direct command, the tape stops. To start the tape, any TTL-compatible pulse from high to low into pin 9 of the new IC will start the tape. The relay will close and the tape will run. To record using this method, let the pulse (from timer or electronic

Fig. 1. Block diagram.
record (or manually enter) ${ }^{\text {- }}$ IT tones that are then entered into a decoder for a one-of-ten number choice. These tones are changed to.

Between the looks of the push-button pad arrangement of the Touchtone ${ }^{T M}$ and the hit-and-miss aiming technique I had been
running until recently, the title seemed a likely one for the circuit block diagram in Fig. 1. What the circuitry allows you to do is tape

clock at 1 or 2 per minute) start the tape on playback, and use a momentary low on pin 9 to start the tape when you are ready to enter new data for a pass when recording. You enter your data in 6 -digit format shown by this example for an azimuth heading of 163 degrees and an elevation of 45 degrees: Enter by pushing the TT pad buttons $1,6,3,0,4,5$, 并, for a 163045 \# sequence. When you hit the \#key, the tape will stop, but the tone will be on the tape. Start the tape with a pulse again, and after 2 to 3 seconds, enter the next headings, followed again by \#, and so on. When the timer plays back the tape, one 6 -digit number and stop tones will be played back for each timer pulse, so be sure to enter data for every minute if a one-per-minute timer is used, or data for every onehalf minute if a 2 -pulses-perminute is used, etc.

The interface shown between the TT pad and the recorder is a combination of the Π pad level control, the ALC circuit of the recorder, switches you choose to use, cables and plugs, and so on. Nothing fancy, and not included here due to the many types of pads and recorders. The same goes for the interface shown between the recorder and the TT decoders in the playback mode. It can be any ALC, or the recorder playback volume control, or anything to hold the tone levels to about 50 to 100 mV (if you are using PLL decoders). The TT decoders are also not shown, as they have been in many forms, in many magazines. It's your choice, just as long as the output goes from about +4.5 V dc to ground on the output line when that tone is received.

Taking it from the output of the TT decoders, the high and low tone group outputs (lows) are fed to an inverter so that both high and low are available for each output. Then the inverted forms are
fed to gates to decode a single number for any tone pair received. Output from these gates is fed to a 10 -line to 4-line converter IC. This 74147 IC happens to accept a low on the 0 to 9 input line side, and outputs $\overline{B C D}$ code equivalents of the digit that was entered. This inversion doesn't bother us, as the $\overline{\text { BCD }}$ is inverted again in the 7475 latches by using the $\overline{\mathrm{Q}}$ outputs. The then BCD code is fed to a 7485 comparator IC to compare it with the BCD code sent down from the antennas. That covers the signal path, which is really easy. Now for the controlling part!

Going to Fig. 3, all lines that enter each half of IC17 are normally high during no tone. When any valid TT tones are received, one input line of one half of IC17 (pin $1,2,4$, or 5) and one input line of the other half of IC17 (pin 9, 10, 12, or 13) will go low (for the numbers 0 to 9 , but more on that later). Since IC17 is a 74204 -input NAND gate, all 4 lines of either half input must be high for a low output. When the tones cause these IC17 outputs to go high, IC28-3 goes low. This causes the one-shot IC18 to fire for approximately 5 ms .

The one-shot IC18 output enables half of IC19 and IC20, 7408, and gates. The other half of only one of these gates at a time is enabled by what line (U, V, W, X, Y, Z) is also high. If we are in the first digit position, for example, the counter 7490 (IC15) and decoder 7442 (IC14) would be in the zero (reset - 1 st digit) position. IC14-1 will be low, and when inverted by IC13-1 to 1C13-2, a high results, enabling IC19-3 to a high. This high turns on the latch enable line of IC7-4 and IC7-13. The BCD data for the first digit present on the common BCD bus in Fig. 2 are transferred to the output side of only that latch. It is then compared by the 7485 (IC21) with the current antenna BCD read down to the other side of the 7485.

Going back to Fig. 3, the same low for a valid T tone at IC28-3 that keyed the one-shot IC18 is also fed to IC16-12 and IC16-13, causing a high at IC16-11 and IC15-14. This low to high transition when tones are received does nothing at the counter input IC15-14; however, when the tones stop, the condition reverses (high to low), and the counter ad-
vances one position and is ready for the next number. You can follow through the counter (IC15) and decoder (IC14) up through IC14-2 to IC13-1 to IC13-4 to IC19-5, and see that the next position is then half enabled and needs only the one-shot pulse from IC18 when the next tones come along to load the second position latch (IC8) with second digit BCD data.

It should be noted at this time that the Π pad * key can be used to reset the counter and latch positions. IC16-4 and IC16-5 are used in upside-down gate fashion, much like IC28-1 and IC28-2, in that if either high goes away from the inputs, the output goes high and resets the counter. IC16-S is also used to reset the counter when position " 6 " is reached in the 7442 , so the counter does not rely on the * to reset. The position "6" reset is detected as a BCD 6 by IC1 6 -1 and IC16-2 to IC16-3 to IC15-5.

Referring to Fig. 3 and IC17: The inputs to these gates were originally wired to detect all valid TT pairs, but this leads to both limited and confusing control. By using

Fig. 2. Decode and store diagram.

IC 芳	Name	Vcc	Gnd
13	7406	14	7
14	7442	16	8
15	7490	5	$10-6-7$
16	7400	14	7
17	7420	14	7
18	74121	14	7
19	7408	14	7
20	7408	14	7

- Fig. 3. Control unit.
pin 5 wired to +5 V dc instead of H 4 where it was, we delete the decoding of the entire H_{4} group ($\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D letters on some TT pads). This allows their detection by NAND gates wired like IC3, 4 , and 5 , without causing any counter or latch action. After all, you never want to enter this as data. to the number latch anyway, but you may want them for tape or local control signals (future use!).

Also, in the low tone group inputs, a gate is added to the L4 input. By doing so, we set up the low tone half of IC17 to only recognize 0 of the L4 group ($*, 0, \#, D$) as a valid number to be loaded into a latch when received.

This occurs when the tone pair for zero (H 2 and L4) are inverted in IC2 and appear as $\overline{H 2}$ at $1 C 16-9$ and $\overline{L 4}$ at 1C16-10 as highs. This causes a low at IC16-8 and a high at IC17-6, and with both ouiputs of 1 C 17 high, a valid number is "seen" for loading the latch.

Both * and \#are L4 tone numbers, but neither has the H 2 high tone, so they both are ignored by $\mathrm{IC17}$. Thus, by wiring the IC17 high group correctly, and adding a simple gate to the low tone group, only the numbers 0 to 9 are used to load the latches.

I believe that covers the line by line, so let's examine
the 163045 example given earlier, as it progresses through the digital hardware. The 1 , of course, was decoded and stored in latch IC7. Then the 6 is put in, decoded, and stored in latch IC8, the 3 is put in latch IC9, the 0 in fatch IC10, the 4 in latch 1C11, and the 5 in latch IC12. Going to Fig. 4, you can see by the "numbers" shown in ICs 7 through 12 just what is stored where.

If the relay power is in the automatic rotate mode of Fig. 7, IC28, then the antennas will begin to move the instant the first digit is received, decoded, and latched, if it differs from the antenna position in that digit. Fig. 4 also shows the output relay control lines of the 7485 s under "other 7485 connections." The 7485 has cascade inputs available at pins 2,3 , and 4 , and these pins are used. The overall output of the 7485 s seen by IC27, pins 1,3 , and 5 for azimuth, and 9 , 11 , and 13 for elevation, can be in only one state at a time - either $\mathrm{A}>\mathrm{B}, \mathrm{A}=\mathrm{B}$, or A $<B$. These overall outputs are in whatever state the 100 IC21 commands until $A=B$ in that IC. IC22 then takes over, followed by IC23 (azimuth example). For instance, if we started the beams mechanically at 000 degrees (north) for azimuth, and 000 degrees elevation, the following would take place after the data was all in and stored (163045), and then the relay power applied with the "auto-rotate" button: 1 C 21 says $\mathrm{A}>\mathrm{B}$, output $\mathrm{A}>\mathrm{B}$, and the CW relay pulls in to increase degrees azimuth on beams (increase B data) until 100 degrees is reached and IC21 says $A=B$ in this digit. Then IC22 takes over with its own $A>B$, output $A>B$, and the CW relay stays in until 160 degrees is reached and IC22 says $A=B$ in that digit. Then IC23 takes over with its own $A>B$, output $A>B$, the $C W$ relay stays in until 163 degrees is reached and IC23 says $A=B$, the azimuth stop

LED comes on, and the CW relay drops out.

The same thing happens independently in IC24, IC25, and IC26 for elevation. In our example, IC24 immediately sees an $A=B(0=0)$ and transfers control to IC25 until 40 degrees elevation is reached and an $A=B$ condition is reached in IC25. Then IC26 takes over with an $\mathrm{A}>\mathrm{B}$ command until 45 degrees is reached when the up relay (energized until now and driving the beams upward) drops out and the elevation stop LED light comes on. The system is then at rest, and remains so until further data streams are received from the tape-timer or by manual entry.

While on the subject of the relays, Fig. 7 was added so that data commands could be entered when in the hold (no relay power) mode without actually turning on the antennas. It is a handy override, because if you want to stop the antennas at any time, you can do so with a push on the "hold" button. Hitting the "auto-rotate" button returns control to the latches of the IT controller system. This also means that you can cancel a taped command by overriding it with the hold button, enter a mamual command, and return to automatic by pushing the autorotate button.

I included a panel layout (Fig. 6) to give you a starting point. Laid out this way, it is functional and not confusing. I used orange plexiglas over the BEAM 7 segment displays, and ruby red in front of the DATA entered readouts to avoid mix-ups. The hold LED is red, the auto-rotate green, and (in my case) the CW, CCW, Dn, and Up LEDS are all yellow. The az and el stop LEDs are, of course, red. The panel is gray, with black TT keys with white lettering, so it makes a nice addition to my Drake equipment. In fact, I used a Drake speaker cabinet (MS-4) and had tons of room left over, both on the panel and
in the box.
This system replaces the earlier Autotrak* at my QTH, but to each his own. If you have the RTTY gear, the earlier system was okay, but required a lot of hardware to get from Baudot to $B C D$ and the like just to have the advantage of pre-stored tape (paper tape in that case). The advantages of this newer system override any drawbacks of not having a hard copy printout, and careful labeling of the cassettes should eliminate any problems.

With the average OSCAR antenna setup, having tapes for every 5 degrees of longitude seems to be more than adequate, amounting to some 15 to 20 pass combinations, worst case. All this fits nicely on 2 cassettes in my non-real time system. You can get sneaky as you record by using a pass "code" information right on the tapes. Let me show you by example. Since azimuth information is the closest to longitude or surface information, I chose to use those readouts to locate a point on a tape containing some 4 to 6 passes. When recording, ahead of each sequence of pass information enter the following "code":

Fig. 5. $\mathrm{Si}=$ silicon diode, 50 $V, 100 \mathrm{~mA}$. All RL chosen for $\angle E D$ used.

Fig. 4. IT controller.

Push *, then whichever of the A through D keys you want to use for this function, then the longitude of the equator crossing for that pass you are about to enter next as a 3 digit number, then 0 , then 0 , then 0 , then the A to D key you chose above again, then wait 10 seconds, then push the * key to clear the register (counter), then wait 5 seconds, then begin entering your data for the pass as shown before.

By opening the antenna circuit with the hold key, and defeating the tape stop command by closing the defeat switch in Fig. 7, you can go down about 30 minutes ahead of the pass. While letting the gear warm up (please!), you begin playing the proper tape back. Example: An overhead pass for me is 72 degrees crossing at the equator, so 1 take my 52 degree to 77 degree tape (1 go in 5 degree increments on either side of an overhead pass here) and put it on the recorder. The pass I am looking for is the fifth one on this tape. When the tape begins playing back, the first infor-
mation I get is a $*$, to clear the counter to position one regardless of where it came on when power was applied. Then the D tone is in my case decoded and wired into an audio monitor (NE555s and ą speaker) to form a 1000 Hz warning tone that in this case means that longitude information is about to be presented on the data readouts. Next, the tape decodes and displays the digits 052 000 on the data readouts, telling me that the information that follows is for a pass having a 52 degree equator crossing. The audio warning is repeated. Then the decoded * clears the data counter to the

Ist position (it should be there due to a detected 6th digit position after the last. 0 was entered - but why risk it?). The information that follows is pass data, and the \# does not shut off the tape, since you defeated that circuit. When the tape reaches the next "code" information, the above is repeated (in my case: clear, tone, 057000 , tone, clearl, so that you stop the tape manually right after the equator crossing you want (072000). You would then push the defeat switch to normal and the auto-rotate button, and set up your timer to control tape starts. For the exact time of the crossing, 1

Fig. 6.

Fig. $7(a)$.
enter the approximate azimuth from the Satellabe TM , and an elevation of 000 degrees. Two reasons: One, I can start all runs with the published crossing time, even though the satellite is out of range - it is not always out of range! Two, this gets the antennas into approximate position for your AOS position anyway, so you don't have to wait on them coming around. I use an automatic call sender that keys off the same high to low transition from the timer that
starts the tape, so I listen for myself even before normal AOS and then turn off the sender. This all makes every pass a very repeatable situation - they all start at the equator, and the first tape information is for equator plus 30 seconds. I run the beams around to the equator start point with a manual entry from the keyboard, just before doing the timer setup. This way, I have one manual function to do concerning the antennas when the satellite crosses the equator - pushing

Fig. $7(b)$.
the "go" button on the timer to start the first thirty second period. Thirly seconds later, the timer sends a pulse to the controller - tape start - and the $T+30$ data is read in and the beams run to that position. At 40 degrees latitude, this is always the same as what you manually loaded, so you could include it on the tape and let the tape read in the initial condition by turning the normat defeat switch from defeat to normal (after the longitude figures you want are read and clear themselves, but before the first data coordinates are picked up off the tape - we left about 5 seconds). This-way, the decoder picks up the first
tape stop \#, and would wait there until the timer $T+30$ pulse - putting you right. back in sync.

That sums up the theory and the how-to-tape information part. It works great, and allows me to concentrate on the receiver instead of growing a third hand for the antennas. No doubt you will find your own uses and probably some variations, and that's good - write them up! 1 have no beef with anyone who starts with my idea and improves on it - chances are l'll add it to my system, too.

Please include an SASE if you need help. The letter load has increased with the increase in my "articles published" count, but same day answers are usually still possible if you make your questions clear and concise. Adaptations and modifications by you take a while longer, since I like to try what you did on the hardware here and see what really happens.

from page 16
of '76. In January '77, I flunked my first time on the General, but then went in February and passed it. Then 3 months later (May), I passed my Advanced; 2 weeks later in June, and during the last week of school, with all the final exams, yea, I walked away with the Extra on my first try. Same day 1 sent away for my 1×2 call. Youngest ham to get (or have) a 1×2 call?

1 guess if you show this letter to some of your local CBers, it'll get 'em off their tails and show em how easy it is.

How did I do it? Naw, I'm not a "child prodigy" and my marks in school aren't too good. It took a lot of time and energy and staying away from all the wild women. And if you wanna speak to me, I'll probably be on the bottom of 20 meters CW for where (atn now, relegated to 2 meter FM with a borrowed HT because of antenna problems). And I'Il talk to
take another look. Maybe you are one of those appliance operators.

Richard L. Miller WA4OET
Ft. Belvoir VA -

We were indeed happy to see your three-page coverage of TEN-TEC modifications to the Argonaut in the August, 1977, issue of 73. The only problem that we see is that it was not pointed out anywhere in the article that the modifications described were performed on our old Model 505 Argonaut, which was replaced in June of 1975 with the Model 509. The Model 509 indeed incorporates the modifications shown in the article with the exception of the disconnect socket on the speaker. The reverse polarity protection and the drive control on the front panel are incorporated in the Model 509 and always have been. I would appresiate it if you would run this information in your letters column so that owners of the Model 509 do not feef that modifications are desired or necessary with their units.

The only statement in the article that we take exception to is the one where it is intimated that TEN-TEC had a prepackaged kit of parts for repairs to units that were connected up reverse polarity. I know of no such prepackaged kit, but the usual damage was to the switching transistors on the
control board, and possibly the large electrolytic eapacitor across the de line.

TEN-TEC, Inc.
Daniel J. Tomcik Executive Vice-President

Sevierville TN

GUD OSO, OM

Most hams have listened to something like this: "We are a doctor here and have a patient due in our office in ten minutes, so we will have to say 73 for now," etc.

I have been a ham for over 25 years and have heard "we" used to denote a

Continued on page 75

Don't sacrifice maximum power output and high efficiency for linearazation. The BLUE LINE offers you the best of both designs. The BLUE LINE amplifiers are engineered using the latest state of the art stripline technology. This design technology means efficient broad band output with a very high degree of mechanical stability.
hf engineering is the only name you have to remember when it comes to VHF or UHF amplifiers, just look at the variety available.

MODEL	BAND	EMISSION	POWER INPUT	POWER OUTPUT	WIRED AND TESTED PRICE
BLC 10/70	144 MHz	CW-FM-SSB/AM	10w	70W	139.95
BLC 2/70	144 MHz	CW-FM-SSB/AM	2W	70w	159.95
BLC 10/150	144 MHz	CW-FM-SSB/AM	10w	150 N	259.95
BLC 30/150	144 MHz	CW-FM-SSB/AM	30w	150W	239.95
BLD 2/60	220 MHz	CW-FM-SSB/AM	2w	60W	159.95
BLD 10/60	220 MHz	CW-FM-SS8/AM	10w	60W	139.95
BLD 10/120	220 MHz	CW-FM-SSB/AM	10w	120 W	259.95
BLE 10/40	420 MHz	CW-FM-SSB/AM	10W	40W	139.95
BLE 2/40	420 MHz	CW-FM-SSB/AM	2w	40W	159.95
BLE 30/80	420 MHz	CW-FM-SSB/AM	30W	80W	259.95
BLE 10/80	420 MHz	CW-FM-SSB/AM	10w	80W	289.95

FEATURES

- High efficiency means low current drain.
- Broad band design (no tuning).
- Direct 32 volt DC operation.
- Indicator lamps for On/Off and FM/SSB.
- Relay switching fallows you to put amplifier in or out of circuit at the flip of a switch).
- Insertion loss of less than 1 dB .
- One year limited warranty on parts and labor.

Don't forget our popular PA-2501 and PA-4010 at $\$ 74.95$ (wired and tested) $\$ 59.95$ (Kit)
INDOORS?

LOOK AT THESE POWER SUPPLIES!

- Over-voltage protection crowbar.
- Electrostatic shield for added transient surge protection.
- A foldback output limiter operates for loads outside of the operating range.
- Isolation from ground. The circuit is isolated from the case and ground.
- 115/220 volt input - 50/60 cycle.
- Units are factory wired for 115 volt AC, 50/60 cycle power.

A simple jumper will reconfigure the input for 220 volt AC, 50/60 cycles.

- Temperature range - operating: 0° to $+55^{\circ} \mathrm{C}$.
- Black anodized aluminum finish.

PS-25M WITH CURRENT METERS

Recommended for:
$\begin{array}{llll}\text { BLC 10/70 } & \text { BLD } 2 / 60 & \text { BLE } 30 / 80 \\ \text { BLC } 2 / 70 & \text { BLD 10/60 } & \text { BLE 10/80 }\end{array}$
Voltage Output: adjustable between $10-15 \mathrm{~V}$
Load Regulation: 2% from no load to 20 a
Current Output:
25 amps intermittent (50% duty cycle)
Ripple: 50 mV at 20 amps
Weight: 22-1/2 pounds
Size: $12-1 / 4^{\prime \prime} \times 6-3 / 4^{\prime \prime} \times 7-1 / 2^{\prime \prime}$
PS-25M Kit \$149.95
PS-25M Wired \& tested . $\$ 169.95$

PS-15C LOW COST

Recommended for:
BLE 10/40
BLE $2 / 40$
Voltage Output: adjustable between $12-14 \mathrm{~V}$ Load Regulation: 2\% from no load to 10 amps
Current Output:
15 amps intermittent (50% duty cycle) Ripple: 50 mV at 10 amps Weight: 13 pounds
Slze: $11-1 / 4^{\prime \prime} \times 5-1 / 2^{\prime \prime} \times 4-3 / 4^{\prime \prime}$
$\begin{array}{lll}\text { PS-15C Kit } & \text {. } & \$ 79.95 \\ \text { PS-15C Wired \& tested } & . \$ 94.95\end{array}$

PS-3012 COMMERCIAL

Recommended for:
BLC 3/150
BLC 30/150
BLD $10 / 120$
Output Voltage: Adjustable, 11-15 VDC
Qutput Current: 30 amps (50% duty cycie)
Regulation: Better than 2 percent
Output Ripple: 50 MV pk-pk maximum
Temperature Range: $00-60^{\circ} \mathrm{C}$ operating
Overvoltage Protection: Built in OVP crowbar
Overcurrent Protection: Foldback current limiting at 30 amps
Short Circuit Current: 2 amps maximum
nput Voltage: 105-120 or 208-230 at $50-60 \mathrm{~Hz}$
Size: $13-1 / 4^{\prime \prime} \mathrm{L} \times 7-1 / 8^{\prime \prime} \mathrm{W} \times 6-5 / 8^{\prime \prime} \mathrm{H}$
Weight: 25 lbs .
Finish: Black anodized aluminum
PS-3012 Wired \& tested . . . \$239.95

Export prices are slightly higher. Prices subject to change.

> -

Visual

OSCAR Finder

. - nice side effects!

A very unique OSCARlocating aid appeared
in QST in May, 1974, described by WQCY. It con-
sisted of a rotating globe with several LEDs around it, se-

Completed OSCAR finder.
quentially turning on and off to simulate the position of OSCAR. The project used several gearing arrangements, entirely too many LEDs, and a 115 -position rotary switch to accomplish its task. I felt this to be too costly and mechanically complicated, and I was prompted to simplify this otherwise excellent article.

The only mechanical device in my locator is a 24-hour clock movement, obtained from a Master Crafters 24-hour world clock. This clock was popular with hams in the 1960s and can be found at hamfest flea markets. Mine had been retired years ago, when I built a digital station clock. The movement and all hands are removed from the clock, and the back cover is removed from the movement to expose the gears. For this project, it is necessary to reverse the rotation of the clock. The motor will go in any direction in which it is started, but there is a ratchet underneath the only yellow nylon gear in the movement. that forces the clock to turn clockwise. This ratchet is
"-- removed by drilling out the rivet holding it. Now the clock will turn in any direction in which it is started.

The globe used was bought in a five-and-ten-cent store, and it is made by the Ohio Art Co. It was originally intended to be a bank, so the base on it must be removed. This is easily accomplished by pulling the base straight out from the globe. Next, a $1 / 4^{\prime \prime}$ hole is drilled in the south pole, and the outer ring, salvaged from the hour hand, is soldered to the globe at the south pole, after removing the paint from the globe and the ring at the point of attachment. The globe will now fit snugly on the outer shaft of the movement, as the hour hand did. On the globe, a 2500 -mile-radius circle, drawn to scale, is centered around your QTH and drawn with a marking pen. This indicates the area within

Parts List
ICs
17493 Lafayette 32P06919V
174154 Radio Shack 276-1834
3 NE555 Radio Shack 276-1723

Resistors

$310 \mathrm{k} / 4$ Watt 10% all Radio Shack 271-1300
$21 \mathrm{k} /$ Whatt 10%
12.2 k \% Watt 10%

11 meg $\frac{1 / 4}{}$ Watt 10%
$168 \mathrm{k} 1 / 4$ Watt 10%
1360% Watt 10%
$11 \mathrm{k} 1 / 2$ Watt 10% Radio Shack 271-000
1 10k 10 -turn trimmer pot R1

Capacitors

20.01 uF disc ceramic: one at 200 V Radio Shack $272-131$ and one at 25 V Radio Shack 272-131
13200 uF 6 V electrolytic Radio Shack 272-1021
13200 uF 10 V electrolytic (can be smaller - see text) Radio Shack 272-1021 C1
11 uF 5 V electrolytic Radio Shack 272-1406
110 uF 10 V electrolytic Radio Shack 272-1002
10.0525 V disc ceramic Radio Shack 272-134

Other Semiconductors

16 LEDs miniature or subminiature Radio Shack 276-042
4 1N4001 Radio Shack 276-1101
1 2N3906 Radio Shack 276-2021
15.1 V 1 Watt zener 1N4733A Lafayette 32P08691V

Miscellaneous

18 Ohm miniature speaker Lafayette 99P60360V 1 SPST switch Radio Shack 275-612
1 normally-open push-button Radio Shack 275-1547
1117 V to 6.3 V transformer 300 mA Radio Shack 273-1384
which the satellite may be worked.

The 16 LEDs are soldered to a piece of bus wire shaped in a $5^{\prime \prime}$ diameter ring, to simulate the satelfite's orbit. Separate wires are run from the cathodes to the appropriate pin on the 74154 chip. Small pieces of plastic tubing are used between the LEDs, covering the bus wire and connecting wires. The LEDs are spaced so that one is placed at each of the poles and at the equator on both sides, and three are evenly spaced between each of these. The ring is held to the cabinet with a cable clamp and adjusted to an angle of 102 degrees for the OSCAR 6 orbit.

A 555 timer chip is connected for astable operation with a period of 431 seconds (114.9946 min./16). The exact time is set by adjusting the 10 k 10 -turn pot, which is in series with the 68 k resistor. The output from this clock goes to the input of a 7493 BCD counter. This device gives the appropriate 4 bit $B C D$ code for the number of
transitions that occur on pin 14. After reaching 16 counts, the counter resets to the 0000 state. There is also provision for externally resetting the counter for setting the device up initially.

The four lines from the

Fig. 7.
7493 drive the inputs of a and sixteen lines out. All 74154 4-to-16-line decoder. This device has four lines in
outputs except one are normally high. The output that

Suggested parts placement for OSCAR finder

PC boards are available from the author for $\$ 6.00$ plus $\$ 1.00$ for postage and handling.

Fig. 2. PC board.
goes low is the one whose BCD code has been addressed at the input. For example, if
the four lines in are 1010, the tenth output goes low (pin 11). These output lines
directly drive the appropriate LEDs through a currentlimiting resistor.

LED number one is placed at the equator going north, and the other LEDs follow it sequentially. To make the LEDs more visible, they are made to blink on and off. This is done by driving the strobe inputs of the 74154 with another 555 astable set at about 1 Hz . When LED number one comes on, it turns the 2 N3906 transistor on, which, in turn, activates a third 555 astable which oscillates at about 1 kHz . This chip drives a small 8 -Ohm speaker, when the LED at the equator is on, with a beeping tone. This alerts the operator that the satellite is entering the Northern Hemisphere. A switch is provided to turn the beeper off, if it becomes annoying.

The power supply is conventional and adequate, and it should be noted that one does not really need a 3200 uF filter capacitor. I used it because I had an extra one in the junk box. Use one large enough to give a clean tone, free from hum, in the loudspeaker.

I found the accuracy of the 555 timer used as a clock entirely adequate. However, greater accuracy can be obtained by using a smaller capacitor of the tantalum or polycarbonate variety and using a larger value precision resistor. This might buy some thermal accuracy, but, within the box, we find a thermal equilibrium, due to the heat produced by the clock motor, transformer, and chips. As long as the shack's temperature doesn't change too drastically, the clock averages quite well. For the real perfectionist, I suggest a crystal oscillator with an appropriate divider chain.

To align the unit, the 10 k pot must first be set so that the period of the clock astable is 431 seconds. This is a somewhat lengthy process, but it must be done as acicurately as possible to insure correct tracking of the satellite. Allow the unit to thermally stabilize itself before finalizing the adjust-
ment.
To set the satellite's position, the following should be done. Use an OSCAR locator or similar device to determine an equator crossing on the day that you are setting the OSCAR finder. Determine the local time of the crossing and the degrees of longitude. Remove the globe, and observe if the second-hand shaft is turning counterclockwise. If it isn't, take a pair of needle-nose pliers and force the shaft to turn counter-
clockwise. Replace the globe, and set the globe by turning the time-setting knob until the number one LED is at the correct crossing point on the equator. This globe is marked at every 15 degrees of longitude, so it is easy to estimate the correct point. Press the zero-degree start button, and wait until the beeping stops. At this instant, press the reset button again. This will insure that a complete cycle is started. Readjust the globe so that the

LED lines up with the crossing point. One must use good timing to insure that this process can be completed by the time that the pass is to occur.

Periodically check the accuracy of the OSCAR finder with an OSCAR locator or similar device, and recalibrate it by turning the globe, if necessary.

Whenever an LED appears within the circle on the globe, OSCAR is within range. Although designed for

OSCAR 6, the OSCAR finder can be used with any satellite by adjusting three things: angle of orbit, period of orbit, and radius of circle on globe, which is related to the altitude of orbit, which is related to the period. Finally, any 24 -hour movement or globe that is availabie can be used, and most of the other parts are readily available, as listed in the parts list, from local stores as well as from the mail-order houses. Good luck on OSCAR hunting! !

FCC

Before the
FEDERAL COMMUNICATIONS COMMISSION
Washington, D.C. 20554

In the matter of
Dismissal of six Petitions
for Rulemaking in the
Amateur Radio Service
RM-1455, RM-1536,
RM-1703, RM-2080,
RM-2797, RM-2907

ORDER

Adopted: August 24, 1977
Released: August 26, 1977

1. The Commission, by its Chief, Safety and Specia! Radio Services Bureau, acting under delegated authotity, has under consideration the six petitions for rulemaking listed above, each of which was stbraited in accordance with the Administrative Procedure Act, 5 USC $553(\mathrm{e})$, and Section 1.401 of the Commission's Rules. Tha petitions we are considering each request Certain changes in the Commission's rules or policies governing the assignment of station callsigns in the Amateur Radio Service. Pesitioners' spacific requests are as follows:
a. RM-1455. Mr. Wayrs Green reques: amendmem of Section 97.53 of the Rules to permit a licensee moving from one callsign area to another to obtain a "counterpart" callsign upon modification of his station license. (A "counterpart" callsign is a callsign with a suffix identical to the suffix of a callsign held in another callsign area.)
b. AM-1536. The American Radio Relay League, Incotporated (ARRL), also requests that provisions be made in the rules for the issuance of "counterpart" callsigns.
c. RM- 1703 . Mr. Thomas V. Apper asks for revision of Sectior. 97.51 of the Rues to permit the assignment of a specific unassigned callsign to the widicw. son, or daughter of a deceessed former holder of that specific callsign.
d. RM-2080. Wr, Chester L. Smith. Mr. Joseph Santangeio, Mr. Charles A. Walbridge, and Mr. Donald A. Freeland want the Commission to amend its rules to permit the issuance of callsigns containing a special indicator designating the operator license classification of the station licensee.
e. RM-2797. Mr. Cliff Ryan requests that the Commission issue stetion callsigns with a special desig. nator to indicate the stete in which the station is lecated.
f. RM-2907. Mr. Robert E. Babb requests the ruies $b=$ amanded to permit the issuance of so-called "ane lerter" callsigns in the Amateur Ser. vice. (A "one letter" cellsign is a callsign consisting of one letter, fol. lowed by one number, fallowed by one letter.)
2. We have fully and carefully analyzed petitioners' requests and have concluded that petitioners' proposals have been and are being considered in connection with other rulemaking proceedings. With respect to each of these setitions, we note that in Docket 21135, Notice of Proposed Rule makirg released March 11. 1977, 42 Fed. Reg. 15438 (1977), the Commission proposed to simplify its amateur station callsign regulations by replacing the existing complex rules with a very simple genaral rule stating that ail callsigns shall be assigned by the Commission on a systematic basis. The Commission's proposals in Docket 21135 would, if adopted, preclude granting any of the petitions under consideration, each of which requests the issuance of spacial format, non-systematically assigned callsigns. In connection with RM-1703, we would also note that the Commission explicitly considered the ouestion of "in memoriam" callsigns in its First Report and O-der in Docket 20092. FCC 76.348 , released April 22, 1976. In that Report and Order, the Commission eliminated the availability of "in memoriam" callsigns. (Such calisigns had previously been available to qualified amateur clubs and organizations.: Finally. we would observe that the suggestions contained in RM-2080 were considered, and rejected, in Docket 15928, Report and Order adopted August 24, 1967, FCC 67.978.
3. From the foregoing, it is clear that the factors on which petitioners' proposals are basect have been and are being fully considered by the Commission in connection with other rulemaking proceedings. Further, pet tioners have not advanced ary new or novel arguments warranting additional consideration.
4. Accordingly, the Commission ORDERS, by is Chief, Sefety, and Special Radio Services Bureau, acting under authority delegated to him oy Section 0.331 of the Commission's Rules, that RM-1455. RM-1536. RM-1703. RM-2080. RM-2797. and RM-2907 ARE DISMISSED.

Charles A. Higginbotham Chief, Safety and Special Radio Services Bureats

Oscar Orbits

Ascar $60 . \mathrm{hin}$ al information					Oxcar 70 :bital Information			
Orbit		$\begin{aligned} & \text { Daxe } \\ & \text { (Now) } \end{aligned}$	$\begin{aligned} & \text { Tine } \\ & (G B T) \end{aligned}$	Lompitade of Eq. Crossing ${ }^{*}$ w	Grbut	Date (Novi)	Time iG[AT)	Langhure ${ }^{1} \mathrm{Eq}$. Crossing 7
NA	$230713 T N$	1	0147:45	912	135474	,	010939	20.0
NA	23083 BTN	2	0047.42	762	135608 X	2	0154:56	836
N	23095	3	0142.38	89.9	13572 A	3	0054:17	685
NA.	23103 BTF	4	0042.34	749	13585. ${ }^{\text {B }}$	4	0148:34	82.
N	23121	5	0137.39	88.7	13597 A	5	0047:55	66.9
NA	23133 BTN	6	003725	73.7	13610 B	6	0142:12	80.5
N	23146	7	0132:21	87.5	13622 A	7	0041:33	65.3
NA.	23158 BTN	8	0032:17	72.5	13635 B	8	0135:50	78.9
NA	23171 BTN	9	0127:12	86.2	13647 AX	9	0035:10	63.8
N	23183	10	0027:08	71.2	13660 в	10	0129:28	77.3
NA	23196 BTN	11	0122:04	85.0	13672 A	11	0028:48	62.2
N	23208	12	0022:00	70.0	13685 晶	12	$0123: 05$	75.8
NA	23221 BTN	13	0116:56	83.7	13697 A	13	0022:26	60.6
N	23233	14	0016:51	68.7	1371080	14	0116.43	74.2
NA	23246 BTN	15	0111.47	82.5	13722 A	15	0016:04	59.1
NA	23258 BTN	10	0011:43	675	13735 9 \times	16	$0110: 21$	72.6
N	23271	47	0166:39	81.2	13747 A	17	0000:41	E75
NA	23233 日in	8	0006:35	66.2	13760 3	18	0163:59	711
N	23296	19	010: 30	80.3	13772 A	19	0006.19	559
NA	23308 3TN	20	000i:28	65.0	13785 E	20	0057:36	695
N	23321	21	0056:22	78.7	13798 A	21	0151:54	831
NA	23534 BTN	22	015i:18	92**-	13810 B	22	0051:14	679
NA	23346 BTN	23	0051.13	775	13823 AX	23	0145:31	81.5
N	23359	24	0145.69	91.3	13835 B	24	0044.52	65.4
NA.	23371 BTN	25	0046:05	76.3	13848 A	25	0139:09	79.9
N	23384	26	0149.01	90.0	13860 B	26	0038:30	64.8
NA	23396 BTN	27	0040:57	75.0	13873 A	27	0132,4. ${ }^{\text {- }}$	78.4
H	23409	28	0135:52	88.8	13885 BC	28	0032:07	63.2
NA	23421 BTN	29	0035:48	73.8	13898 A	29	0126:25	76.8
NA	28434 BTN	30	0130:44	87.5	13910 BK	30	0025:45	61.7

The listed data tells you the time and place OSCAFY crosses the equator in an ascending orbit for the first time each day. To calculate successive orbits, make a list of the first orbit number and the next twelve orbits for that day. List the time of the first orbit. Each successive orbit is 115 minutes later (two hours less five minutesl. The chart gives the longitude of the first crossing. Add 29° for each succeeding orbit. When OSCAR is ascending on the other side of the world, it will descend over you. To find the equatorial descending iongitude, subtract 166 degrees from the ascending longitude. To find the time it passes the north pole, add 29 minutes to the time it passes the equator. You should be able to hear OSCAR when it is within 45 degrees of you. The easiest way to do this is to take a globe and draw a circle with a radius of 2480 miles 14000 kilometers) from the home QTH. If it passes right overhead, you should be able to hear it for about 24 minutes total. OSCAR will pass an imaginary line drawn from San Francisco to Norfolk about 12 minutes after passing the equator. Add about a minute for each 200 miles that you live north of this line. If OSCAR passes 15 degrees from you, add another minute; at 30 degrees, three minutes; at 45 degrees, ten minutes.

> OSCAR 6: Input $145.85-145.95 \mathrm{MHz}$; Output $145.90+46.00 \mathrm{MHz}$; Output $29.45 \cdot 29.55 \mathrm{MHz}$; Telemetry beacon at 29.45 MHz .
> OSCAR 7 Mode A: Input $29.40-29.50 \mathrm{MHz}$.
> Mode B: Inpu: 432. 125-432.175 MHz; Output $145.925-145.975 \mathrm{MHz}$.

Orbits designated " X " are closed to general use. "ED" are for educational use. "BTN" orbits contain news bulletins. " Q " orbits have a ten Watt erp limit. " L " indicates link orbit. " N " or " S " indicates that Oscar 6 is available on/y on nor thbound or southbound passes. Satellites are not available to users on "NA" days.

Cheap Ears For OSCAR

-- an effective satellite antenna

Have you been thinking about trying to work through OSCAR 6 or OSCAR 7? How about even just listening to it? You can perform a valuable service to amateur radio, especially now, if all you do is Jisten! The OSCAR beacon frequencies on the downlink provide AMSAT with much valuable data on the satellite's health and well-being, and, at the time of this writing, we have an ailing bird up there. Even though by the time you read this the problem may be cured, it has happened before, and we all can help ourselves and AMSAT by listening to and forwarding the telemetry information to them.

This brings us to the need for a 10 meter antenna for receiving the downlink activities. The antenna described in this article will do a fine job for you for a minimum of cash outlay, and it has a few distinctive advantages over even the full-sized beam
placed outdoors. First, you do all the aiming and rotating electrically and without rotors. Second, it has the advantage of being indoors in the attic. The second point is nice because there will be no weather wear and tear. It's also nice if you live in a neighborhood that objects to large outdoor antennas because of their appearance and their potential for causing TVI, RFI, etc.

This antenna is only a group of dipoles. Many stations use only a simple dipole or folded dipole for OSCAR, and that is where I began. Once I tried that, I began to wonder what I could do to rotate it to allow for azimuth heading changes (a rotor?) and how to account for polarization shifts as OSCAR tumbles. You may find, as I did, that the polarization makes the mechanical rotation a physical beast, if not impossible to control.

About the time 1 discovered that, I had been reading
an article on electronically steered antennas for the military. Between their thoughts for the initial idea and the physical limitations of my attic, I came up with the following indoor antenna that beats everything I've ever tried outdoors, including a 3 element yagi. I'm sure in the latter case it was a matter of unwieldy stcering and not lack of gain.

The antenna is a combination of 4 dipoles, 2 phasing lines, and 3 relays - nothing more. The main reason-it works so well is the almost perfect repeatability of the OSCAR pass for any given longitude equator crossing.

Two of the dipoles lie horizontal, or parallel to the attic floor, are oriented east and west at the ends, and are $1 / 2$ wavelength apart. The other two dipoles are a bit harder to explain. Half of each of them looks like a continuation of the phasing harness running north and south, respectively, on each
end where the phasing lines join the first pair of dipoles. The other half of the second pair of dipoles extends straight up, or vertical to the phasing lines/dipole connecting points, or as close to vertical as your roof allows. Mine slope inward toward the center feedpoint (and each other) at an angle of 30 degrees off vertical. Looking at half of the antenna from the east end of my attic, so you are looking west with your eye at floor level, gives you Fig. 1. You are looking at the south half of the array, and the backward " L " is one dipole. The box represents relay 2 , and the circle is the other haif of the south end pair of dipoles. It extends straight out of the page, half toward you, and half out of the back of the page away from you. Fig. 2 is the view of the north half of the array, viewed from the same place (east of the antenna, looking west, at floor level). The dotted lines in both figures are the vertical portion of the dipoles, which thad to slant toward each other because of my roofline.

Fig. 3 describes how the relays are wired to the antenna to allow changes in pattern (or, in other words, steering). To describe which antenna goes where electrically on the relays, I use the following terminology. The dipoles that lie horizontal and parallel to the floor I call north A and south A. The dipoles that have half of themselves vertical or perpendicular to the floor (or slanted as your roof allows) are north B and south B.

I haven't gone into just what pattern results from what, but I can tell you what the relays are doing as far as the antenna feed. Relay 1 lets

Fig. 1. Looking into the page, you are looking west.

Fig. 2. Looking into the page, you are looking west.

Fig. 3. Allow for strip and tin on all ends of twinlead, i.e., short at outer ends of dipoles, connections to relays, etc.
you feed the north end pair 180 degrees out of phase from the south end. Relay 2 lets you change the feed phase 180 degrees on south B. Relay 3 lets you change the feed phase 180 degrees on north B. You antenna engincers can drop me a line on just what antenna patterns are supposed to be occurring. I seem to be getting more than the circle of coverage would indicate I should, allowing complete passes of beacon coverage. The beacon is the best indicator, since it does not rely on the other station properly aiming his 2 meter antenna.

Speaking of the circle of coverage you have all seen on maps used for OSCAR tracking, mine now has a slightly different look. It is a grid with small circles at the intersections as shown in part in Fig. 4. The numbers represent the best antenna switch position for the satellite when it is over that map point. After a few runs, and if you determine where the satellite should be by using a Satellabe
Switch position
0
1
2
3
4
5
6
7
or equal device, you can find the satellite and form your own chart. You can immediately see there are more than three numbers, representing more than the three individual relays. Fig. 5 shows how 1 have mine wired to have the following relay combinations: none, 1 only, 2 only, 3 only, 1 and 2, 1 and 3,2 and 3, and all (energized).

Since I had automated control in mind from the beginning, I wired my relays and switch as in Fig. 6. By using a $B C D$ output decimal display switch, you can choose any of the positions 0 to 7 for any relay combination. Once you learn what position you want and where and when, the BCD switch can become a tape input that is stepped with time during the pass of OSCAR.

I did say automated, didn't I? Well, the tape was good, but the latest adventure seems to be the greatest of all ways! By hooking a 7490 encoder to the 7445 inputs instead of the BCD switch or tape, and driving the 7490

> Relays energized
> none
> relay 1
> relay 2
> relay 3
> relays 1 and 2
> relays 1 and 3
> relays 2 and 3
> all relays
clock input with a variable square wave from a poî controlled VCO (LM 566, etc.), you have much what the military has for a steered antenna for radar, which scans the horizontal plane for targets!

So far I have been limited by the switch speed of the relays in my system, and weather (no heat in attic) has prevented their change to a diode steering scheme. Now come spring . . hmmm? Since the antenna never handles transmitter type power levels, diodes should be a cinch. If the ideal sampling rate can befound, the antenna will be looking where it should for a long enough time to reproduce enough segments of

Fig. 4.
good audio to sound like it is not switching at all. I believe this to be a rate well above the audio frequencies I can use on the relays, limited only by the ICs (20 MHz ?), the diodes, and the other components. Someday 1 may be able to reduce the total feedline to the attic to just that - the coaxial feedline, running rf power filtered for the switch rate down, and all the switching up.

My first idea was to tie 8 op amps to the agc line of the receiver via some gates to gate them on with the sample switch. Then I would use a voting system to return to the highest agc reading on a sample for .1 second and go back and hold for .9 seconds basis (or $1 / \mathrm{sec}$ sampling). If the agc were audio derived and a noise blanker was used, this may still be the best bet. At the very least, this whole thing offers some really nice possibilities. You could use "chain gang" methods of

Fig. 5.
Fig. 6.

7490 connections as blocked out in Fig. 7.

The vco runs the 7490 (B) at antenna switch rate. For the 1 out of 10 sample period, 7490 (C) divides the antenna rate by 10 and only enables the gate ahead of 7490 (A) during 1 of 10 periods ($1 / 10$ of a totai sample to sample period). Position " 8 " of 7490 (A) and 7445 (A) can be used to do the settiing and voting time (half enable a gate, etc.); position " 9 " would then switch the antenna to that best antenna position decided on in the voting process. A 9 sample period's length of time from 7490 (C) and 7445 (B) later [for example, 7445 (B) positions " 0 " and " 2 " through " 9 " \mid, the process would repeat by 7445 (B) returning to " 1 " and gating on gate (A). 1 have tried to block diagram only one of several possibilities. Let your imagination be your guide, as the real intent of this articie was the antenna itself.

The antenna (dipoles and
harness) is made of inexpensive TV receiver type 300 Ohm twinlead. Since all four dipoles are hooked up all the time (one configuration or another), the north pair in parallel represent about a 150 Ohm feedpoint. The same holds for the south pair. By using a $1 / 4$ wavelength harness from relay 1 to relay 2 common poles and relay 1 to relay 3 common poles, the feed looking into each harness from the relay 1 end is about 300 Ohms. When the harnesses are put in parallel by relay 1 , the feedline input point looks like about 150 Ohms. Even though it is a mismatch, I attached a 75 Ohm unbalanced (coax) to 300 Ohm balanced balun to this feedpoint with no adverse results. This allows me to use the 750 hm RG-59 coaxial cable down the 30 odd feet to the basement and the receiver. I probably make up most of the balun loss, and then some, by running a pretty hot VHF Engineering

Fig. 7. Voting system.
preamp ahead of the re- be appreciated, and any ceiver.

As stated before, any ideas.
on how it works would really
questions - just SASE. Happy OSCAR times to you. \quad.

The NEW NYE

"Matchmaker!" VIKING MB II

Antenna Impedance-matching Network assures maximum perfectly matched power to your antenna!

Model MB II \$285
(with Balun) $\$ 315$

MB II provides:
\star Constant SWR monitoring. * Precision tuning of final amp. * Harmonic suppression.

* Receiver input impedance-matching. *Maximum power transfer to antenna. * Continuous frequency coverage 1.6 to 30 MHz . * Precision tuning of any wire $1 / 8$ wavelength or longer, with SWR of $1: 1$.

MB II features:

* Finest quality, made-in-USA components. Large, precision, easy-to-read dials with 360° readout. *Optional 3000 watt Balun for twin lead antennas.

Available at leading dealers throughout the U.S.A.
WM. M. NYE COMPANY, INC.
1614 - 130th Avenue N.E., Bellevue, WA 98005 * (206) 454-4524

All band operation ($160-10$ meters) with any random length of wire. 200 watt output power capa-bility-will work with virtually any transceiver. Ideal for portable or home operation. Great for apartments and hotel rooms-simply run a wire inside, out a window, or anyplace available. Toroid inductor for small size: $4-1 / 4^{\prime \prime} \times 2-3 / 8^{\prime \prime}$ X 3." Built-in neon tune-up indicator. SO-239 connector. Attractive bronze finished enclosure.

only $\$ 29.95$

sst t-2 ULTRA TUNER

Tunes out SWR on any coax fed antenna as well as random wires. Works great on all bands ($160-10$ meters) with any transceiver running up to 200 watts power output.
Increases usable bandwidth of any antenna. Tunes out SWR on mobile whips from inside your car.
Uses toroid inductor and specially made capacitors for small size: $51 / 4$ " $\times 21 / 4$ " $\times 21 / 2$." Rugged, yet compact. Attractive bronze finished enclosure. SO- 239 coax connectors are used for transmitter input and coax fed antennas. Convenient binding posts are provided for random wire and ground connections.

only \$49.95

sst t-3 IMPEDANCE TRANSFORMER

Matches 52 ohm coax to the lower impedance of a mobile whip or vertical. 12 position switch with taps spread between 3 and 52 ohms. Broadband from $1-30 \mathrm{MHz}$. Will work with virtually any transceiver - 300 watt output power capability. SO-239 connectors. Toroid inductor for small size: $2-3 / 4^{\prime \prime} \times 2^{\prime \prime} \times 2-1 / 4$." Attractive bronze finish. $^{\prime}$.

only $\$ 19.95$

All SST products are guaranteed for 1 year. In addition, they may be returned within 10 days for a full refund (less shipping) if you
you are not satisfied for any reason. Please add $\$ 2$ for shipping and handling. Calif. residents, please add sales tax. COD orders OK by phone.

Track OSCAR With Your SR-52

-- requires the PC 100 option

Art Burke W6UIX 4011 College Avenue San Diego CA 92115

The program listed in Table 1 will do the following for you, while you QSO, have breakfast, mow the lawn, go shopping, etc.: (1) calculate the position of OSCAR 6 or 7 at the time interyals you select; (2) determine whether OSCAR is above the horizon; (3) print out the time (local or GMT) to the minute, azimuth (bearing), and elevation angle to the nearest degree only when OSCAR is above the horizon; (4) do the above for all the passes (northbound
and southbound) for an entire day (longer, if desired); and, finally, (5) do this wherever you are in the world.

Item 5 is especially important for those hams operating near the equator or in the Southern Hemisphere. The usual formulas give erroneous azimuth pointing angles when OSCAR is south of the equator. Formula 3 (see below) corrects for this condition. Additional features are that your QTH is stored in registers 98 and 99 (unaffected by "clear memories"), and all OSCAR orbit data is stored in the upper data registers (15-19), so the calculator can be used for
other problems without disturbing the OSCAR data.

Let's examine item 5 in more detail. Fig. I shows the actual OSCAR track (solid line) for the example given later where OSCAR crosses the equator northbound at 78.1° West, and the apparent track in the Southern Hemisphere (dotted line) of the track for the preceding orbit which results in the 78.1° crossing. The usual formulas (which are good only in the Northern Hemisphere) will make OSCAR apparently change course as soon as it crosses the equator. Thus, instead of continuing in a southwesterly direction after crossing the equator -at

Fig. 1. OSCAR paths, actual and apparent, on the Earth.
$243.7^{\circ} \mathrm{W}$., OSCAR apparently abruptly turns southeasterly, as shown by the dotted line, and ultimately crosses the equator in a northeasterly direction at $78.1^{\circ} \mathrm{W}$., and then abruptly turns and proceeds in the correct northwesterly direction. Of course, OSCAR doesn't really do these acrobatics, but formulas 1 and 2 , as usually given, ${ }^{1}$ which calculate the latitude and longitude of OSCAR at the selected time intervals, give these apparent positions. And, since these positions are used in conjunction with our own positions on Earth (latitude and longitude of our QTH) to calculate the direction fo point our antenna at OSCAR, we will be wrong!

Well, if this is really so, why haven't we hams in the United States noticed this before? Why do the formulas seem to work okay for us? The answer is that we are so far from the equator, and our antennas have broad enough beamwidths . (approximately 40° wide at the " 3 dB down" points for a so-called 13 dB beam), that the apparent "dogleg" in the path is entirely contained within our beam coverage and goes unnoticed. I have shown a 40° beam pointed from Miami toward the $78.1^{\circ} \mathrm{W}$. crossing in Fig. 1. Notice how it encompasses both the true and apparent paths of OSCAR within the "OSCAR horizon " of Miami, shown as the dotted arc centered on Miami. And, of course, the effece is diminished as we are even further north, because OSCAR is in range below the equator for a shorter distance (or not at all), and the antenna beam covers a large area below the equator.

Now let's take a ham in Quito, Equador, whose QTH is at $0.2^{\circ} \mathrm{S}$. latitude and 78.5° W. longitude. He is really in trouble if he uses formulas 1 and 2 . His calculator will tell him to point his antenna in a southwesterly direction to
pick up the approaching OSCAR, instead of the correct southeasterly direction. Although his antenna may be 40° wide, it is not wide enough to include the direction of OSCAR, as shown by Fig. 1.

In even worse shape would be a ham in New Zealand, for example. The apparent path of OSCAR is south of him, heading east, when in reality it is clear around the world below South Africa.

The part of equation 2 that causes this trouble is the first portion in the brackets:
[INV $\cos \left(\cos \frac{360 \mathrm{~s}}{\mathrm{P}}\left(\cos L_{-s}\right)\right.$]
When OSCAR is in the Northern Hemisphere, but approaching the equator, it is a trifle less than $1 / 2 \mathrm{P}$, since it is the time since OSCAR crossed the equator going north, and P is the time of the full orbit. Thus $360 t / P$ will be less than 180 (let's say 176.9 , for example). The cosine of 176.9° is -.99854 . L_{s}, the latitude of OSCAR from equation 1 , is about 3°; its cosine is .99863 . The result is the inverse cosine of -.99991 or 179.2°. Now, let the OSCAR go an equal distance past the equator so that $360 \mathrm{t} / \mathrm{P}$ is 183.1°. The calculator computes the cosine as -99854 (the same as for 176.9); the latitude is now about $3^{\circ} \mathrm{S}$. or -3°, whose cosine is .99863 (the same as for 3°). The result is that the calculator give you the same inverse cosine of $-.99991=$ 179.2° as before. After all, how can the calculator know that you want an answer greater than 180° ? Thus, the OSCAR seems to be backtracking in an easterly direction as it heads south, and gives the apparent track as shown in Fig. 1.

The answer to this problem is simple: If the latitude of OSCAR is positive (north of equator), use the equation as is; if the latitude is negative, subtract the angle obtained from the bracket from 360° (e.g., $360-179.2=$ 180.8), and use that value of longitude in the subsequent
calculations. (In the program listed in Table 1, I have done the equivalent by testing the sign of the sine of L_{s} to save program steps.)

For those hams with an interest in how and why things work (most of us, I think), here are the formulas used and a brief explanation of their place in the program. 1 and 2 are adapled from reference 1 ; the other expressions are from reference 2.

```
1. \(L_{s}=I N V \sin \left(\sin a \sin \frac{360 t}{P}\right.\),
2. \(\lambda_{\mathrm{S}}=\left[\right.\) INV \(\left.\cos \left(\cos \frac{360 t}{\mathrm{P}} / \cos \mathrm{L}_{\mathrm{s}}\right)\right]+\)
    \(\lambda_{x}+t(15)\)
3. If \(\sin \mathrm{L}_{s}\) is positive.
    \(\lambda_{\mathrm{S}}\) is as given by 2 .
    If \(\sin \mathrm{L}_{s}\) is not positive.
    \(\lambda_{5}=360-[]+\lambda_{x}+1(15)\)
4. \(y=\lambda_{5}-\lambda_{q}\)
5. \(c=I N V \cos \left(\sin L_{s} \sin L_{q}+\right.\)
    \(\left.\cos \mathrm{L}_{5} \cos \mathrm{~L}_{\mathrm{q}} \cos \mathrm{v}\right)\)
    6. \(\mathrm{B}=\mathrm{INV} \cos \left[i \sin \mathrm{~L}_{5}\right.\).
    \(\left.\left.\sin \mathrm{L}_{\mathrm{q}} \cos \mathrm{c}\right) /\left(\cos \mathrm{L}_{\mathrm{q}} \sin \mathrm{c}\right)\right]\)
    7. \(1 i \sin v\) is positive.
        \(B=360-\overline{3}\)
        If \(\sin v\) is not positive.
        \(\mathrm{B}=\beta\)
8. \(E L=I N V \tan \|(\cos c\)
        \(\left.\frac{R}{R+h} / / \sin c\right]\)
```

where (all degrees are in decimal form, e.g., 24.1°):

L_{5} is the latitude of OSCAR in degrees - positive if north of equator, negative if south;
a is the inclination of OSCAR's orbit in degrees counterclockwise from east; t is the time in decimal hours from T_{X};
T_{X} is the time of a northbound equatorial crossing by OSCAR, in hours and minutes (GMT or local);
P is the period of the orbit in decimal hours;
λ_{5} is the longitude of OSCAR in degrees west from Greenwich, England;
λ_{x} is the longitude of the northbound equatorial crossing (at T_{X}) in degrees west;
λ_{q} is the longitude of the QTH in degrees west;
L_{Q} is the latitude of the QTH in degrees - positive if north of the equator, negative if south;
B is the azimuth (bearing) to OSCAR from the QTH in degrees clock wise from north;

EL is the elevation angle
to OSCAR from the QTH in degrees, from the horizontal upwards;
$R /(R+h)$ is the ratio of the Earth's radius to the sum of Earth radius and orbit height.

Program steps 000 to 009 initialize the program, fix the decimal point to four places (necessary for accurate time displays later), print the entered time, T_{X}, convert T_{X} into decimal hours, store it in register 11, and halt, ready for the next entry. When λ_{x} is entered on the keyboard and RUN is pressed, steps 010 to 017 store λ_{X} in register 14, print it, and put a 0 in register 13. Steps 018 to 138 solve equation 1 and store $\sin L_{s}$ in register 63. Steps 039 to 080 solve expressions 2, 3, and 4. Steps 081 to 157 solve 6 and 8 . Steps 158 and 159 test the elevation angle and, if negative, skip to step 214, after which Δt (your selected orbital time interval) is added to register 13, and the program repeats, beginning with

Fig. 2. Printout of 36 hours of $\operatorname{OSCAR} 7$.

LBL	00046	INV	05622	8	11209	$=$	16895
A	00111	sin	05732	1	11365	INV	16895
11x	00257	cos	05933	RCL	11443	D.MS	17037
4	100304	STO	05942		11509	fix	17157
prts	00498	6	06006	8	11508	2	17202
D.MS	010537	4	06104	cos	11733	-	17375
STO	doe 42)	06254		11895	2	17402
	00701	INV	06322	1/x	11920	4	17504
HIT	00801	cos	06433	7	12065		17695
HLT	00981	$+$	06585		12153	1f pos	17780
STO	01042	RCL	06643		$12{ }^{12} 43$	$\underline{l o g}$	17828
1	01101	1	06701		12306		17985
4	01204	3	06805	3	12403	2	18002
prt	01398	x	06965		12575	4	18104
	01400	1	07001	RCL	12643	$=$	18295
STO	01542	5	07105		12709	LBL	18346
1	01601	$+$	07285		12808	10 S	18428
	017010	RCL	07343	Sın	12932	prt	18598
RCL	01643		07401		13065	RCL	18643
1	01901	4	07504	RCL	13143		18701
3	02003	-	07675		13206	2	18802
	02165	RCL	07743	7	13307	S1n	18932
RCL	02243		07809		13495	INV	19022
1	02301	9	07909	INV	13522	if pos	19180
5	02405		08095	cos	13633	sin	19232
	02595	STO	09142	870	13742	3	19303
STO	02642	1	08201	6	13806	6	19406
6	02706	2	08302		13905	0	19500
9	02809	cos	08433	RCL	14043	-	19675
sin	02932	I	08565		14106	LBL	19746
T	03065	RCL	08643	7	14207	Sin	19832
RCL	03143	8	08709	-	14375	BCL	19943
1	03201	8	08808	RCL	14443	6	20006
6	03306	\cos	08933	1	14501	5	20105
sin	03432	K	09065	8	14608		20295
	03595	RCL	09143	$=$	14795	f1x	20357
STO	03642	6	09206		14655		20400
	03795	4	093104	BCL	14943	prt	20598
	03808		09485		15006	RCL	20643
11 pos	03980	RCL	09543	8	15108		20706
tan	04034	8	09609		15295	6	20806
3	04103		09708	INV	15322	prt	20998
6	04206	sin	09832	tan	15434	fix	21057
0	04300	I	09965	STO	15542		21104
	04475	BCL	10043	6	15606	LBL	21246
LBL	04546	6	10106	6	15706	Cos	21333
tan	04634	3	10203	1 NV	15822	RCL	21443
	04753		10395	11 pos	15980	1	21501
BCL	04843	\$TO	10442	Cos	16033	7	21607
6	04906	6	10506	RCL	16143	SUM	21744
9	05009	7	10607	1	16201		21801
cos	05133	INV	10722	1	16301		21903
	0.5255	cos	10833	\pm	16485	GTO	22041
RCL	05343	Sin	10932	RCL	16543	0	22100
	05406	STO	11042	1	16601	,	22201
3	0.5503	6	11106	3	16703	8	22308

Table 1. OSCAR SR-52/PC 100A program.
step 018.
However, if the elevation angle tests as not negative, steps 161 to 211 add t to T_{x}, convert the result to hours and minutes, and print. Then they apply expression 7, print azimuth and elevation to the nearest degree, refix the decimal point to 4 places, and go to step 214, where the cycle begins again. Thus, a printout is made only when OSCAR is not below the horizon. Labels sin, cos, tan, and \log are used internally to save program steps.

OK, so much for the sales pitch and the explanations how do we go about using the
program? Simple! Here is a 98. step-by-step procedure:

FIRST - Key in the program listed in Table 1 (don't forget to either reset or GTO 000 before pressing the LRN key). Now, press LRN to put the calculator back into the calculate mode. Record the program on a magnetic card for future use. If you already have the program on a card, enter it in the usual manner.

SECOND - Key in the west longitude of your QTH $\left(\lambda_{q}\right)$ in decimal degrees and STO 99; key in the latitude L_{q} in decimal degrees (if south of the equator, key $+/$ for the minus sign) and STO

THIRD - Key in the following OSCAR orbit data, and store as shown:

```
1.916 STO 19 (P)
0.813 STO 18 [R/(R+h)]
101.7 STO }16\mathrm{ (a)
187.9 STO 15 (360/P)
```

(These values are averaged for OSCARS 6 and 7 and give good results for at least 36 hours of orbit. You can, of course, put more accurate values in if you wish.)

FOURTH - Key in your desired orbital time intervals $\left(\Delta_{t}\right)$ in decimal hours; e.g., if you want 4 minute Δt, key 4 $\div 60=$, and store the result in
register 17 by STO 17. (This will store 0.0666666667 in reg. 17 for this example.)

FIFTH - Set the R-D switch to D (degrees).

This completes setting up the calculator with its permanent data base. Note that, if you have already used the program, then replaced the program with another to work on some ather problem but have not turned off the calculator or otherwise disturbed registers 15 through 19, 98 and 99 , the second through fourth steps can be omitted.

Now let's take an actual example (which can be used by you as a "check" problem), using my QTH (L_{q} $32.75, \lambda_{\mathrm{O}} 117$ are stored in registers 98 and 99), and OSCAR 7, beginning on the evening of July 3, 1977, Pacific Daylight Savings Time. Page 16 of the July, 1977, issue of 73 Magazine lists orbit 12044, A mode, July 4, 0138:05 GMT, 78.1°. This is July 3 at 1838:05, my time. When I enter T_{X}, I can use either GMT (1.38) or PDST (18.38), as I choose. The resulting times will then be in the same time zone. I will choose PDST and enter to the nearest minute in H.M (Hours.Minutes) as follows:

STEP 1 - (optional) Key 703.77.07 PRT to print my Pacific date and indicate OSCAR 7 (07).

STEP 2 - Key 18.38 (T_{x} in H.M).

STEP 3 - Press A the calcullator will stop, showing 18.6333, which is T_{x} in decimal hours, and will print 18.3800 PRT).

STEP 4 - Key $78.1\left(\lambda_{x}\right)$. STEP 5 - Press RUN.
Now you can relax and do other things, as you wish. The calculator-printer has taken over. It will immediately print 78.1000 PRT, thus giving you T_{x} and λ_{x} for reference. It will then print out the time (in H.M), azimuth, and elevation angles in degrees every 4 minutes of orbit time that OSCAR 7 is within the QTH's horizon, throughout the rest of the
night of July 3 and throughout July 4. It takes the calculator about 13 seconds for each Δt, thus the first printout will be about 40 seconds after you pressed RUN, because the satellite is not above the horizon until 18.46. At that time, the azimuth is 99°, and the elevation is 8°. It will take the calculator approximately 70 minutes to finish 24 hours of orbit time, and thus about $1 / 2$ hours to finish the July 4 evening passes. Fig. 2 is an actual PC 100A tape for this example.

OK, you say, that's fine for a west coast ham, because the orbits listed in 73 are usually the first ones that are within range of the west coast. But how about someone on the east coast? It's still simple: Take that orbit for July 4 GMT, and subtract 115 minutes and 28.75° several times from the listed values in 73 until you get the T_{x} and λ_{x} of the first orbit that will be in your range. I
have found that the first northbound orbit must be about 65° or less east of my QTH to be within range; this should be suitable within the 48 states and Hawaii.

Or, for the really lazy (or busy?), just start with the preceding day's first orbit, as listed in 73, and let the calculator crank out about 36 hours of orbital data. This suggestion is probably the easiest for hams in the equatorial and sub-equatorial regions to use, because their usable passes will be either northbound passes, starting from below the equator, or southbound passes.

Well, so far so good, for the fat cats with the printers; now, how about those of you with the bare bones SR-52? Here's how: First, put in the program and data registers, just as indicated earlier, but with 3 simple changes. Change program steps 185 , 205 and 209 from prt (98) to HLT (81). The calculator is used in the same way, except
that paper and pencil are used instead of the automatic printer.

After T_{X} and λ_{X} are entered as above, the calculator will halt and display the first time the satellite is in your range. After writing it down, press RUN, and the calculator will halt with the azimuth displayed. Write it, press RUN, and the calculator will halt with elevation displayed. Write it, press RUN, and a new time will be displayed when the calculator halts, etc., etc. However, remember that each calculation cycle takes about 13 seconds, so that, if the satellite takes 12 minutes to come into range, as in the example above, it will be about 40 seconds before the calculator halts with the first time display, and, after the OSCAR goes beyond your horizon, it will be about 5 minutes before the calculator halts with the next northbound pass in range displayed. It will be much longer than that, after
the last northbound pass, until the first southbound pass comes within range. You may find it more convenient to press HLT, if no display has appeared in 20 seconds after a series of displays. Then, add (use the calculator for this; it won't hurt the program) 115 minutes to the previous T_{X} and 28.75° to the previous λ_{x}, enter these new values for the T_{x} and λ_{x} in the progam, and you thus bypass the time to circle the world. A convenient way to do this is to key in the previous T_{X} (e.g., 18.38), press D.MS, +, RCL 19, =, INV D.MS, and then press A. At the halt, key in the previous λ_{x} (e.g., 78.1), press + , $28.75,=$, and then press RUN.

Well, there it is. Have fun with the program and good hunting on OSCAR.

References

${ }^{1}$ W. Danielson and S. Glick, OST, Oct., 1969.pg. 54.
$2^{2 H P-65}$ program, by Dr. Earl F. Skelton WA3THD, Aug., 1975.

TS-1 MICROMINIATURE ENCODER-DECODER

\square Available in all EIA standard tones $67.0 \mathrm{~Hz}-203.5 \mathrm{~Hz}$
- Microminiature in size, $1.25 \times 2.0 \times .65^{\prime \prime}$ high

\square Hi-pass tone rejection filter on board
\square Powered by 6 - 16 vdc , unregulated, at $3-9 \mathrm{ma}$.
\square Decode sensitivity better than 10 mvRMS , bandwidth, $\pm 2 \mathrm{~Hz}$ max., limited Low distortion adjustable sinewave output
Frequency accuracy, $\pm .25 \mathrm{~Hz}$, frequency stability $\pm .1 \mathrm{~Hz}$
\square Encodes continuously and simultaneously during decode, independent of mike hang-upTotally immune to RF
Wired and tested, complete with
K-1 element
\$59.95
K-1 field replaceable, plug-in, frequency determining elements
$\$ 3.00$ each

Try A T-R For OSCAR 8

-- turnstile over reflector system

David J. Brown W9CGI
RR 5, Box 39
Noblesville IN 46060

T$\cdot R$, in this case, is Turnstile over Reflector antenna, and it could definitely aid your OSCAR performance. Built for three band capability, it will do well for you on the present OSCAR satellites, not to mention the upcoming AMSAT high orbit type machine. If you think using
mechanical tracking rotors for the present OSCARs is tough, the next one is going to be impossible for you. True, it moves more slowly, relative to a position on Earth, but I'm sure we will hear the same, "Where the heck is it?" comments we had about OSCARs 6 and 7.

Referring to Fig. 1, I have only shown the two-band $2 \mathrm{~m} / 10 \mathrm{~m}$ version, because that is all I have had a chance to check out. There is no reason at all why two ten-foot masts

Fig. 1. Vertical mast is $70^{\prime} \times 5^{\prime}$ heavy-wall TV mast (bolt through joint). Cut off lower flare to fit into or onto $C B$ base used.
could not be used in place of the ten- and five-foot versions shown for the vertical mast. An alternative is to build it as shown, and, due to the very small size of the $3 / 4 \mathrm{~m}$ version, it could even be bracketed to the top at a later date.- That is my reason for drawing the unused extra $1 / 4$ wavelength of mast poking out of the top on 2 m .

Construction is entirely with commercially available antenna parts (especially from Hy-Gain 64Bs). The crossed dipoles on the 10 m T-R can be 10 m beam driven elements. Two of these-are used on mine, less the beta matches, and with the elements stretched out to 10 m dimensions. I did this by using some CB antenna aluminum tubing. These tubes
were the same o.d. as the tube/reducers on the original 64 B and fit nicely into the 64B dipole insulators. The old 64 B element o.d. is not quite the same as the i.d. of the new CB tubing, but there are ways around this. You can wrap the smailer element with aluminum foil and then clamp it into the larger element with hose clamps, or go the more complex route 1 went. I added plugs about 2 inches long, that were bored out and tapped on one end to 3/8-24. This exactly matches the threaded stud on a fullsize stainless steel CB whip. I obtained several of these whips, that had been damaged in one way or another, but still had good studs and about 40 inches plus of undamaged whip. If you figure out the average height of a car versus a bumper-mounted CB whip, believe me, there are several whips in this condition around. They are worthless to use on CB, so you can buy them even cheaper than the replacement full-size whips. My CB aluminum tubing came out at 56 inches, so the whips were cut off at 39 inches and screwed into the plugs. The plugs are held in the tubing by $1 / 4-20$ hardware through the tubing and plug.

For the reflectors, I used the $C B$ parts that would normally be the ground plane elements. The largest parts just fit the same insulators, and then are grounded to the

Fig. 2. Mounting.

2 m driven	General	@ f_{o} in Fig. 1.
	234/fo	19.24"
		48.9 cm
2 m reflected	234/fo $+5 \%$	20.2"
		51.32 cm
10 m driven	234/fo	$95.2^{\prime \prime}$
		241.8 cm
10 mr reflected	234/fo $+5 \%$	99.94"

Table 7. Mast CTR to tip of element.

boom by a 1 -inch wide strap, from feed clamp to boom to feed clamp. If you order parts, just use the director clamps instead, and the element will be already grounded.

The $2 m$ T-R is not much different. You can even use a plate and CB whips for the parts cut off above) to make the reflector elements. You only need pieces about 20 inches long. Simple brackets will mount them to the vertical mast.

The driven elements are made to order, used as is, parts from the A147 type CushCraft antennas. They are just the driven elements from those antennas. When I lost the EME array a while back, I saved the parts off the broken 3 yagis. They are 50 Ohm , coaxial-fed dipoles with gamma matches, so it can't be much simpler. Even their mounting method is obvious from their construction.

All that leaves are the matching harnesses. A letter to Hy-Gain produced the figure of 200 Ohms for a feedpoint impedance using the dipole alone - no beta match. The harness of Fig. 3 shows the material and cutting instructions. Use good lugs on the bolted connections, tape well, and use a good quality, clear spray liberally. Since the clear sets up so rapidly, i have found 4 or 5 light coats work better and crack less.

The 2 m harness is even easier, since it uses all coaxial connectors. Measure and solder carefully, and check all the harnesses piece by piece for braid to center shorts, as each piece is completed. Then screw it all together and to the antennas, and tape and spray well. Nothing is more disgusting than to build a
good antenna and have it die a month or two later, so please forgive me for belaboring the tape and spray routines.

Fig. 2 covers mounting possibilities. The array size, weight, and low wind load make it a reasonable candidate for chimney mounts. Just remember this is a last resort spot for antennas. It is the most corrosive, thermally changing, lousy spot available, but if it's all you have, it's all you have. I used the side bracket method, with the lower ground planes about 20 feet off the real ground. It is on a tower that also has two stacked halos for a backup on 6 m and the Hy-Gain 66B6m yagi. up on top. None of the 6 m goodies seems to cause shadows or create any loading effect problems. It all looked the same looking into the feedpoints up and mounted as it did on the ground. The 2 m swr was very good at 1.15:1, and it is not worth messing with to improve. The 10 m must be getting a little pattern distortion, no doubt from the tower; but it had a 1.1:1 on the ground and a 1.25:1 now. It works fine, and I'm not going to push it to get a little more here and there.

This whole story seems terribly short, but then there just was not much to the construction, either. One weekend of an hour here and an hour there, and it was both done and up. The antenna design is not new, but I thought you might like to share some of my construction methods.

Here's one final note of help: When you get it all together, try the following: As the beast gets larger (as you add the 10 m hardware), it pays to have a pipe stuck in

Fig. 3. Feed and phase.
the ground that you can U-bolt it to and work on it. upright. I have a 4 foot pipe stuck 3 feet in the ground in a post hole and filled around with concrete. Level the concrete off with the ground in sympathy for your lawn mower. Don't place it where you can break a leg on it, and you have a utility mast and antenna holder. If you saw the expanded end off of a TV mast (as you will do in making the vertical mast in this article), and make the cut-off piece about 8 inches long, you will end up with a dandy test setup. Keep two 10 -foot TV masts around (up in garage rafters, etc.), and, if you fit them together to make a 20 -foot mast, add the sawed off piece to the unexpanded end of the 20 -foot pair, use the whole business upside down (expanded ends up), and choose your 4 feet of water pipe in the ground with an ID larger than the TV mast (but smaller than the
expanded part), you wind up with a quicky test setup for checking out small antennas at 21 feet off the ground. Even some of the small and lightweight 6 m beams aren't too big to swing up. For larger antennas, two water pipes in the post hole, with the mast pivoted between them (tilt-over tower style), aiso werk well.

Keep me posted on how it all works out for you, preferably when I hear you having fun on OSCAR. I mounted mine in a direction southeast from the tower, due to the tower sides' orientation. The way the legs are on my tower left me the general directions of 0,120 , and 240 degrees, so I chose the 120 degree direction. 1 favor the early evening passes east of me, since I can be home and make more of them. It also does just fine on passes west of me, too, so have no fear of it being deaf off the tower side. See you on OSCAR.

Track OSCAR

In Real Time

-- with your HP-67 calculator

Program Description
H-P E7/97 GALEUS-5TOR

Lser Instructions

In the February (1977) 73, Henson* presented a beautifully-documented minicomputer program for tracking OSCAR. The program described here calculates and displays the same information (except range), and, in addition, runs in real time during a satellite pass. Written in RPN for a Hewlett-Packard HP-67 pocket calculator, it will run on an HP-97 as well. I'm sure that an equivalent program could be written for the TI SR-52, although I have not done so.

After loading the program and data constants, begin by entering reference orbit data. Then step ahead one or more orbits to the one of interest. The calculator will pause to display the orbit number and the longitude of the equatorial crossing, and will halt with the display containing
*Henson WBØJHS, "Computerized Satellite Tracking," 73, February, 1977, p. 72.
the predicted time of the equatorial crossing (with all data needed for a real-time track of the satellite on the selected orbit stored in the proper registers).

When real time (clock time) reaches the time shown in the calculator display, press the "TRACK" button to commence a real-time track. Thereafter, the program will run continuously, calculating beam-aiming data once each minute, and pausing every few seconds to display the current results.

Several data display formats have been programmed and evaluated. Although many tracking parameters can be calculated, the ones finally selected for display are the elapsed time, the beam heading, and the elevation angles. To keep the waiting time between successive displays to no more than a few seconds, these three data items are merged into a single line, which is displayed three times as frequently as each

Fig. 1. Typical merged display.
would be if they were displayed in sequence.

Fig. 1 shows a typical merged display. The elapsed time, in minutes, appears to the left of the first zero. The azimuth heading appears to the left of the decimal point, and the elevation angle is shown to the right of the decimal point. Both angles are in whole degrees, and the decimal point serves only as a separator. The elevation angle will be shown as zero if the satellite is below the horizon.

Approximately thirty seconds of each minute are
used in calculating and formatting new data, and the remaining thirty seconds are devoted to six 5 -second data displays, which are distributed throughout the one minute period. If your calculator runs the program correctly but completes a loop in less than sixty seconds, add one or more PAUSE commands at the end of a display to pad it out to a full minute.

After the program is running correctly, record it on a program card and save the contents of the registers on a second data card.

Program Lisling

Logical Thoughts

 About OSCAR
-- meaningful to computers!

Wm. Denison Y. Rich OAGAD Casilla 751
Arequipa, Peru

Several months ago 1 received a free copy of Ham Radio Horizons and read the article about the OSCAR (Orbital Satellite Carrying Amateur Radio) satellites. ${ }^{1}$ Up to that time, । had heard of OSCAR but supposed I would need a good deal of auxiliary equipment to access the satellites. However, according to the author, my trusty SB-102 should have been able to hear either of the OSCARs. The only problem was when to listen. Since the maximum exposure (during an overhead pass) is a little more then 20 minutes, and there are, at most, four favorable passes per day, random listening is definitely out.

At the time, I recalled that the ARRL was publishing AMSAT-supplied ${ }^{2}$ equator crossings for the OSCARs in daily CW bulletins. A day of poking around in the QRM/N on 20 (why does everyone tune up on 14.080?) netted me a dozen crossings, and, with a dandy desk calculator, I was able to fill in the gaps and make several days of predictions.

Shortly after, I heard OSCAR 7 on one of the passes I had predicted, and I was hooked. I also heard half a dozen or so stations working through the satellite and am now working on a solid state, 2 meter CW rig (you convince your wife you absolutely must have a new $\$ 700$ transceiver, so you can talk to a satellite) and some sort of antenna to go with it.

But, if I can do these predictions on a desk calcu-
lator, why can't I do them on a computer?

At work (oddly enough, a satellite tracking facility of the Smithsonian Astrophysical Observatory), we have a NOVA 1200 minicomputer. ${ }^{3}$ Since this machine is available for some time each day, the next step was to write a program to predict successive OSCAR passes.

Language

Although we have two more efficient languages available, I chose to use BASIC ${ }^{4}$ (DGC Extended BASIC as modified by COl^{5}) for three reasons:

1. BASIC is one of the most easily understood languages available. Its clarity far outweighs any lack of speed, especially for the beginner. In this case, speed is no consideration anyway, be-
cause the actual computation takes only a few milliseconds, with most of the program time spent in controlling the teletypewriter output device.
2. BASIC is widespread. Most school computers, be they in high schools, colleges, junior colleges or even in grade schools, run in BASIC, in addition to other languages. The chances are good that, if you have ever used a computer, you have programmed in BASIC.

Check with your local school board or with the science and math departments in your school system. If the school does have computer facilities, this might make a nice tie-in for a new educational use for OSCAR.
3. Many advertisements for microprocessor/computer systems list BASIC as a ready-to-run language, either supplied or available as an option.

Programming

For any nontrivial program, a flowchart is almost essential and is an easy way to block out the job. The flowchart will usually suggest ways of breaking up one large job into several smaller ones. Fig. 9 shows some commonly used flowchart symbols and their meanings.

In the main chart for this program (Fig. 1 and Fig. 10, lines 1 through 299), each phase of the program is represented by a separate block. Some blocks stand for a single instruction, but most stand for two, three, or more.

Fig. 1 begins with the block RUN and "flows" in an orderly manner to the block END. Some of the blocks (SELECT A SATELLITE) stand for what are called subroutines. A subroutine is a short program which takes care of some special job, like selecting the elements for a particular satellite. Usually, a subroutine is written because the same small job is to be performed several times, and there is no sense in repeating the same "code" over and over.

Fig. 1. Main program flow showing data entry points, computations, output points, and major subroutine calls.

Quite often a stock subroutine can be used in other programs with little or no modification. For example, 1 have already used the "calendar" subroutine (7000) in two other programs.

I like to use subroutines to make the big job smaller and easier. If all the subroutines used in this program were combined into a single program and flowchart, we might need a square meter of paper on which to draw it and, certainly, a tour guide to help us through it.

An "ultimate" main program might even begin at RUN, consist of nothing more than GOSUB statements, and finaliy terminate with an END statement.

To keep things simple:

1. Break up the big job into individual steps.
2. Keep the "main" program and its flowchart in as straight a line as possible.
3. Document your program with explanatory remarks wherever possible. If you decide to make changes in 6 months, you'll be awfully

Fig. 2. Subroutine 8000 , which is used to select either a filed satellite or a new, unfiled satellite.
glad you have these notes.
In BASIC, it is not necessary that line numbers follow sequentially. The program always goes to the next highest line number for execution (unless, of course, it encounters a GOTO, GOSUB, or RETURN statement).

I like to think of the available program area (lines 1 to 9999) as a notebook. Early "pages" are used for the main program, with plenty of blank pages left for later changes or corrections; later pages are used for subroutines, filling the "book" from the back toward the front. If you put everything in the front of the "book," and then have to rewrite some section or insert corrections, you will have a major rewrite job on your hands because of the lack of vacant. line numbers ("pages").

Equator Crossings

The objective of this program is to produce OSCAR equator crossings (time - UT, longitude - W), based on reference orbits (initial conditions) supplied by AMSAT via W1AW.

In the following discussions, no attempt is made to explain, in detail, the workings of BASIC. It is assumed that, if you have access to a computer and BASIC, you also have access to any necessary "how-touse" manuals.

Lines 1 and 2 (Fig. 10) are self-explanatory. Lines 10 through 39 are used to set up. several constants and an array, all of which will be used later by different sections of the program. Lines 40 and 41 are the "TITLE" block of Fig. 1, followed by line 55, which sends us to the "SELECT-SATELLITE" subroutine, beginning at line 8000.

This subroutine (lines 8000 through 8201 and Fig. 2) tells us which satellites are preprogrammed and asks which we want. Lines 8025 and 8030 direct the flow to the appropriate set of elements, each of which is terminated by a GOTO 8200 . Line 8200 announces the chosen satellite, and 8201 contains the RETURN statement, which must end all BASIC subroutines, and

Fig. 3. Subroutine 9000 , which is used to enter the reference day and position for the selected satellite.
which transfers control back to the main program. Lines 8063 and 8083 set the state of a flag, F1, which will be used later to help format the printed output of the program.

If the tests in lines 8025 and 8030 fail, then line 8040 , the next instruction in sequence, sends control to line 8090. These are self-explanatory, except for line 8140 , which converts the westerly drift, entered by the operator, to easterly drift, the form which will be used by the program in its calculations. We will, of course, convert the output back to westerly degrees before printing.

New satellites may be programmed by inserting an appropriate test in the decision chain, starting at line 8025 , and, of course, a block of elements ending with GOTO

Fig. 4. Subroutine 7500, in reality only one line long, but shown here as 4 separate steps in the interest of clarity. This subroutine converts integer hours, minutes, and seconds into decimal parts of a day, and then adds this number to the current day.
8200. One would also change line 8000 . The element block may go any where in the subroutine, provided that the elements end with GOTO 8200.

Now, go back in the main program for a second. Line 70 transfers control to the subroutine at line 9000 (Fig. $3)$.

Lines 9000 to 9040 are self-explanatory. Line 9045 is included because time is only requested to the nearest minute, but, since seconds (Si) are used in the calculations, S 1 must have some value. If, later, you want to

Fig. 5. Subroutine 8300 , which sets up the flag, F1, for later use by the output routine. In the event that the unavailable days are to be suppressed, the day of the week for the reference orbit is entered here.
include seconds as an input variable, the only change needed will be to delete line 9045 and add S1 to the input lines, 9035 and 9040 . S1 is already included in all pertinent calculations.

Once again, line 9053 converts west longitude to east longitude, just as was done back at line 8140.

At line 9065 , we find another subroutine call. Subroutine 7500 (Fig. 4) is a one-liner which turns seconds, minutes, and hours to decimal parts of a day. "Decimal" days are by far the

Fig. 6. Subroutine 7000 , the calendar subroutine which takes care of advancing the month and year, when required. This subroutine also takes into account the possibility that the current year is a leap year and that, therefore, February must have 29 days instead of the usual 28.
simplest way of keeping time in a progam!

After returning via line 7550, we are immediately sent, by line 9070 , to subroutine 7000 (Fig. 6). This is the calendar manager and is perhaps the most complex. subroutine in the program. What does it do?

First, it checks to see if the current day is still inside the current month. If it is, then control is passed right back to the calling program. If not (say we had typed FEB 29), the subroutine checks to see if the current year is a leap year. If this is so, the limit day of February is set to 30 , if not already so set, and the current day is again tested at line 7020 to see if it has become a legal

Fig. 7. Subroutine 9500, which prints headings for each day's passes. These headings will be printed even if the output for a particular day is suppressed.
day by virtue of the limit change. It is the accounting for leap year that makes this subroutine so complex. Without leap years, the only branch would be the first. one, at line 7020.

If the current day still fails the test at line 7020 , then we must move on to the next month, so lines 7038 through 7060 are executed, and a return is again made via line 7020. This last test is cheap insurance against having created an illegal day.

If line 7045 finds month (M) value greater than 12, it increments year (Y) and returns via the legal day test.

Note that, if the test " $L(2)=30$?" is not included at line 7085, one logical course of action, after finding that the month is February, would be to set the limit to 30 , then reenter at line 7020. This is okay until the day gets to be February 31 or greater, at which point the program has no way of breaking the loop and performs: (LEGAL DAY?) - (MONTH IS FEB?) - $($ SET LIMLT $=30)-$ (LEGAL DAY?) - (MONTH IS FEB?) - etc., - etc. ..., until the cows come home. Flowcharts are a great help in avoiding this sort of bug.

Now let's go back to line 9073 - that is, just following the subroutine call to the calendar manager. Remember, we are entering initial conditions for a prediction run. Only one more. parameter needs to be checked - the flag, F1. This is done at line 9073. Subroutine .8300 (Fig. 5) is called, if necessary, and asks if you want all crossings or only those available for use. So far, only OSCAR 6 has a serious restriction, but, since any satellite might have one, the option is included. Return is made to the calling subroutine and then to the main program via line 9075.

Lines 80 through 130 of the main program are selfexplanatory. Line 140 sends us to subroutine 9500 (Fig. 7), which will print the satellite number and date for each
new day predicted.
The actual calculation loop, lines 150 through 195, is executed ($13 \times \mathrm{I}$)/S times. See lines 80 through 100 for 1 and S. Subroutine 7600 (Fig. 8) is the output routine and immediately calls the calendar (7000). Subroutine 7600 then checks to see if this is a new day (line 7612), and, if it is, calls for a heading to be printed.

The decimal day is converted to a day, hour, and minute (lines 7682 through 7691). The orbit number and time are printed (lines 7693 and 7696), and the longitude is converted to west and printed by line 7698.

The odd decision chain, at lines 7625 through 7635, tests the value of F1, which was set up back at lines 8063 and 8083. If F1 is nonzero, only the "available days" are printed. More available days could be added to the chain, if needed.

Note that, sjnce the "new day" test (line 7612) is done before the test of F1 (line 7620), a heading will be printed for every new day, even though the passes for that day are suppressed. The heading doesn't take much paper and lets you see at a glance what the program is up to.

Fig. 11 is a sample run. All human typing is underlined. Computer output is not.

Simplicity or Flexibility

A program such as this requires a lot of work to write, especially when compared with the actual amount of calculation it does. But it takes me several hours to prepare 30 days of predictions, not counting my penchant for arithmetic errors, while the machine can compute and print the same number of predictions in about 20 minutes, with no errors, provided it is programmed properly. Thirty days comes to about 400 crossings.

The amount of work required to prepare this and, perhaps, most programs can
be justified only if an equivalent or greater amount of time can be saved later on. It is for this reason that the program was made flexible. A simpler program would not have options like the choice of satellites preprogrammed, entry of trial satellites, and the like. For a little extra work now, I have a program which allows me to file a new satellite in a matter of minutes or to run a trial on a new satellite at the cost of entering its period and westward drift. I can easily suppress output of any day's passes, and the days to be suppressed can be changed by changing only one or two lines.

When OSCARs 8,9 , and 10 come along, this program will be running within minutes of my receipt of the necessary data.

Speaking of data, you may get it from a magazine article, as I did, or you could compute it, if you know any two reference orbits, ORB1 and ORB2. It helps somewhat if the two known orbits are a few days apart.
Period $=P=$ (TIME2 TIME1)/(ORB2 - ORB1)
Drift $(W)=T=($ LAT2 . LAT1)/(ORB2-ORB1),
where TIME and LAT are the

Fig. 8. Subroutine 7600, which causes a heading to be output, if necessary, and then decides which, if any, of the crossings will be printed.
initial conditions for two crossings, and ORB1 and ORE2 are the orbit numbers.

One further improvement might be to add a longitude. test to the output routine, such that only passes which will be "visible" from your
station will be printed. This woald drastically cut the total running time.

Parting Thoughts

Keep track of the residuals, or the differences in time and longitude, between

Fig. 9. Some of the symbols used in flowcharts and some of their possible meanings.

```
0001 REN MAIN PROGRAH: COMPUTES AUD PRIMTS
GU#C REM EGUATOR CROSSINGS FOR OSGAR SATELLTTES
```



```
g@15 DATA [1],D$[3],A$T8]
ONIT LET U$=F'SUNMONTUENEDTHUFRISAT
GO18 LET MS=` JANFFBHARAPRMAYJUNJULAUGSEPOCTNDVDEC*
O2OO FOR I=1TO 12
0025 READ
0058 LET AS=*8 JUME*
0039 LETVY=2.13
#OLG PRINT- EGUA TOR CROSSIHGS: VERSION*:U
CO4I PRINT - OF ';A5:" 1977 [GOI-XBASICT-
8055 GOSUB 890日 
M&8R PRINT - RON MANY DAYS OF PREDICIIONS*
0085 INPUT T
0085 INPUT I 
SG95 REM ORBITAL INGREHENT: }1=EACK, 2=EVERY OTHER, TTC
O1GO LET S=1
0:OS REM CONUERT P FROM MINUTES TO BAYS
0118 LFT P=P/60/24
0130 PRINT * OREIT
TMME(UT) LOHGITUDE-WEST
014% cosub 9500
8150}FOR J=0T0 15TEP
0155 LET W=゙+S
&168 LET Z=Z+T*S 
E/65 LET Z={Z/360
0185 G0543 76月9
0195 NEXT J
0299 END
7a@g REM $$* SUBROUTIHEf CALENDAR
70@0 REM $$$ SUBROUTIBE# CALEE
702g IF D = LLMM
```



```
7035 IF Y/4-INT(Y/4)=9THEN GOTO 7879
7038 LET D=D-L[M]+1
704% LETM=H+1
7055 IFM=*I2 THEN GOIO TERE
105% LEI Y=Y+
7055 GOT0 = -10
7055 GOTO 7620
7070 IF M=2 THEN GOTO 7885
7975 LET L[E ]=29
7985 GF LIV38
7985 IF L[2 1-30 THEN GOTO 7H38
7090 LET LIR I=3@
7090 RETISRN
7560 LET D=DI +(HI+(NI +SI/5E)/60)/2.4
7550 RETURN
7G0e gOSIIB 7ama
7612 IF INT (D)=DI THEN GOTO 762%
7615 LET DI =IMT(D)
7616 GOSUB 95ET
7617 LET U=U+1
lol
7619 LETU=1
7619 LET U=1
7&3 LET U@=3* い-2
7623 LET U0=3* U-2
```



```
7625 IF U$[UF,U1)="MON'MHEN THEN GOTO 768%
7630 IF US[UP,U1] ]=" THU"THEN GOTO 7682
763S IF US (UQ,U1 1=" SAT THEN GOTO 7682
7680 GOT0 7699
7682 LET DL = INT(D)
7586 LET HI=(D-DI)m& 4
7690 LEJ WI=INT(CHI-INT(HI))* 60+.5)
7es LET HI=INT(M!)
7693 PRINTW.
Gend REM MAIN PROGRAH：COMPUTES AUD PRIMTS
GEFD REM EOUATOR CROSSINGS FOR OSGAR SATELLITES
```



```
9015 DATA \(32,29,32,31,32,31,32,32,31,32,31,32\)
ROI 8 LET MS＝＝JANFFBHARAPRMAYJUNJULAUGSEPOCTNDVDEC＊
0020 FOR I＝ 1 TO 12
gozen EXT I
0058 LET As＝＂8 JUNE
0639 LET V \(=2.13\)
GB41 PRINT－OF 4 CR CROSSINGS：UERSION：\(U\)
8055 GOSUB B90日
DEE PRINT＝HOW MANY DAYS OF PREDICIIONS＂；
BO85 INPUT I
GO95 RET ORBITAL INCREMENT： 1 ＝EACK， \(2=E V E R Y\) OTHER，TTC
1日G LET \(5=1\)
O： 05 REM CONUERT P FROM MINUTES TO BAYS
Q120 PRINT
D130 PRINT＂OREIT
TYME（UT）LOHGITUDE－WEST
014 60SUB 9590
8150 FOR J＝0TO ISTEP \(S\)
0168 LET Z \(=7+5\)
165 LET \(Z=(Z / 360-1\) HT（Z／36日）） 3 36
8185 GOSUS 7699
195 NEXT
7 OCO REM \(\$ \$\) S SUBROUTIHE \(\ddagger\) CALENDAR
7 7ed IF \(D=\angle L[M J T H E N ~ G O T O ~ 7935\)
7035 IF \(/ 4-1 H\)
903日
7042 LET M \(=\mathrm{H}+1\)
705 IET Y \(Y\) IHEN GOTO TERE
\(786{ }^{7}\) ET M M－1
7065 GOTO 762
7075 IF M＝2 IMEN GOTO 7885
7988 GOTO 7838
7985 IF L！2 \(1-30\) THEN GOTO 7H38
7095 LET LIL \(702=30\)
7090 RETURN
\(750 \mathrm{LET} \mathrm{D}=\mathrm{DI}+(\mathrm{HI}+(\mathrm{H})+51 / 6 \mathrm{E}) / 60) / 2.4\)
7606 gOSUB 7901
7612 IF INT（D）＝D1 THEN GOTO 7620
7616 GOSUB 955
7617 LET U＝U＋1
7619 LET U－1 7 GOTO 7620
\(7 E 2\) IF FI＝
\(0070768{ }^{\circ}\)
762 LET U＝＝
```



```
763 IF US（UQ，U1） \(1=\)＝SAT THEN GDTO 7682
7680 G0T0 7699
7586 LET HI＝（D－D1）＊24
```



```
7693 PRINT V ，
```

```
7696 PRINT USIMG =H%1%,HI#10日+HI;
697 PRINT --
768 PRINT USIMG "ma|.0".360-7.4.05
7699 RETJRN
8EDD PRINT OSCAR G AND 7 ARE ON FILE. ENTER DESIRED SATFLLITF:":
Gem INPUT O
8025 IF O=6THEN GOTO 8050
g03e IF O=TTHEN GOTO 8070
g
8045 GOTO gesg
8445 REM ELEMEHTS FOLLINU:
805g 吅品 ##w*** OSCAR-6 ******
8055 LET P=1t4.994+0
8060 LET T=-28.7486+6
8063 LET FI=1
897a REM***** OSCAR-7 #*****
8075 LET F=114.945+%
```



```
8&8年 LET T=-28
g083 LET F1=0
gQ90 FRIHT OSGAR"IO:" IS MOT ON FIEF. TYPE G TO RUH A TRIAL":
8095 t青PUT 0
8IGE IF OTCTHEN GOTO BEZ5
8120 PRINT " PERIOD (MINUTES)*,
8 1 2 5 ~ I N P U T ~ P ~
8130 PRINT - DRIFT (DEG WEST) -,
8135 INPUT T
g!40 L.ET T=T*-1
8145 LETF1=G
82GO PRIAT = PREDICTING FOR OSCAR";O
8201 RETURN
830A PRINT-SUPPRESS UNAVAILABLE GRBITS(Y/N)"!
8325 INPUT Y$
g330 IF Y$>-*"Y* THEN GOTO 8340
835 LET F1=1
833 GOTO 8350
8340 IF YS%-* N= THEN gOTO 8325
8345 LETF1=[2
8347 60TO 8399
835% PRINT RSMEFEREMCE DAY m.
8360 1MPUT DS
8365 FOR I=1T07
8376 LET J=1
g.375 IF DS =US[3* I-2,3*2]THEN GOTO 8399
8380 N EXT I
8384 PRIHT " LEGAL DAYS ARE: - :
8386 FOR I=1 70 7
8388 PRINTU$(3*I-2,3*1)!* ut
894# NEXI I
8392 GOTO E355
6399 RETURN
S399 RETUR世 - REFERENCE ORBIT:"
g|5 PRINT NYY,MM, MM, DDIT',
ge20 INPUT Y,M,BI
9b25 IF M=0TREN GOTO }901
93% IF DI=月THEN GOTO 9015
O35 PRINT m HH * HW
9040 INPUT HI,NI
944 LET S1 = 
9048 PRINT = =
9050 INPUT Z
9053 LEET Z =3 681-7
9055 PRINT ORAIT NUMEER - 
960 INPUT N
9e65 GOSUB 75es
907% GOS!5 7e|q
9673 IF FI=ITHEN GOSUB E306
9875 RETURN
g875 RETURN
9515 PRINT - OSCAR";0;" -NS!3* H-2,3*M1;{NTCD);Y%19ag
9550 RETURN
```

Fig．10．A complete listing of the program．
your predictions and the W1AW bulletins．I once pre－ dicted OSCAR 7 for 30 days， only to discover later that there was a 10 －minute bias to all the times because the
reference orbit had been wrongly copied from W1AW． Typical residuals，over a 30－day prediction cycle，have been ± 1 minute and $\pm .1$ de－ gree of longitude．These dif－
ferences creep in mainly be－ cause the AMSAT／W1AW bulletins only give time and longitude to these accuracies． We cannot expect the pro－ gram to be more accurate
than the data given it．
This program is only one way of reaching the stated objective．There are usually as many programs per problem as there are programmers

Fig．11．A sample run for OSCAR 7．Human input to the program is underlined．Everything else is the product of the program．
attacking the problem. In this case, for example, certain sections of the coding were made to take up several lines, where only one line was really needed. This has resulted (I hope!) in greater clarity at the expense of space. Why not try improving this program?

Not all BASIC versions are identical. Make sure the features I have used are available in your version of the language, before writing a stiff letter to the editor.

Important note: When listing a program, this particular version of BASIC often inserts phantom spaces. These are only important in the following lines:

Line 17 must begin "SUNMON..." with no spaces between the quotation $m a r k s$ and $S U N$. "... FRISAT " does include 3 spaces following SAT, and then the quotation mark. Line 18 is similar to 17 and must begin "JANFEB . . ", without spaces after the lead-
ing quotation mark. There are no spaces following DEC.

Lines 7625, 7630, and 7635 are similar in that the test day, for example "MON", must be enclosed in quotation marks without spaces as "MON", "THU", or "SAT".

Lines 8330 and 8340 are the same; the Y and N must be entered as " Y " and " N ", without enclosed spaces.

All other blank spaces in Fig. 10 are not critical and may be inserted or deleted
according to your whims or the requirements of your flavor of BASIC.

References

1. Ham Radio Horizons, March, 1977, pp. 18 ff .
2. Radio Amateur Satellite Corporation, P.O. Box 27, Washington DC 20044.
3. NOVA is a registered trade mark of the Data General Corporation (DGC). Southboro MA 01772.
4. BASIC was developed at Dartmouth College
5. Computer Operations, Inc. (COI), Beltsville MD 20705.

RTTY LOOP

I hope you enjoyed the special RTTY issue! Now that you are completely ready to operate, a few hints and suggestions are in order. Required equipment is a printer/keyboard combination (Model 15), a loop supply, a terminal unit, and an AFSK generator. I assume that you already have a transceiver capable of operating SSB on the low bands. Let's get started!

RECEIVING RTTY

By convention, RTTY operators congregate on certain areas within the CW portion of the band in question. There is activity on both 80 and 20 . not much on 40, 15, or 10 . Eighty meter activity is usually found around 3615 kHz and up. Twenty meter teletype ireaks are found from 14.08 to 14.1 MHz . Sideband conventions are reversed on all HF bands except 80. Therefore, RTTY is received and transmitted on lower sideband on twenty - voice is upper. On 80, SSB and RTTY are both transmitted on the lower sideband.

In order to properly receive RTTY. the signal must be carefully tuned. Allow your transceiver to perk for an hour or so before tuning up the first time. An audio sample must be coupled to the TU ... normally through a matching transformer. Many of the popular TUs such as the HAL ST- 6 and Flesher DM-170 require a $500-600$ Ohm feed for proper operation, in a pinch, however, the TU can be paralleled across the speaker line, There are two common methods for tuning a RTTY signal. The first, and easiest, method employs a meter. The TU meter indicates a steady value when the signal is properly tuned - if not, it will jump randomly in the presence of RTTY or CW . Carefully tune the receiver until the meter is steady . . . it's best to start out on a strong signal! Consuli the operating instructions for your particular TU for specific details. The second tuning method uses an oscilloscope with the horizontal sweep disabled. Almost all TUs have "scope output" terminals which allow the mark and space discriminator output
to be coupled to the scope. When receiving a RTTY signal, a pattern of crossed ellipses or circles will be present. The technique is to tune the receiver until the elliptical patterns are as large as possible, and as close to right angles to each other as possible. Most modern TUs have both scope outputs and meter tuning; try the meter method until you have the hang of tuning RTTY.

At this point, you should be able to copy amateur QSOs. Saturday afternoon is the best for 20 meters - if you are lucky you'll hear Ricky WADCKY transmitting one of his classic RTTY pix! You should also hear (see!) stations calling CO . If you're ready to answer, read on!

TRANSMITTING RTTY

Transmitting is simple. The output of your AFSK generator is connected to the microphone input of the SSB transceiver. When the loop is keyed either by the keyboard or tape reader, the AFSK oscillator converts the Baudot puises into irequency shifted mark and space tones. A caution is in order at this point: RTTY, like CW, is a continuous duty transmission. Unlike SSB, RTTY imposes extra strain on the final of your transmitter. It is wise to derate SSB ratings by a factor of four - if your rig is rated at 200 Watts PEP, do not allow the continuous RTTY output to exceed about 50 Watts. Save a tube! You will soon find that most RTTY operators do not use high power . . like CW, a bit goes a long way. In most cases, 200 Watts and a beam will do the trick. I run 75 Watts, and have needed more on few occasions.

When using a standard SSB trans ceiver, use 170 Hz shift. This insures that the audio tones are well within the passband of your transceiver's filter. It is possible when using 850 shift to produce a secondary, and illegal, carrier. Most current activity is on 170 shift anyway.

An aside: A good beginner's RTTY transmitter is an old Heath HW-32 20 meter singlebander, popular a few years ago. This rig is designed for
phone only service, but can be put on RTTY (or CW) by changing a single crystal. I performed this modification, and threw in a new filter crystal to be safe. The HW-32 will put out 40 Watts continuously, using sweep tubes in the final.

Although this issue marks my last as Executive Editor of 73 , I'll still look forward to seeing you on 14.090 or 3615 in the evening!

John Molnar WA3ETD
Executive Editor

Fig. 1.

Many modern terminal units use a meter for tuning. A steady value indicates a properly tuned RTTY signal. Once the signal is tuned, the printer can be activated. The TU pictured is the HAL ST-5000.

OSCAR DX

-- a new challenge

At one time or another, each of us has experienced difficulty in working DX stations because the HF propagation has been poor. We now have an alternative. With amateur satellites it is now possible to communicate consistently with stations up to 4500 miles away and predict exactly when they can be worked without the propagation problems incurred at HF.

A number of well-known HF DXers are now quite active chasing $D X$ via amateur satellites. In the United

States, in less than two and a half years, Ben Stevenson W2BXA has worked 86 countries via satellite. Actually, Ben and Pat McGowen G3IOR are having a battle to see who will be the first to work DXCC via satellite. Pat has at least 86 countries worked to date. Bill Hunter K4TI did a study several years ago and concluded that DXCC was possible via the present OSCAR satellites. Today with OSCAR 6 and 7 it is possible to communicate with amateurs in Europe and

Africa every morning and early evening. On subsequent passes, amateurs in South and Central America as well as the Caribbean and Asia (AU9 and $\emptyset)$ are within range. Between 0300 and 0500 GMT the satellites are passing over California, which brings the KH6s in range. And we can work these DX stations every day, day after day. In fact, when HF propagation disturbances occur occasionally, satellite communications are even enhanced.

As a matter of history, in mid-October, 1972, the first

Two 74 element $K L M$ beams for 2 meters and a $432 \mathrm{MHz} K L M$ beam for satellite $D X$ in use at W3TMZ.
long life amateur satellite was orbited. This satellite, OSCAR 6, has provided many new aspects to $D \times$ chasing. In mid-November, 1974, a second long life satellite, OSCAR 7, was orbited. It has provided even more DXing activities.

OSCAR 6 contains a 2 to 10 meter transponder with a 100 kHz bandwidth. Specifically, the input frequencies are 145.90 to 146.00 MHz , which translates to 29.450 to 29.550 MHz respectively. For normal communications, a power of approximately 100 Watts effective radiated power (ERP) provides a satisfactory return signal on the 10 meter downlink. For DX chasing, one should be able to access the satellite when it is near the horizon; to be consistent, an ERP of 1 kW is recommended. To keep the AMSAT officials happy and prevent overload of the satellite's receiver, one should adjust his ERP to maintain a reasonable but not strong return signal (comparable to other signals). Effective radiated power is defined as: matched power at the antenna terminal(s) times the antenna gain as a ratio. For example, consider an antenna with 12.5 dB of gain; this relates to a power ratio of 17.78 . If the power at the antenna terminals was 100 Watts, the ERP would be 1778 Watts.

OSCAR 7 has two transponders. The first is similar to OSCAR 6 - this is termed Mode A. Its input frequencies are 145.850 to 145.950 MHz , translating to 29.400 to 29.500 MHz output. The second is a 432 to 145 MHz repeater - it is termed Mode B. Its frequencies are a 432.130 - 432.170 input, translating to a 145.970 to 145.930 output. There is an inversion in this transponder - as the operating frequency is increased, the output frequency decreases. This was done intentionally to reduce the effects of Doppler shift. Also, because of the inversion, a USB uplink (input)

AZ/EL	VS	Equator Crossing Of -.35.0
Time	AZ	EL
Min.	Deg.	Deg.
7	109.	1.
8	102.	6.
11	92.	11.
13	78.	17.
15	61.	20.
17	43.	20.
19	26.	17.
21	13.	12.
23	3.	6.
25	356.	1.
AZ/EL	VS	Equator Crossing Of 40.0
Time	$A Z$	EL
Min.	Deg.	Deg.
6	118.	1.
8	111.	7.
10	101.	14.
12	88.	20.
14	70.	25.
16	48.	26.
18	28.	22.
20	14.	16.
22	3.	9.
24	356.	3.
AZ/EL	VS	Equator Crossing Of $\mathbf{4 5 . 0}$
Time	$A Z$	EL
Min.	Deg.	Deg.
4	129.	-1.
6	124.	5.
8	117.	12.
10	107.	20.
12	91.	28.
14	68.	34.
16	41.	32.
18	21.	25.
20	7.	17.
22	359.	9.
24	353.	3.
AZ/EL	VS	Equator Crossing Of -50.0
Time	AZ	EL
Min.	Deg.	Deg.
4	136.	2.
6	133.	9.
8	125.	17.
10	114.	27.
12	95.	38.
14	63.	44.
16	31.	39.
18	11.	28.
20	1.	18.
22	354.	9.
24	350.	2.

Fig. 1. OSCAR 6 and 7 tracking data for Washington DC and vicinity. (.) = west longitude; time $=$ after ascending node equator crossing.
signal becomes an LSB on the downlink (output).

For OSCAR 7, Mode A, a somewhat higher ERP is needed than with OSCAR 6. A good value is 10 dB more
or 1 to 10 kW ERP. For Mode B, an ERP of 80-100 Watts will provide an excellent return signal.

Both OSCAR 6 and 7 are termed to be in sun-
synchronous orbit - that is, they are available for communications at every point on the earth at the same local time of day. Each satellite is fixed in a near polar orbit approximately 900 miles above Earth. With such an altitude, it is possible to communicate with the satellite when it is 2450 miles away from your location. This yields a maximum communications range of 4900 miles. This can be extended considerably at times due to peculiar propagation phenomena which will be discussed later.

Probably the most exciting facet of DXing via satellite is. that you can operate every day and not be concerned with normal HF ionospheric problems. Once the satellite is within your range, you are ready. There are occasional VHF/UHF propagation disturbances which do affect communications, but not to the extent that a solar storm would have upon HF. An example: Last spring when HF communications were almost totally wiped out by a storm, many Europeans were worked via satellite.

Operating

In order to operate via the satellite, one must know when it is available and in what mode it will be for a given day. Orbital data is available from many sources. Probably the most convenient source is the W6PA) handbook. This book is published yearly and contains all revolutions for OSCAR 6 and 7*. The data is published in the form of date (GMT), revolution number, time (GMT) that the satellite crosses the equator in an ascending node (south to north) and the longitude in degrees west of Greenwich. With this data, one can compute when the

[^0]satellite will be within his particular window.

The next problem is where to point the antenna. Unfortunately, this is difficult to accurately describe in a few words. Obviously it would be far easier to use a high power transmitter and almost nondirectional antenna, thus eliminating the need for antenna directional data. Sad to say, high power equipment is rare and expensive.

Generally, for ascending node revolutions, the satellite will rise from the south to southeast and go east of your QTH and leave in northwestern azimuth. If the longitudinal crossing is west of your longitude, then instead of passing to the east, it will pass to the west.

This is fine for azimuth, but what about elevation? In most cases the operator will not be interested in elevation, because he is only interested in DX which can be worked principally when the satellite is near the horizon. The only reason for a DXer to use an elevation mount is to achieve practice in satellite usage and communicate with nearby amateurs.

When OSCAR 6 was first launched, the VK amateurs generated AZ/EL data based on longitudinal crossing for -many major cities in the world. I personally use this table for my antenna pointing. The second feature of the table is that it defines the satellite coverage for a particular QTH. An example of this information for the Washington area is given in Fig. 1.

To generate this data, a computer program (written in Fortran IV and adaptable to most machines), is available.

Operating Tips for the Beginner

There are several very important techniques that will be helpful.

Pick an input/output frequency combination to which you can repeatedly reset your equipment, and always start

W3TMZ and his home brew 14 element KLM 432.
operating from that frequency. This technique is quite valuable for the following reasons. To find your own downlink signal at the beginning of a pass, you will always know where to expect your signal ($\ddagger 1 \mathrm{kHz}$). Once you find your downlink signal, then you can QSY in increments - if you get lost, you can always return to your reference frequency plus Doppler and start over. Believe me, this happens, and this technique works.

On OSCAR 6 and 7 , Mode A, it is not unusual to actually be accessing the satellite, but, due to a number of phenomena which are not clearly understood, you may not hear your own return signal. I have worked quite a bit of $D X$ without hearing my own signal.

During my initial contact on OSCAR 7, Mode B, I was unable to hear my own signal because of downlink receiver desensing. Every time I keyed the transmitter I wiped out my receiver and, therefore,
could not find my signal. I did not know whether I was getting into the satellite or not, but, by calling $C Q$ repeatedly and tuning the satellite passband, 1 finally heard W2GN answering my CQ (this is actually poor practice) and now had a reference set of frequencies.

The Art of DXing via Satellite

For working DX alone, it is best to limit your antenna systems to low elevation angles. Concentrate as much energy (within reason) at the satellite so that as soon as it comes into range you have a workable signal. As has been mentioned previously, do not count on always hearing your signal. Sometimes it just. isn't there, but others can hear you. To realiy work super DX via space is similar to 20 meters - you must use or try any tricks that seem reasonable. A technique for working a specified area is to use a high gain antenna(s) positioned at the midpoint of the satellite's ground track. This is a technique that was
used to work KH6 from this area. The same technique could be used to attempt to work a UA9.

At some frequencies (28 MHz and above), another interesting phenomena can occur - signal ducting. This is best described by example.

I have heard OSCAR 6 when it was over Eastern Russia heading for the North Pole with excellent signals. This particular pass was quite removed from my normal window.

On several occasions, WA4JID (Ft. Lauderdale, Florida) has had an excellent. return signal from OSCAR 6 when the satellite was out beyond KH6 traveling toward ZL. Actually he had acquisition for a period of 7 minutes after his normal loss of signal (LOS) time. There was no one to work, so he called CQ. Finally he dropped out and the next signal he heard was ZLIWB calling CQ on his frequency. WA4JID uses 35 Watts to a 10 element crosspolarized antenna.

ZK1DX regularly hears OSCAR 6 when it is over the East Coast of the U.S.

Based on these observations, it appears highly possible that one could QSO a ZL from Southern latitudes. I believe with a $k W$, some antenna gain and good CW operating, it would be possible to really stretch the normal communication ranges.

In this regard, 1 do not believe that OSCAR 7, Mode B, is as easily stretched. The received signals just seem to drop when predicted LOS occurs. I can state that the downlink received signals on Mode B are much better than what one will hear on 28 MHz . An example of this is hearing OA8V with his 10 Watt ERP with a beautiful signal.

Equipment and Antennas

The equipment required to work OSCAR 6 and 7A is some type of 2 meter transmitter and a 10 meter receiver. A good preamplifier
for 10 meters will help immensely. Almost anything will work as the transmitter as long as the particular operator is satisfied with its performance. Here are several ideas for equipment that will work:

1. An FM transmitter with provisions for keying installed and control of normal T / R relay (you do not want the relay to follow your keying or you will soon need to replace the relay). Note: Do not use FM for communications via the satellites.
2. A GE/Motorola FM transmit (TX) strip adapted for CW.
3. VHF Engineering TX-150 strip.
4. Homemade/commercial transverter and amplifier.
5. Two meter CW/SSB transceiver and amplifier.

For OSCAR 7, Mode B, the equipment required is somewhat more difficult to obtain. For the downlink, a reasonable 2 meter converter for an $H F$ receiver will do quite well as will almost any of the present multimode 2 meter transceivers.

The uplink transmitter availability is somewhat limited. Several ideas for equipment include:

1. GE/Motorola 450 FM strip converted for CW .
2. Tripler for a 2 meter transmitter.
3. Homemade/commercial transverter and amplifier. 4. Commercial 432 MHz CW/SSB transceiver.
4. GE/Motorola FM strip converted to be a high mixer/amplifier (SSB/CW).

Further information on equipment requirements is given in the reference section at the end of this article.

With respect to antennas, almost anything will work to some degree or another, but remember that the satellite requires a minimum ERP and the antenna for most low power transmitters is quite important. There are several general rules concerning good satellite antenna practice.

Antennas do not need to be particularly high. For

DXing, what is important is that they be high enough to be in the clear.

The antenna feedline loss becomes an ever increasing factor in VHF/UHF satellite operations. As the antenna height is raised, so is the amount of feedline, preferably coax. At VHF/UHF RG-8 is ok, but, for example, at 146 MHz , 100 feet of RG-8 will have a loss of 3 dB (including connectors). This 3 dB loss reduces the ERP to half of what there would have been if the feedline were lossless. At $432 \mathrm{MHz}, 100$ feet of RG-8 has 5 dB of loss.

For 28 MHz , it is best to use two antennas, a beam pointed at the satellite (which need not be elevated), and a vertical (1 use a vertical dipole). As the downlink signal fades, 1 switch from one to the other and vice versa.

For $146 \mathrm{MHz}, 1$ prefer linear polarization. For DX, I use vertical polarization, and for the remainder I use horizontal. Circular polarization works quite well, but I don't like it on the horizon due to losing half my ERP in the opposite polarization. Circular will have less fading, but for DXing the fading is minimal and can be tolerated.

For 432 MHz , the antenna situation becomes a little sticky - the size of the antenna is small but the chance for error in home built antennas is much greater. I recommend using standard proven
antennas. Beware: Some antennas on 432 simply do not have the gain that is advertised. Basically a 6 to 16 element yagi will be adequate. But, remember, the larger the antenna, the sharper the beamwidth, thus requiring accurate pointing. Conversely, as the antenna size is reduced, so is its gain, and thereby the ERP.

In summary, a balance or compromise must be achieved in transmitter power, feedline and antenna size versus pointing problems to obtain the performance that is desired.

Various Amateurs' DX Accomplishments

First of all, I am sure that there are sufficient unique DX accomplishments by a number of individuals that we could go on for some time. To mention a few -- when a new country comes on via satellite, you can bet that W2BXA will be in there as if it were a "new one" for him for the DXCC Honor Roll. W8DX, W1NU, K1HTV, W1FTX, VE3SAT and a number of the Northern Jersey DX club members have worked over 50 plus countries. Many have worked 5 continents from the US. Asia is the most difficult.

Conclusion

Many amateurs, who have for years chased DX on the HF bands, have recently started working $D X$ on the satellites and found it to be

W3TMZ with his OSCAR array.
every bit as challenging. Perhaps you too would like to join many of the HF DXers on OSCAR 6 and 7 ? If so, it is hoped that many of the ideas in this article will help you along to your fifty states via satellite or maybe even fifty countries.

References

1. ARRL VHF Handbook, 3rd edition, p. 197, "Turnstile Antenna," p. 133, "Two-meter Transverter."
2. ARRL Radio Amateur's Handbook, 1976, p. 108, "Two-meter Transverter," p. 474, "Space

Communications."
3. Ham Radio, Desember, 1972. p. 6. "Signal Polarization," June, 1974, p. 36. "Two-meter Preamp:" March, 1975, p. 34. "Az-El Antenna Mount," July. 1975, p. 58 , " 432 MHz Oscar Antenna," January, 1976, p. 46, "432-16LB Antenna," March, 1976 , p. 44 , "VHFHUHF Receivers - How to Improve -Them," May. 1976, p. 54, "VHF/UHF Techniques," July, 1976, p. 50, "VHF/UHF Techniques."
4. QST, December, 1974, Satellite feature issue.
5. OST, September, 1975, p. 15, "Methöd for Phasing Crossed Yagis for Circular Polarization."

from page 48
single person much more than " " 1 ".
I have never referred to myself as
"we" and I have discussed this with
ham friends, who generally agree that
"we" is used only by hams who have a Lindberg complex; they seem to try
to create the impression that they never use it in this way, but the very next time I hear them on the air, they are referring to themselves as "we."

All this is somewhat confusing to me and the purpose of this letter is to locate someone who can tell me why this is done, how it got started, and, if
there is no logical reason for its use. why do hams continue to use it?

Just as a parting shot, why don't hams on voice just laugh instead of saying 'hi'?

Keep the good work going, Wayne; you have a forty over nine magazine. Walter A. Deiter KHGANM

Kailua HI

Several months ago I sent you a note which requested hams who read science fiction to write me. You printed it in the Ham Help column. For that I thank you very much.
received a number of replies and have come up with some more information. I would appreciate it if you would print it as a follow-up.
$7250-7255 \mathrm{kHz}$ have been designated as calling frequencies for hams who want to discuss science fiction. 7250 will be used in the evenings, and 14310 can be used on weekends daytime. This will not be a net or any type of directed operation; rather, it will be simply a gathering frequency for interested persons. Just get on and holler "CO SF!"

For any other information, write me at the following address.

Neil Preston WB@DOW
7024 Bales Ave.
Kansas City MO 64132

OSCAR
 Frequency Relationships

.- now, where is my downlink?

Robert H. Main W1ZAW
Bible Hill Rd
Hillsboro NH 03244

Whether you're a "brass pounder" or a "side swiper insist on the sure, smooth feel. and the long-lasting quality that is built into every NYE VIKING KEY.

[^1]Available at leading dealers or write
WM. M. NYE COMPANY, INC.
1614 - 130 th Ave. N.E., Bellevue. WA 98005 n4

One of the most difficult things to get a handle on when you first start out on OSCAR is the relationship between uplink and downlink
frequencies. Ever hear a signal on 29.440 MHz and wonder what frequency you should be transmitting on? You look for your hand calculator,
UP DOWN
$145.900=29.450$
$145.901=29.451$
$145.902=29.452$
$145 \cdot 903=28 \cdot 453$
$145 \cdot 904=29,454$
$145.905=29.455$
$145 \cdot 906=29+456$
$145.907=29.45$
$145 \cdot 903=29 \cdot 468$
$145.709=2.457$
$45.910=27 \times 40$
$142.911=29,461$
$145.912=29 \cdot 469$
$145.913=29.463$
$145.914=29.464$
$145.715=29,465$
$145.716=27.466$
$169.917=29.467$
$14.510 \cdots 9.666$
$145 \cdot 719=29+369$
$142.920: 90.470$
$145 \cdot 921=29 \cdot 471$
$145,932=29,472$
$145 \cdot 923=29,473$
$145.924=29+476$
$145.925=29.475$
$145 \cdot 926=29,476$
$145,927=29,477$
$143.523=29.479$
$145.929=29.479$
$1.45 .930=29 \cdot 480$
1.45.931-29 2.681
$145.932=27+492$
$145 \cdot 933=29-193$
$145+934=29+484$
$1.45 .975=29.485$
$145,936=29.486$
$145.937=27.137$
$145.935=29.408$

1. $45+939=29.489$
$145.960=29.490$
$143.941=29.491$
$143,342=29+472$
$145 \cdot 943=29.89 \%$
$145.944=29.194$
$145,845=29.495$
$146,75=29 \cdot 426$
$145 \cdot 54=29 \cdot 47$
2. $46-29.458$
$145.949-29.499$
$145.950=29.500$
$1.45 .951=29.501$
$145.952=29+502$
$145.953=29.503$
$146.954=29.504$
$145 \cdot 956=29 \cdot 60 \%$
145.9世529.50
$1.45 \cdot 75=29 \cdot 007$
1.45.558=29.506
$145.959 \cdots 29.509$
$105.950=27.510$
$145.861=29.511$
$1 \therefore 5.5 \therefore-25.512$
$145.963=29.51 .5$
$545 \cdot 964=29 \cdot 514$
$745.965=29.515$

Fig. 1. OSCAR 6.
only to find that it is on your desk at work. So you have to take pencil in hand and try to find some paper to figure things out. By the time all that has been accomplished, either the satellite has flown over, the station you were hearing is talking to someone else, or the station is out of range.

Having had that experience too many times, 1 decided it was time to have some printouts at my fingertips, or on the wall next to my operating location. So, with the help of a computer,

Fig. 2. OSCAR 7, mode A.
the accompanying tables have been developed. As you can see, OSCAR 7 users (mode B) would really have a calculating problem tripling up from 2 m . It's a simple matter to use the desired listening frequency and follow across the chart to find the desired transmitting frequency. We carried this out to five places so that anyone rockbound could order crystals easily. Also, the telemetry fix on board OSCAR 7 has been putting out a good signal and is an excellent way of

UP DOWN $145.850=29.400$ $145 \cdot 85 \mathrm{E}=29$-401 $145 \cdot 652=27+402$ $145.853=29.403$ $145.854=29.404$ $145 \cdot 855=20.405$ $145 \cdot 856=29.406$ $145.857=29.407$ $145 \cdot 850=29.400$ $145+859=29.409$
$145,860=29,410$
$145+861=29+411$
$145.862=29.412$
$145.863=29,413$
$145 \cdot 864=29+414$
$145 \cdot 865=29+413$ $145.866 \cdots 2+415$ $145.367=25+417$ $145 \cdot 868=27 \cdot 416$ $145+869=29.119$
$145 \cdot 870=29+420$
$145.871=29+421$
$145.872=29+422$
$145 \cdot 973=29+423$
$145+874=29+424$
$145.875=29+425$
$145.876=29.426$
$145+877=29+427$
$145.878=29+428$
$145.879=29.429$
$145.880=29 \cdot 430$
$14 \%+881=29.431$
$145.882=29 \cdot 432$ $145+883=29+433$ $145,864=25,434$ $145+885=29.435$ $145 \cdot 886=29.436$ $145+887=29.43 \%$ $145.869=29.438$ 1.45. $889=29.435$
$145.890=29+440$ $145+891=29.441$ $145.892=29.442$ $145 \cdot 893=29,443$ $145 \cdot 894=29.444$ 146. $295=9.4245$ $145 \cdot 826=29 \cdot 446$ $145.809=99.447$ 1. 4 , $398=29.44 B$ $145.899=29,449$
$145.900=29.450$ $145+901=27.451$ $145.902=29.452$ $145.903=29.453$ $145 \cdot 904=29 \cdot 454$ $145,905=29 \cdot 45$ $1.45 .906=29.456$ $145.907=29.457$ $145.906=29.453$ $14 \mathrm{c} .909=29.457$
$145.910=29.460$ 14 . $711=27+461$ $145.912=29.462$ $145.913=29.463$ $145.914=29.464$ $145+915=29+465$
1.4E+516=29. 466 $145 \cdot 917=29 \cdot 467$ $145.718=29.463$ 1. $45 \cdot 918=29 \cdot 469$
$145+920=29+470$
J. $45+921=29+471$
$145 \cdot 922=25 \cdot 472$
$145.923=29.473$
$145 \cdot 924=29+474$
$145 \cdot 925=29.475$
$145.926=29 \cdot 476$ $145.927=27.477$ $145.928=29.478$ 145. $729=29+479$
$145.930=29.480$ $145 \cdot 931=29+481$ $145 \cdot 932=29+492$ $145.533=29.483$ $145 \cdot 934=29 \cdot 484$ $145.935=29.495$ $143+736=29+486$ $143 \cdot 937=29.487$ $145.938=29.488$ $145.939=29.489$
$445.940=29+490$ $145 \cdot 941=29+491$ $145 \cdot 942=29+492$ $1.45 \cdot 943=29+493$ 140. 94.429 .494 1.4.5.945=24.496 1 等, $946=29,496$ $140.947=20.497$ $145,948=59.498$ $146.940=29 .+99$

We have a portable direction finder that REALLY works-on AM, FM, pulsed signals and random noise! Unique left-right DF allows you to take accurate bearings even on short bursts, with no 180° ambiguity. Its 3 dB antenna gain and .06 uV typical DF sensitivity allow this crystal-controlled unit to hear and positively track a weak signal at very long ranges-while built-in RF gain control with 120 dB range permits DF to within a few feet of the transmitter.
The DF is battery-powered, can be used with accessory antennas, and is $12 / 24 \mathrm{~V}$ for use in vehicles or aircraft. This is a factory-built, guaranteed unit-not a kit. It has been successful in locating malicious interference, as well as hidden transmitters in "T-hunts," ELTs, and noise sources in RFI situations.
Prices start at under $\$ 175$. Write or call for information on our complete line of portable, airborne, vehicle, and fixed DF systems.

5546 Cathedral Oaks Rei,

[^2]L10
$805-967.4859$

IN	OUT	IN	OUT	IN	OUT	IN	OUT
4.45.988	29.800	145.70.	2\%.45:	1.33. 900	4?5 200	1 4 ¢....:	435.18%
1 5 - 35 :	29.401	1.6.5.908	25, 32	145.901	485	14, 75%	435146
1脌, 05	29.402	195.90\%	29.153	$145 \cdot 902$	435.190	$1.45,35$	435,247
155.85	29.403	145. 0 !	36.454	145 -903	4.85:*	1.45.25.4	A35. 46
145.351	29.404	1.15.905	29.:55	14.5 .904	435.15	145.535	455.145
: 19, 055	29.405	155.906	29.-56	145.905	153.10	1.45, 75 5	435144
1.45.658	29.406	122,907	29.45	1.45 .906	435.20:	145.957	435.143
1.4.8.85	29.407	145.908	29.496	145.907	435, \% ${ }^{\text {a }}$	145.958.	135.1.42
A5.950	29.406	1.2,909	27,459	1.85.90e	4xs. $+\cdots$	148.959	455.141
19.859	29.909	1.45.712	28.460	145.909	435, 19.1.	145,96\%	435,40
$1.45,530$	29.410	1.45,91.	20,461	14500	455, 102	145.962	435.138
145.56 !	29.411	1.96 .912	29.462	145.011	435.189	145.92?	135 138
4.3.830	29.412	145,913	25,453	1.45.912	435.190	143.965	43\%, 137
493.86	29.413	545.814	29.964	1.45.913	435.:187	145.964	435.136
1-3.284	29.414	\{65.91\%	29.45	145.814	435.156	$145.7 \leq 5$	435.135
1.4585	29.715	145.976	20.436	145.915	435.135	145.956	435.134
149.856	27.715	1.45, \%17	24.4.67	1.45 .916	485.1.:	145.96	435.133
1.5.837	29.41 ?	1.95 .818	29.468	145.817	455.:33	1.45 .768	435.132
1.15.66	29.713	145.818	29.46	145.915	435.:33	145.75	435.131
1-5,86\%	29.71?	$1-15.920$	29,470	145.917	435.181	145.08	$435: 130$
: 41.970	29.420	145.98:	25.471	1.45 .520	435.180	145, 971	425.129
1 15.87	29.421	145.922	29.472	14*. 8 ?	435.176	4459	435. 128
115.92	29.422	1.45.92\%	29.473	145.923	435, 17\%	145.973	$43 \mathrm{w}, 127$
145 -73	29.423	1.45,924	$29+474$	$1.45 \cdot 62$	435.17	145.974	435.120
1:8,874	29.42 .4	1.55.02	29.475	145.924	435.1\%6	145.9%	485.125
1.45 .675	29.425	145.02\%	29.476	14 E .925	435.176	145.976	435.124
145.836	29.426	145.027	29.477	145, 26	485.174	1.45,977	A35, 125
145.877	29.427	145.928	29.478	1-4. 227	435.173	1.15.976	455,122
1. 15.878	29.423	1.5.929	29.479	1.45.928	435.1\%	145.979	A33, 123
115.576	29.429	1.45 .930	29.480	245.929	435.171	145.920	$435-120$
145.89\%	29.430	1-5.951	29.481	145.930	435.170	1-15. 23 :	435.117
145.803	29.431	145,9-2	29,402	148.931	435.169	145, 93?	435120
145.832	29.432	145.933	27.0.03	145.932	435.163	1.45. 983	435.117
1,5.803	29.433	14.8.4	$27 \cdot 404$	145.933	405.167	125.9.984	435.1:3
145.584	29.434	1.A5.935	29.435	1.45 .035	A达, 16\%	1.5.895	+135.115
145.685	25.453	145.782	29.486	1.4.0.05	485.168	1A5, 56	435.114
145.386	29.436	1.45.037	29,467	145.766	A55, 164	$1.45 .88 \%$	435.112
t45.687	29.43%	$145+938$	29.496	14.45	43.163	1.15,896	435, 112
$145+688$	29.438	145.939	29,469	145:983	$4 \mathrm{xE}, 162$	1.4.5.095	435.114
145. 959	29.439	145, 940	27.400	145. 936	455.182	1.45.996	433.150
1.45.850	29.440	185.848	29.991	145.940	435.160	145.901	45.109
1.15 .891	29.441	1.45,942	29.492	145.741	435.155	145.992	435.108
195.85\%	29.412	145.943	29,493	145.9.7?	-35-158	145, 023	+35,107
145. 86%	29.443	1 15, 984	29.984	145, 3t\%	435.158	145, -5s	433.206
105.188	20, 144	1.45.945	25.495	185.891	-35.153	145 : 785	435.106
145.085	-9, $9 \cdot 3$	145.74:	29.496	1.45 .945	435.155	145.89\%	435.104
$2 \cdot 968$	29.145	145.747	29.497	145,746	435.15 .4	145,997	435:103
4 $\quad .6$	$22^{2}+47$	145.943	29.495	145.247	$43^{5} .153$	145.998	433.102
$\therefore 40$ -	-9.448	1.450749	29.499	145.848	435.150	1×5.996	$43 \% 102$
4. 50	29.499	1.45 .950	29.500	145.949	435. 154 -	146.000	$495 \cdot 100$
\because ¢ - 9\%\%	29.450	145.95!	29,501	145\%66	455.150	146.06t	435.09 ?

Fig. 4. OSCAR D, mode A. Telemetry: 29.400.
Fig. 5. OSCAR D, mode /. Telemetry: 435.095.
checking your receiver.
By the way, don't forget
the Doppler effect which
causes the satellite to gradually shift in frequency as the
bird moves toward or away
from your location. But Doppler effect or not, the relationship between the
various uplink and downlink frequencies will remain consistent. -

PREAMPS

HIGH GAIN LOW NOISE
30 dB power gain, 2.5-3.0 dB N.F. at $150 \mathrm{MHz}, 2$ stage, R.F. protected. dual-gate MOSFETS. ManUal gain contral and provision for AGC. 4-3/8 ${ }^{\prime \prime} x$ 1-7/8" $\times 1-3 / 8^{\prime \prime}$ aiuminum case with power switch and your choice of BNC or RCA receptacles. Available factory tuned to the frequency of your choice from 5 MHz to 350 MHz with approximately 3% bandwidth. Up to 10% B.W. available on special order. Requires $12 \mathrm{VDC} @ 10 \mathrm{~mA}$. Model 201 price ($5-200 \mathrm{MHz}$)
. $\$ 29.95$ Mod-350 MHz $\$ 29.95$

EXTRA LOW NOISE

Excellent for weather satel-
lite reception and recom lite reception and recom-
mended by Dr. Ralph E mended by Dr. Ralph E. Taggart in his Weather Satellite Handbook. Less than 2 dB noise and approximately 17 dB gain. Uses a low noise J-FET in a common source neutralized circuit. Avalable factory tuned to your choice of frequency from 135 MHz to 250 MHz . Bandwidth approximately 4 MHz . Supplied in a $2-1 / 4^{\prime \prime} \times 1-1 / 8^{\prime \prime} \times 1-3 / 8^{\prime \prime}$ die-cast aluminum weather-proof case with a filter for powering it through the antenna. Requires 12 VDC @ 5 mA . Choice of VHF, type "N", or BNC receptacles.
Model 102W PRICE

O 5 dB MAX. N.F. 20 dB MIN. POWER GAIN Uses 2 of Tl's low noise circuit board our special
 gives a minimum of 20 dB power gain at 450 MHz . Stability is such that you
can have mismatched loads without it oscillating and you can retune fusing the capped openings in the case) over a $15-20 \mathrm{MHz}$ range simply by peaking the maximum signal. Available tuned to the frequency of your choice between $300-550 \mathrm{MHz}$. $4-3 / 8^{\prime \prime} \times 1-7 / 8^{\prime \prime} \times$ 1-3/8" aluminum case with power switch and your choice of BNC or RCA receptacles. Requires 12 VDC@ 10 mA .
Model 202 price
$\$ 34.95$

CONVERTERS

2 METERS

This converter has a minimum of 20 dB gain and a noise figure of 2.5-3.0 dB which $2.5-3.0$ dB which
assures you of a sensiassures you of a sensi-
tivity of 11 microvolt or tivity of .1 microvolt or
better. The circuit uses better. The circuit uses

a dual-gate MOSFET R.F. stage and a dual gate MOSFET mixer (thereby giving you a minimum of cross-modulation products), 6 tuned circuits, a bipolar oscillator and . 005% crystal. Covers $144-146 \mathrm{MHz}$ at $28-30 \mathrm{MHz}$ output with one crystal included and 146.148 MHz at $28-30 \mathrm{MHz}$ with an extra crystal (available for $\$ 6.00$ more). The glass epoxy circuit board is enclosed in a 16 gauge aluminum case measuring $3-1 / 2^{\prime \prime} \times 2 \cdot 1 / 4^{\prime \prime} \times$ 1-1/4" with your choice of either BNC or RCA receptacles. Also included is a power and antenna switch. Requires 12 VDC 15 $m A$. The converter is also available at other imput and output frequencies. Call us for prices. PRICE: Model C-144-A available from stock at $\$ 39.95$ with one crystal. Additional crystal $\$ 6.00$ extra.

HF \& VHF
40 dB GAN 2.5-3.0
N.F. @ 150 MHz

2 RF stages with transient protected dual-
gate MOSFETS give this converter the high
 gain and low noise you need for receiving very weak signals. The mixer stage is also a dual-gate MOSFET as it greatly reduces spurious mixing
products - some by as much as 100 dB over
that obtained with bipolar mixers. A bipolar ascillator using 3 rd or 5 th overtone plug-in crystals is followed by a harmonic bandpass filter, and where necessary an additional amplifier is used to assure the correct amount of crive to the mixer. Available in your choice of input frequencies from $5-350 \mathrm{MHz}$ and with any output you choose with in this range. The usable bandwidth is approximately 3% of the input frequency with a maximum of 4 MHz . Wider bandwidths are available on special order. Although any frequency combination is possible (including converting up) best results are obtained if vou choose an output frequency not more than $1 / 3$ nor less than $1 / 20$ of the input frequency. Enclosed in a $4-3 / 8^{\prime \prime} \times 3^{\prime \prime} \times 1-1 / 4^{\prime \prime}$ aluminum case with power and antenna transfer switch and your choice of BNC or RCA receptacles. Requires $12 \mathrm{VDC} @ 25 \mathrm{~mA}$.
Model 407A price:
$5-200 \mathrm{MHz}$
$\$ 54.95$
$201-350 \mathrm{MHz}$
$\$ 59.95$
Prices include . 005% erystal. Addítional crystals $\$ 8.95$ ea.

UHF

20 dB MIN. GAIN

3 TO 5 dB MAX N.F.
This model is similar in
appearance to our Model 407A but uses 2 low noise J-FETS in our specially designed RF stage which is tuned with high- 0 miniature trimmers. The mixer is a special dual-gate MOSFET made by RCA to meet our require
mtns. The oscillator uses 5 th overtone crystals to reduce spurious responses and make possible fewer multipliers in the oscillator chain which uses 1200 MHz bipolars for maximum efficiency. Available with your choice of input frequencies from $300-550 \mathrm{MHz}$ and output frequencies from $14-220 \mathrm{MHz}$. Usable bandwidth is about 1% of the input frequency but can be easily retuned to cover more. Requires 12 VDC @ 30 mA .
Model 408 price
$.005 \%$ crystal included
$\$ 59.95$

VHF RECEIVER

11 crystal controlled channels. Ayailable in
 channels. Available in

 vour choice of frequencies from $135-250 \mathrm{MHz}$ in any one segment from 1-4 MFz wide.
I.F. bandwidth (chan-
nel selectivity) available in your choice of $\pm 7.5 \mathrm{kHz}$ or $\pm 15 \mathrm{kHz}$. 9 -pole quartz filter and a 4 -pole ceramic filter gives more than 80 dB rejection at $2 \times$ channel bamdwidth. Phase locked loop detector. Frequency trimmers for each crystal. .2 to .3 microvolt for 20 dB quieting. Dual-gate MOSFETS and integrated circuits. Self-contained speaker and external speaker jack. Mobile mount and tilt stand. Aluminum gase, $6^{\prime \prime} \times 7^{\prime \prime} \times 1-3 / 8^{\prime \prime}$
Model FMR 260-PL price:
$135-180 \mathrm{MHz}$
$\$ 149.95$ $181-250 \mathrm{MHz}$ $\$ 159.95$ Price includes one . 001% crystal. Additional crystals $\$ 8.95$ ea. This receiver is recom mended in Dr. Taggart's Weather Satellite

SVNTHESIZERS

FOR ALL TRANSCEIVERS
The STR series synthesizers are available for any transceiver operating from 20 MHz to 475 MHz that uses crystals in the 5 to 85 MHz range. It has 3 thumbwheel dial calibrated for your operating frequency plus a selectable transmit offset of plus or minus 600 kHz , plus or minus 1 MHz . and 2 spare offsets that you can add later. Frequency accuracy is $.0005 \%$ and spurious outputs are 60 to 70 dB down. To process your order we must have the crystal formula of your transmit and receive crystals. If your transceiver uses 1 crystal for both transmiting and receiving like the Motorola Metrum il), you can use our receive synthesizer described to the right. Maximum tuning range per synthesizer is 10 MHz above 100 MHz and proportionally less at lower frequencies. Dial increments are in 1 kHz steps from 5 to 30 MHz and 5 kHz steps above Model STR synthesizer price
$5-150 \mathrm{MHz}$
$151-475 \mathrm{MHz}$
$\$ 259.95$
Vanguard vi
Labs
196-23 Jamaica Ave.
Hollis NY 11423
(212) $468-2720$

FOR VHF RECEIVERS

This synthesizer has 8000 channels and can tune a continuous 40 MHz segment of your choice from 110-180
 This will satisfy most of
your requirements in the VHF range and can save you hundreds of dollars in crystals plus a lot of time. Stock units are programmed for your receivers with the crystal formula $\mathrm{Fc}=$ Fs -10.7 divided by 3 but we can program it to almost any other IF at no additional cost at the time of your order. It is supplied with an interface for plugging in to your existing crystal socket. Requires $12 \mathrm{VDC} @ 1 / 2 \mathrm{amp}$ which is easily obtainable from a low cost power supply. The synthesizer has 4 voltage regulators therefore the power supply need not be regulated. Phase noise is not detectable as the VCO is coarse tuned by a DAC thereby easing the requirements of the phase-locked loop not affected by vibrations encountered in mobile use. Enclosed in an $8^{\prime \prime} \times 3-7 / 8^{\prime \prime} \times$ 1-1/2" aluminum case and supplied with a combination tilt stand/mobile mounting bracket.
Price: Model SR-140D-05
$\$ 179.95$

NOTE: We can make any synthesizer from audio to 475 MHz . Call us for prices.

HON TO ORDER: All items on this page are available only from Vanguard Labs. For receivers and converters state model, input and output frequencies, and bandwidth where applicable. For the fatest service call (212) $468-2720$ between 9 AM and 4 PM Monday through Friday, except holidays. Your order can be shipped COD by Air Parcel Post.
BY MAIL: Send vour order to Vanguard Labs, 196-23 Jamaica Avenue. Hollis, NY 11423 and include remittance by postal money order, cashiers check or certified check. Personal checks are also accepted, but banks now require 3 weeks for checks to clear, therefore this will delay your order. Include sales tax if you reside in New York
PURCHASE ORDERS: We accept purchase orders from US and Canadian government agencies, universities, and AAA rated corporations. Our terms are Net 30 days.
FOREIGN ORDERS: Must remit payment in full in US funds plus postage and insurance fees. If complicated customs forms are required, please forward your order to an import-export agent.
SHIPPING: We ship all our merchandise by insured parcel post or air mail. Special delivery is also available. Prices include shipping by regular parcel post if you remit with your order. For air mail shipping add $\$ 1.00$. Postage will be added on all CODs, purchase orders, and foreign arders.
J. W. Marriette VE7BGX
\# 302.33400 Bourquin Place
Abbotsford, British Columbia
Canada V25 5 G3

Calculate OSCAR Orbits

-- with your HP-25 calculator

Last year I developed an interest in OSCAR activity after having read a back issue of 73 that was entirely devoted to this subject. When I sat down to work out the orbital times to look for 06
and 07 in my area, 1 decided very quickly there had to be a better way. The calculation of orbit \#5, for example, on any given day can be a timeconsuming effort at best, and, if you want the most likely

HP-25 Program Form

to justify its purchase price, decided that it was about time it should start doing more than calculating debits from my savings account.

This program is not very complicated in the sense that it doesn't work out any heavy math problems, but it does do the job of working out the orbits of either 06 or 07 between the times listed each month in 73. The program will update the orbital number, the equatorial crossing and time of crossing for each successive pass from the first pass listed for each day. If you wish, subtracting the number of hours you are from GMT on the first entry will result in a local time readout for the equatorial crossing.

An example is probably worth a thousand words, so let's take the case of orbit \#19264 on January 1, 1977, for OSCAR 6. (See Table 1.) My QTH is eight hours from GMT; therefore, subtracting 8 hours from 0124:02 and adding 24 , we arrive at 1724:02 local time. This, of course, is the day before or

5:24 pm on December 31.
times for communication via this mode on a daily basis throughout the month, these calculations could be a downright nuisance unless you have access to a complete list of tables for this purpose.

Since my HP-25 was sitting idle and I was still trying

HP-25 Program Form

Orbit \#	Date	Time (GMT)
19264	1	$1: 24: 02$

Table 1.

Key in the program information using the HP program forms. When the program is run, the pause will give the pass number, and the first stop will give the time. Pressing the R/S key will then give the equatorial crossing longitude for this orbit. The drawback to this program is that you have to go through each
pass to reach the one you want, but, unfortunately, I haven't figured out how to get an extra register and 30 more program steps into the calculator in order to eliminate this problem, so I guess this will have to do until I can get my Micro P operational. (See Table 2.)

Hopefully this article will

Corrections

Texas legal beagles and scanner manners have indicted us for stating that the "Big Bust In Amarillo" (Oct., p. 154) took place on July 7th. We throw ourselves on the mercy of the readership, and readily admit that the date was, indeed, July 6th. No more letters, please.

> John C. Burnett
> Managing Editor

Our apologies to Harry Matthews K2AOU, for inadvertently omitting the documentation for his Main Buffer System ("Digital Group RTTY Micro," Sept., p. 98). Here it is.

John C. Burnett
Managing Editor

I think I've found an error on page 47 of your August issue. The diagram for the Zeppy Vertical shows the braid of the coax attached to the radiator and the center conductor to the matching stub. These connections should be reversed. As written, the antenna was inferior to a $1 / 4$ wave whip. Reversed, it improved on the $1 / 4$ wave by several S-units. Keep up the good magazine.

Tim Knauer WD9AMY
Peoria IL
In addition to my new call and address, please note several minor changes to "Synthesize Yourself!" (Oct., p. 182):

Orbit \# Local Time Equatorial Crossing (Long.)

19264	$1724: 02$	79.5
19265	$1919: 01$	108.25
19266	$2114: 00$	137
19267	$2308: 59$	165.75
19268	$0103: 58$	194.5
19269	0258.57	223.25

Table 2.
encourage other members of the ham community with access to one of these calculators to sit down and work out additional programs for this
and other areas of our hobby. If this is the case, I will be looking forward to seeing these programs in future issues of 73 .

1. Page 186, col. 4, lines 16 and 17 , should read, "nect the square wave input from pin 1 of the MC4044,". 2. Page 186 , col. 4 , line 32 , should read, "MCAO44 as shown. The out-". 3. Page 188 , col. 4 , lines 36 through

38, should read, "generates a square wave output. In cases where the voo generates sine waves or other wave-". George R. Allen W2.FPP

161 Rosendale Drive Binghamton NY 13905

Ham Help

I have been interested in ham radio for the past couple of years. I currentIy hold a Citizens Band license, but I am totally disenchanted with that type of communication. I have_ been studying on my own and have no trouble with the technical aspect of the license. But the code has been very disheartening. I would like to know if there are any clubs that give Morse code classes in my area. Or if I could meet of contact amateur radio operators who would be willing to help. Any and all help will be deeply ${ }^{4}$ appreciated.

Ed Rojas
 Box 490
 Union City NJ 07087

Help! I purchased a Hallicrafters Tornado SR-500 SSB 500 Watt $80-40-20$ rig and need help finding someone who carries the 8236 final amplifiers. Can't find listing in Sylvania, RCA, Amperex, or other tube makers. Where can you get these 8236 s and what is their cost (understand Hallicrafters is no longer in business)?

Also, if anyone has information on modifications, improvements, changes, etc., to the SR-500, I would appreciate their writing to me. Can the 82365 be subbed for for example, with a pair of 6146 Bs with only 200 Watts PEP instead of 500 Watts)?

Any assistance from other hams would be appreciated. Thanks.

Marvin Jack Moss W4UXJ

$$
\text { P.O. Box } 28601
$$

Atlanta GA 30328
With the ever-increasing use of electronics in hospitals and related health care facilities, there has been a large influx of $E E$ and E Techs to provide repair and calibration for the medical electronic equipment that lies scattered throughout these establishments. It is my guess there must be
several hundred amateur radio operators hidden within these ranks. With the help of your column, I would like to compile a listing of all licensed amateur radio operators emploved by hospitals/health care facilities/medical electronic equipment manufacturers and service centers.

Interested hams should send their name/callsign/QTH to my attention.

Dave Miller WA4ZKZ
721 Due West Ave.
Apt. G 202
Madison TN 37115
I am the proud owner of a Sumner Model HCV-1B SSTV Camera and a Model HCV-2A SSTV: Monitor, neither of which are operating satisfactorily. I urgently require a copy of the circuit diagrams and component listing of these units.

Ken Squires VK2SD
1 Simpson Street
Bondi, N.S.W. 2161
Australia
Help! I am looking for manuals for the following low band radios: Matorola Model L4IG-1A - this is an ac base: Motorola Model T71-GKT 1100 B - low band 12 V dc mobile. If anyone has manuals or schematics for the radios, a copy would be appreciated. Please drop me a line.

Ron Lula WB9WXO
55428 Meadowview Ave. South Bend IN 46628

I need the tube test data for the TV-4 tube tester. This is part of the USM-3A. Will buy or copy.

Gary P. Cain W8MFL 2464 Hand Rd. Niles MII 49120
Would like to hear from anyone who has a National AN/WRR-2.
N. K. Maxwell K5BA

623 Ute Drive
Stillwater OK 74074

CB to OSCAR

-- from 10 to the sky!

This article describes how to convert a specific 23 $C B$ radio for use on the OSCAR satellites and gives you my ideas on an OSCAR 10 meter bandplan very much like that of W4NVH in the May, 1977, issue of 73 Magazine, p. 106. (He covered the 28 MHz portion of 10 meters, but used the same channel and conversion of $C B$ gear principles.) If you read that article, you will see that the method applies very nicely to many of the now very inexpensive 23 channel CB rigs. The more 1 read W4NVH's article, the more things I could find that directly applied to the Sears 23 chanhel Model 934.36740500 CB I already had.

The CB channels have a few blanks between the 23 channels (remote control, etc.) that are taken care of by one each of the transmitter offset oscillator crystals and receiver offset oscillator crystals. In my transmitter, the crystal frequencies of $10.595,10.615,10.625$, and
10.635 MHz are used, and, in the receiver, $10.140,10.160$, 10.170 , and 10.180 MHz are used. Following a numbers progression, the oddballs are obviously the 10.595 and 10.140 crystals. In order to maintain continuous coverage, I changed the 10.595 to 10.605 MHz and the 10.140 to 10.150 MHz . Then I had a synthesis scheme capable of 230 kHz coverage in 10 kHz steps.

Considering that the oscar 6 and oscar 7 combined bandwidth is only 150 kHz , and further considering that an AM or AM/SSB mode (even when CW keying is added) would not be at all welcome above 146.000 MHz , my bandplan starts at 146 MHz and works downward. A couple of unique quirks came out of that fact. They alone might add merit to the bandplan, when using CB radios. The first is that, when you convert a CB radio over to the 10 meter band for transmit and receive, two things happen.

The receiver winds up being in the 10 meter downlink, where it belongs, by only changing crystals and repeaking a very few front end stages (on signal, if need be for those of you with little building experience and test equipment).

On transmit, the transmitter signal output is on 10 meters to go to the upconverter, and, believe me, just about every commercially made transverter uses a 10 meter input. I know, because I have spent two years trying to find a Drake TC-2 to go with my Drake TR-6 to get up to 2 meters. Unfortunately, the Drakes run a 14 MHz i-f out of the TR-6 and into the TC-2, negating using anything but Drake's TC-2. Couple this to very few TC-2s having been made at all (that's when Drake dumped their VHF line altogether, leaving us at the mercy of imports), and you can appreciate my problem.

Another transmitter bene-
fit is that the transverter winds up being 116.45 MHz - exactly the OSCAR offset through the translator in reverse. So, when you tune the receiver, you are tracking the transmitter right along with you, plus or minus Doppler. As for Doppler, the CB manufacturers never could get together to decide on what channel they were transmitting or who was on the channel frequency and who was off. So, manufacturers include a little control on most panels now, marked \pm delta - i.e., a Doppler control.

As for the bandplan, if you begin at 146 MHz as the 29.55 MHz downlink (or 146 MHz uplink), the cardinal frequencies of 29.5 MHz and 29.4 MHz (OSCAR 7 band edges) just happen to fall on channel 19 and channel 9 respectively.

Plug in the new synthesizer crystals $X-1$ to $X-6$ and change the offset crystals $\mathrm{X}-10$ and $\mathrm{X}-14$ to pull the band together. Then peak up the synthesizer-output tank (T8 in mine). C37, across the primary in the Sears, may have to be reduced in capacity slightly, if the synthesizer output transformer lacks enough tuning range. Now, with the new synthesized frequencies from 39.955 to 40.155 MHz coming out of the synthesizer, feed a 10 meter signal (signal generator or off air) into the coax fitting. Align the 10 meter (was 27 MHz) front end receiver coil(s), which are T1 and $T 2$ in mine, by backing out the slugs a bit and tuning for maximum agc, signal, etc. Do not touch any other receiver tuning, assuming the rig is new and/or properly aligned for $C B$ frequencies. The i-fs do not change. For CW reception, the easiest way is build a little 455 kHz vco , so you can "pot" control it with dic from outside the radio and not botch things up by drilling holes in the panels. Assuming you like channelized transceiving as little as I do, you can build a second
vco on the synthesizer frequency, or some submultiple of it and multiply, and run it, too, from an outside pot. After all, it is no longer a CB radio, so vfo/vcos are iegal. In my own, 1 kept the crystals in the $X-3, X-4, X-5$, and $X-6$ positions (but at the new frequencies shown), and a vco runs into the $X-1$ position, with $X-2$ a blank. This way you can run the vco from 39.955 MHz to 40.155 MHz using a ten-turn pot for vernier action and, by switching from channel 1 through 4 positions, cover the entire 29.32 to 29.55 MHz range on receive and have the proper transmitter frequencies to upconvert to 145.77 to 146 MHz . With the lower edge below OSCAR, you are about in 2 meter AM land. With the same synthesizer schemes used by so many rigs, even an AM/SSB (23 channel version) is cheaper now and would really be a great way to go, if you want the SSB mode through OSCAR and can afford an extra few bucks. By allowing the voo to tune down to 38.185 MHz for shifting it to cover 230 kHz there, as 39.185 to 39.405 MHz - with a small C switched in?), you can have a dandy 145 to 145.230 MHz out of the transverter and be right with the 2 meter SSB gang. Add a small 2 meter to 10 meter converter (Hamtronics makes a great one), using the same 116.45 MHz oscillator offset, and you have a rig as versatile as the most expensive ones designed for OSCAR and 2 meter gear on the market.

The transmitter conversion is just about as tough as the receiver - in other words, not at all. In mine, once the receiver was done (hence, the synthesizer), it involved peaking up the old 27 MHz transmitter stages to the 10 meter band by backing out the slugs a little and, where needed, reducing the tuning capacitors across the transformers, when the slug had to be backed out too far to be practical (slug showing out of
Equiv. 2m

New Channel	Freq.	Freq. +116.45	Synthesizer	Transmit osc.	Receive osc.	Note
1	29.32	145.77	$\times 139.955$	$\times 1110.635$	$\times 710.180$	
2	29.33	145.78	X139.955	$\times 1210.625$	$\times 810.170$	
3	29.34	145.79	$\times 139.955$	$\times 1310.615$	X9 10.160	
4	29.35	145.80	$\times 139.955$	X 1410.605	X10 10.150	
5	29.36	145.81	X239.995	$\times 11$	$\times 7$	
6	29.37	145.82	X239.995	$\times 12$	$\times 8$	
7	29.38	145.83	X239.995	$\times 13$	X9	
8	29.39	145.84	X239.995	X14	$\times 10$	
9	29.40	145.85	X3 40.035	$\times 11$	$\times 7$	- Band edge 7
10	29.41	145.86	$\times 340.035$	$\times 12$	X8	
11	29.42	145.87	X3 40.035	$\times 13$	X9	
12	29.43	145.88	$\times 340.035$	$\times 14$	$\times 10$	
13	29.44	145.89	X440.075	$\times 11$	$\times 7$	
14	29.45	145.90	X440.075	$\times 12$	X8 Beacon 6	- Band edge 6
15	29.46	145.91	X440.075	$\times 13$	$\times 9$	
16	29.47	145.92	X4 40.075	区14	$\times 10$	
17	29.48	145.93	$\times 540.115$	$\overline{\mathrm{x}} 11$	$\overline{\times 7}$	
18	29.49	145.94	X5 40.115	X12	X8	
*19	29.50	145.95	$\times 540.115$	$\times 13$	$\times 8$ Beacon 7	- Band edge 7
20	29.51	145.96	X5 40.115	$\times 14$	$\times 10$	
21	29.52	145.97	$\times 640.155$	X11	$\times 7$	
22	29.53	145.98	$\times 640.155$	$\times 12$	X8	
23	29.54	145.99	X6 40.155	$\times 13$	$\times 9$	
24	29.55	146.00	$\times 640.155$	$\times 14$	$\times 10$	- Band edge 6

Table 1. CB radios to OSCAR bandplan for a Sears 934.36740500. All figures in MHz. Xmit: Fsynth - Fxmit osc = four MHz; Rcv. Fsynth - Fin - Frcv osc $=.455 \mathrm{MHz}$ Lo i-f.
the coil form). In my radio this involves T12-C69, T13, T14-C72, T15-C77, T16-114, T17, and T18. This is as easy as tuning up the average Heathkit for the same reasons, because the test equipment is built in the form of a built-in wattmeter (rf output) and swr combination meter function in transmit. Incidentally, when I said peak the receiver for maximum agc on an incoming steady signal, I had an Smeter in my radio to measure that by.

In the extraneous department, the rig 1 have has a noise limiter that works pretty well as is, so I left that alone. It also has a PA position that can be put to good use. Since mine is an AM only rig, I had only CW in mind. The modulatoraudio stages in the transmit mode (they are shared) can be put to use by placing them in PA (which routes the audio to that jack from the receiver as well) and then causing the low audio stages to be an ascilator at some pleasant tone. Or you could use a separate tone oscillator, so that when you key the rig, you have sidetone. On the AM only rigs you might as
well, because $A M$ is not very welcome through OSCAR because of its unnecessary BW.

On the subject of keying, since this is an AM rig only, the + voltage for the modulation is broken away from the modulation winding of the common audio transformer by removing an isolation diode (D13) and opening that path. The + voltage from the power supply section is routed out to the external speaker jack, after taking it out of the receiver audio output path and putting a permanent ground on the low side of the speaker.

While on the subject of the speaker, I had a problem with mine. There is a 10 Ohm resistor in series with the 8 Ohm speaker, whose only purpose I can see is to allow them to run one common audio circuit, transformer, and a lower wattage speaker, and to accept the lower audio output on the bottom-of-theline sets. This was a 1 W 3 -inch round unit in my radio, and it was shorted, to boot.

Part of the reason 1 got the radio for the right price was that it did not work. It had one open copper foil in the
+V copper, where the shorted speaker had tried to make a fuse out of it - and it succeeded. That is absolutely all that was wrong, and I ran it as a base by sharing my Heathkit supply-for the HW 202 FM for months before 1 tried working on it. I got mine for less than $\$ 10$, so check your local sources.

Back to the speaker when I replaced it, I got a 3 -inch round, 2 W replace--ment speaker and stuffed a small, 2 Ohm $1 / 2 \mathrm{~W}$ resistor in the 10 Ohm spot. I can now drive you out of the room with audio!

When you plug a key in the external speaker jack now, the key opens and closes the driver and final + voltages, and you have a CW rig - almost. The microphone circuit in my model is rather tricky, as it does all the changeover (X / R) by voltage switching. I substituted another DPDT switch toggle type - on the same panel as the vco synthesizer and vco/bfo pots, and used it for the transmit position. Leave the microphone and connections off the switch and wire the rest the same, just to be rid of the PTT/ hold-the-button-dowh routine.

When the key is depressed, the LED modulation light comes on, as it is activated by the same power line as the driver and final. It makes a good CW monitor, if you like the visual types and don't want to add the tone oscillator into the audio circuits.

To get the vco lines in and out of the radio, mine had a Heyco type grommet that "bites" the +12 V and ground where it goes into the back panel through a $3 / 8^{\prime \prime}$ hole. Replace it with a normal $3 / 8^{\prime \prime}$ rubber grommet, and you have a hole you can drive a bus through, with plenty of room for 6 to 8 wires.

Convince your CB "good buddy" that he really needs SSB or 40 channels, and offer him a good trade price for his old 23 channel rig. The dealers are offering peanuts on 23 channel rigs, because you can buy a new 23 channel so cheaply now that they can't sell a used one. He will end up happy and so will
you! Or, go see your local CB store, and see if he took the same bath most dealers and wholesalers took, when they were stuck with warehouses of 23 channel stock, when 40 channel hit the market. Talk it up at your club (and the bandplan and see if they agree), and then go make an offer on 10 or more identical units - quantity talks. They are great for CD type groups in crowded 2 meter FM areas!

Last, but certainly not least, if you are the least bit adept at repair work and common logic and own just a VOM or VTVM, you can buy a non-working unit from places like Sears Save Shop and local radio dealers who don't really have much in the way of repair facilities.

Weli, l've given you a plan of attack, a bandplan so you will have company in the present wasteland of 10 meters, a cheap way to get up on OSCAR, some hints for using my unit, and the source for one of your own if you go
looking. Even schematics and manuals are a breeze (unlike the old FM conversion days when any Motorola manual or even a ćlose schematic you saw as a ham was yellowed, battered, tom, thumbprinted, and worn from the use of 50 -plus hams).

You should know that T18, in my rig, is used to adjust the output to 5 Watts and also that the final device used is a 2SC799 with a 10 W hfe of 50 to $90,150 \mathrm{MHz}$ rating with a $B V$ cbo $=80 \mathrm{~V}$, $B V$ ebo $=5 \mathrm{~V}$, and $B V$ well above the rated use! Consider the low duty cycle of CW versus the $A M$ cycle which it was running a steady 5 Watts at. I run mine off the high regulated 18 V dc and load it up (tune) for about 14 W key down. I haven't lost a device yet, but, to be safe, you may want to quit at the manufacturer's (Nippon Electric) rated 10 Watts.

There are only two words of caution 1 will add in closing. If you tackle a PLL
type synthesizer, it's not so easy. It can be done - on some - at some time and expense and risk of odd products sneaking out.

My only other comment is that you should turn back a few issues and read through W4NVH's article. It is excellent background and easy to follow and use. You can figure out just what kind of rig you have, if you already have it, and how to apply my antics to it.

Don't try to part-convert one to cover 10 meters (say, low end, per W4NVH) for $C D$ activity and try to save a chosen "few" of the $C B$ channels for $C B$ use. You void the manufacturer's approval when you cut into the rig, even if you hold a 1st class radiotelephone license, as I do. You void any warranty on the rig any way you cut it. And you could just void your license if you get caught with this modification. Pick your band, and have fun. -
\$

"Wasyerbespriz?"

OK, so you want to save money - can't blame you for that!
After you have called the 800 numbers, got your "best price," sent your money - what do you get? A box. Suppose it doesn't work? (Murphys' law). Ship it back (at your own expense) and wait. Or - two weeks after the warranty expires - so goes the rig... what to do? And since you got that great discount how much attention will you get? Rotsaruck fella! Today's amateur equipment is far more sophisticated than that of even a few years ago, and it's getting more so every day. Service becomes an important issue. At CFP we have decided to offer you an alternative: If you are willing to pay the regular list price on any Drake or Yaesu product, CFP will provide an additional 90 days of warranty protection. This warranty will be identical with the normal warranty with the exception that we will pay all charges including shipping both ways!
There may be occasions when we won't have the item you desire. Should you place an order and we don't, we will refund your money and advise you when it will be available. We won't sit on your money! If you wish a high demand item and want to make a deposit to ensure getting what you want - fine.
Because we are amateurs and concerned about the issues, we limit our transmitter and amplifier sales to licensed amateurs (a license photocopy will do).
Amateur radio is a great service and a greater hobby - lets keep it that way!
Mail Orders accepted. N. Y. residents add sales tax. SASE will get our list of used Amateur Equipment.

WANTED: GOOD CLEAN TRADES!		COMMUNICAT		Store Hours Tues. to Fri. 10-6 p.m.	
WA2KTJ WB2LVW	x	211 NORTH MAIN STREET HORSEHEADS, N.Y. 14845 PHONE: 607-739-0187		Sat. 10-4 p.m. Fri. \& Sat. subect 10 Hamiest weekends Closed Sun. \& Mon.	C54

\$

START YOUR SLOW SCAN TV with a venus *hristmas offer
 MONITOR
 FEATURES:

Oscilloscope display of SSTV signal
Rugged - modular - industrial grade
Modular Construction
Independent easy to use controls
CAMERA
FEATURES:
Use C1 camera with your home TV set
Has both long distance and close-up features Adjustable frame size
Built-in slo-scan bar gen for transmit
Focus on a postage stamp
ACCESSORIES:

SS2K KIT \$195

or SS2 WIRED \$285 \$245

C1 FAST/SLO SCAN
CAM̈ERA $\$ 395$

P1 Polaroid adapter for hard copy photos $\$ 34.50$
V1 viewing hood $\$ 14.50$
T1 tripod $\$ 29.50$

Fig. 7. Two stations must "see" the satellite's transponder simultaneously in order to communicate with each other, i.e., they both must be located in the area "illuminated" by the satellite. Note that a transponder located on the moon will allow communication with stations separated farther apart than a satellite orbiting the Earth at lower altitude.

Kazimierz J. Deskur K2ZRO
P.O. Box 11

Endicott NY 13760

Track OSCAR 8!

-- step-by-step method

TIhe launching of the AMSAT OSCAR 6 and

7 satellites gave amateur radio a permanent foothold in MAX. NORTHERLY LATITUDE
$\left(180^{\circ}-i=87^{\circ}\right)$

Fig. 2. Model of orbiting satellite (static Earth).
space communication. In years to come, satellite com-
munications will become as common as 2 m FM or DXing on 20 m is today.

Although there are now thousands of users of OSCARs 6 and 7, they represent only a very small fraction of the total amateur community. Why is it that so
-...many VHFers who own perfectly suitable equipment never worked through OSCARs?

Apparently, the major deterrent is the lack of familiarity with satellite tracking, which many consider to be a formidable and complex problem requiring knowledge of astronomy, astrophysics, higher mathematics, and other disciplines of science. But, in fact, satellite tracking is a relatively simple procedure easily grasped by those who show even a slight interest in this subject.

The purpose of this article is to explain the procedure of satellite tracking from the standpoint of common sense and simple reasoning. I suggest that the reader follow
the presented sequence of reasoning step by step and not go to the next paragraph before the previous one is fully understood.

Space communication is the future of amateur radio. We might as well get familiar with it, and the knowledge of satellite tracking is the first step.

The First Earth Satellite The Moon

Let's suppose that an OSCAR transponder was placed on the moon. Using suitable equipment, we could communicate through it the way we communicate via 2 m repeaters. Since VHF waves don't bend around the curvature of the Earth, we may assume that the lunar transponder can be accessed only if the moon is above the horizon in respect to the stations that attempt to communicate through it. Obviously, a two-way QSO between distant stations can only take place if both stations have the moon in direct view.

Without any knowledge of astronomy, we can guess that at a particular instant of time the moon will be visible in different directions, and at different angles above the horizon, in different parts of the world. Also, there will be locations on the Earth where the moon will not be visible at all.

With the combination of the revolution of the Earth and the orbiting of the moon, the prediction of its exact celestial position, at a particular day and hour for a chosen geographical location, represents apparently a very complex problem. Nevertheless, this "difficulty" was solved thousands of years ago by ancient astronomers before trigonometry, calculus, computers, and even writing were invented.

The artificial satellites, such as the OSCARs, behave very much like a moon with the following small differ-
ences:

- Artificial satellites are too small to be visible to the naked eye, so their positions can only be predicted.
- They orbit the Earth at the rate of hours per revolution instead of weeks. This implies that their rising and setting at a particular location of the Earth will be more frequent.
- They orbit at low altitudes; therefore, the range from which two stations can "see" a satellite simultaneously will be much shorter (see Fig. 1).

Terminology

In order to better understand satellite tracking, we must form a three-dimensional mental picture of a satellite orbiting the Earth. A globe or any spherical object (even an orange) will greatly facilitate the comprehension of the subject.

In order to simplify the analysis of the orbital flight of the satellite, we are going to assume, for a while, that the Earth is static, i.e., it does not rotate on its axis. Once the static Earth concept is well understood, the introduction of the Earth's rotation, to complete the picture, will not present much difficulty. Fig. 2 shows a view of a satellite orbiting the static Earth. The orbit is circular.

At this time, familiarization with the principal parameters of orbital flight and related terminology is necessary because it will be used throughout the remainder of the article.

Orbit: The imaginary track of the path the satellite follows around the world. The plane of the orbit is fixed in space and is independent of the rotation of the Earth.

Altitude (H): The distance between the satellite and the surface of the Earth. For satellites in circular orbits, the altitude is virtually constant.

Period (P): The time it

Fig. 3. Simulated Earth track on a plane inclined 99° from the equator (static Earth). Note that the orbital plane is fixed in space and the Earth rotates inside this plane from west to east (counterclockwise as viewed from a point above the North Pole).
takes a satellite to make one full revolution around the Earth. The exact moment the satellite crosses the equator from south to north is used as a reference point. The period, therefore, is the time elapsed. between two such equatorial crossings.

Subsatellite Point: A point on the surface of the Earth where the satellite is directly overhead.

Ground Track (also Subsatellite Track): An imaginary path on the surface of the Earth consisting of all subsatellite points (during one period).

Inclination (i): The angle between the equator and the ground track (or the plane) of the satellite. It should be noted that this angle will remain constant through the entire life of the satellite and is not affected by the rotation of the Earth.

The angle of inclination determines the most northerly and most southerly
latitude the ground track will ever reach. You may notice that even if the Earth is rotating on its axis, the ground track will never pass beyond a certain latitude.
-.. Max. Lat. (N. or S.) $=$ 180° - i
For OSCAR AO-D: $i=$ 99°
Max. Lat. $=180^{\circ}-99^{\circ}$ $=81^{\circ} \mathrm{N}$. or S .
Equatorial Crossing Time (EQX Time): The exact time in UTC (GMT) at which the ground track crosses the equator from south to north. Knowing the exact EQX time of any orbit and the time of the period makes it easy to predict subsequent EQX times. We simply add the period (in minutes) to the exact time at which the previous EQX took place. In fact, the EQX prediction tables published by AMSAT and other amateur journals are derived this way.

In order to complete longrange prediction tables, the

Fig. 4. Static Earth projection of the track of $A O-D$ over the map of the Northern Hemisphere.
period must be known with great accuracy, because even small errors accumulate

Fig. 6. Index scale. After setting the longitude of the EQX of the reference orbit, all longitudes of EQX s of successive orbits of the day can be predicted.

Fig. 7. Time scale. Setting the time of the EQX time of the reference orbit opposite index \#1 allows prediction of EQX times of all consecutive orbits of that GMT day. Note that the Earth moving $.25^{\circ} / \mathrm{min}$. will rotate $P_{x} .25^{\circ}$ during one period of the satellite, or 25.7° for AO-D. This corresponds to the index mark separation as shown in Fig. 6. Now, if the longitucle and the time of the reference EQX are set against index mark \#7, we can predict both time and longitude of subsequent EQXs of that GMT day.

Equatorial Crossing Longitude (EQX Lon.): The exact longitude on the equator at which a particular EQX, from south to north, takes place. Also called the "Ascending Node."

It will be shown later that subsequent EQX longitudes are separated by $\mathrm{P} / 4$ degrees. These figures are also used for Jong-range prediction of the EQX data.

Reference Orbit: The first orbit of a UTC (GMT) day, j.e., the first orbit that crosses the equator after 0000 UTC (GMT) from south to north.

Orbit Number: The count of the satellite's full revolutions around the Earth from the instant of the launching.

Reference Orbit Data: The date, orbit number, time, and longitude of EQX of a particular reference orbit. (Example: Mar. 17, 1978, 10526, $0012: 24,56.3^{\circ}$.)

Ascending Orbit or Pass: The part of the orbit when the satellite travels from south to north (over either the Southern or Northern Hemisphere).

Descending Orbit or Pass: The part of the orbit when the satellite travels from north to south. Note: The orbit will change from ascending to descending at the point where the ground track reaches its most northerly position (closest to the North Pole). The orbit will change from descending to ascending at the point where the ground track reaches its most southerly position (closest to the South Pole).

Ascending Node: The EQX position (longitude) during the ascending part of the orbit. It is often used as a reference point for orbital calculations (see Reference Orbit)

Descending Node: EQX position (longitude) during the descending part of the orbit.

Developing the Ground Track on a Static Earth

As previously stated, we are going to assume at first that the Earth is static (non-

Fig. 8. Calculation of the distance from the tracking station at which the satellite enters the area of accessibility (acquisition of signal - AOS).
rotating). The satellite is the proposed OSCAR AO-D with the following orbital parameters:

Period: $P=102.79 \mathrm{~min}$.
Inclination: $\mathrm{i}=99^{\circ}$
Average Altitude: $\mathrm{H}=$ 542 miles (872 km)
Examining Fig. 2 again, let's follow the ground track of the satellite.

Assuming the reference point to be of 0° longitude at the equator (ascending node), with the ground track inclined to 99° in respect to the equator, the satellite will follow the following path:

- Starts at 0° longitude at the equator (ascending node). Travels northward reaching the most northern latitude of 81° ($180^{\circ}-\mathrm{i}$).

Begins descending and then crosses the equator at 180° longitude (descending node).

Continues moving southward until it reaches the most southern latitude of -81°.

- Starts ascending and crosses the equator again at 0° Iongitude.

The total elapsed time of one such trip around the
world would be equal to the period of the satellite, or ≈ 103 minutes.

If we would slice the globe at a 99° angle, in respect to the equator, and put both halves together again, the seam line would follow exactly the ground path of OSCAR AO-D on a static Earth.

Another way to visualize the Earth track is to cut a circular hole equal to the diameter of the globe in a sheet of stiff material and fit the sheet over the globe at an angle of 99° in respect to the

Fig. 9. Area of accessibility. The satellite will be available for communication when its subsatellite point is found inside the circle of accessibility.
equator, as shown in Fig. 3.
A satellite traveling in a circular orbit moves with a constant velocity. Consequently, all equal distances will be covered in equal increments of time.

The period of the AO-D is

103 minutes. Therefore, if we divide the entire length of the ground track into 103 equal segments, each segment would represent a distance traveled during a time interval of one minute.

In spite of its good

Time (min.) After EQX	Lat.	Long.
-8	-27.6	353.3
-6	-10.7	355.3
.4	-13.8	356.7
-2	-6.3	358.4
0	0.0	0.0
2	6.3	1.6
4	13.8	3.3
6	20.7	4.9
8	27.6	6.7
10	34.5	8.5
12	41.3	11.3
14	54.1	13.8
16	61.6	17.0
18	68.1	21.3
20	74.1	28.0
22	79.1	39.6
24	81.0	102.7
26	78.1	138.6
28	66.7	157.0
30	59.9	169.0
32	53.2	172.6
34	46.4	176.7
36	39.6	179.7
38	32.7	182.5
40	25.9	186.4
42	19.0	188.5
44	12.1	190.2
46	5.2	191.8
48	-1.7	193.4
50	-8.6	195.1
52	-15.5	196.7
54	-22.4	198.4
56	-29.3	200.1

Table 1.
accuracy, tracking of the satellite on a globe is rather cumbersome. A flat map is much more convenient for this purpose. Probably the best and most easily obtainable polar projection map. suitable for satellite tracking is the OSCARLOCATOR, distributed and sold for just $\$ 1$ by the ARRL. This handy device can be adapted for tracking almost any satellite.

Let's now project the static Earth satellite track onto the map. Once the track is drawn on the globe, including the time marks, its coordi= nates, latitude and longitude at one minute intervals, can now be drawn at corresponding coordinates on the map as shown in Fig. 4.

If the track is traced on a separate piece of transparent material and pivoted on the North Pole, it can now be rotated to allow the start of its origin (9 min. mark) at the longitude of any chosen equatorial crossing.

Setting an auxiliary clock to read $\emptyset \emptyset$ minutes at the exact time of the equatorial crossing, we can now follow the progress of the satellite minute by minute. The time on the auxiliary clock will correspond to the time marks on the track that, in turn, will indicate the position of the satellite at that very time.

Obviously, tracking of the satellite on the static Earth is of little use. Therefore, we will now introduce the effect of the rotation of the Earth.

As mentioned previously, the plane of the orbit of the satellite is fixed in space, but the Earth rotates on its axis. As the Earth rotates, the ground track will no longer retrace itself during each orbit, but will be displaced $.25^{\circ}$ towards the west for every minute of satellite travel. The rationale is as follows:

- The Earth rotates on its axis from east to west (counterclockwise as viewed from a point above the North Pole).
- The Earth makes one full revolution of 360° in 24 hours or 1440 minutes.
- This corresponds to angular travel of 15° per hour $(360 \div 24)$ of 1° in 4 min utes.
- In one minute, the Earth will rotate $.25^{\circ}$.

Now, how will this affect the Earth track developed for the static Earth (Fig. 4)?

In Fig. S, the static Earth track is drawn with a dotted line; the true Earth track (for the rotating Earth) is the solid line. You will notice that the true track is shifted $.25^{\circ}$ for every minute of satellite travel.

For example: 10 minutes after EQX, the true track will be shifted 2.5° west of the static Earth track; 20 minutes after EQX $-5^{\circ} ; 30$ minutes after EQX - 7.5°; 51.4 minutes (half of the period) after EQX - $12.85^{\circ} ; 102.79$ minutes after EQX (full period) -25.70°.

From the last figure, we may draw the correct conclusion that after one full period, the EQX longitude (ascending node) will be located $\mathrm{P} / 4^{\circ}$ west from the preceding one (in this example, $102.79 / 4=25.70^{\circ}$).

The effect of the Earth's rotation may be demonstrated another way. Using Fig. 4 with the Earth track (static Earth) drawn on a transparent material and
pivoted on the North Pole, we immobilize the track and rotate the map counterclockwise at a steady rate. The time checks on the track indicate the position of the satellite at so many minutes after EQX. If while rotating the map we mark the location of substatellite points, we will notice that the resulting track will look similar to the one shown in Fig. 5.

For example: To establish the satellite location 10 minutes after EQX, we rotate the map 2.5°; for 20 minutes after EQX, rotate the map 5°; for 30 minutes after EQX, rotate the map 7.5°; etc.

Fortunately, you don't have to go to all this trouble to develop the Earth track for AO-D. For your convenience, Table 1 lists the coordinates for the normalized Earth track for OSCAR AO-D. These equations were used in the preparation of the table:

Latitude $=\arg \sin [\{\sin$ i $\} \sin (360 \mathrm{~T} / \mathrm{P})]$ 12\}
Longhtude $=\arccos i \cos (360 \mathrm{~T} / \mathrm{P}) / \cos \theta]+\frac{1}{4}$
where: $\mathrm{i}=$ orbit's inclination to equator, $P=$ satellite period, $\mathrm{T}=$ time after EQX (ascending node), and $\emptyset=$ latitude (result of equation 1).

Note: Equation 2 minus the last term (T/4) will calculate longitudes for the Earth track on the static Earth. Equation 1 is valid for both the static and rotating Earth

Employing the above formulas, the Earth track of any satellite in a circular orbit can be easily calculated using a simple scientific calculator, as long as its period and inclination are known.

To use the device, we take published EQX data (time and longitude) of a chosen orbit. Align the zero minute mark of the pivoting transparent ground track on the equatorial longitude of the EQX. Start the clock at $\emptyset \emptyset$ minutes at the time of EQX and follow the satellite's progress minute by minute by relating the time marks on

Fig. 10. Calculation of the distance from the tracking station at which the satellite is located 20° above the horizon.
the track to the time indicated on the clock.

Successive EQX Index Scale

We learned that the longitudes of successive equatorial crossings are separated by P/4 4° (25.70 for AO-D in which the period is 102.79 min.), and that in order to predict the EQX of the next orbit, we must add that value to the EQX longitude of the previous pass.

This process can be easily "automated" by adding a circular scale to be located under the map and pivoted
on the North Pole. The scale consists of index marks separated by $\mathrm{P} / 4^{\circ}$ and numbered from 1 to 14 . We will consider index mark number 1 as a reference and use it as a starting point for calculations of EQX longitudes of all satellite orbits of one full UTC (GMT) day (see Fig. 6).

Obtaining the data of the reference orbit of a chosen day, we align both the origin of the ground track and the longitude of the reference orbit against index mark \#1 on the index scale.

Now, without disturbing
the position of the map and the index scale, we can pivot the ground track and set its origin on the successive index marks and read the value of the longitude of the equator on the map. These will be the EQX longitudes of successive passes of the satellite.

In this way, we are able to predict EQX longitudes and follow the satellite's ground track over the Northern Hemisphere throughout the entire day.

EQX Time Scale

We also learned that the

Fig. 11. Circles of equal elevation in respect to tracking station located at A.
time of the successive EQX can be predicted by adding the value of the period of the satellite to the actual time of the previous EQX. For OSCARs 6 and 7, with periods almost exactly 115 minutes, it was a relatively simple procedure: Two hours were added and then 5 min utes were subtracted. For OSCAR AO-D, with a period of ≈ 103 minutes, such calculations are a little more cumbersome and prone to frequent mistakes.

In order to simplify this problem, a rotary time scale has been added. It is placed between the map and the previously described index scale (see Fig. 7). The circumference of the scale $\left(360^{\circ}\right)$ is divided into 24 sec tions of 15°, each corresponding to 1 hour of Earth rotation. The hour segments can further be subdivided into 10 minute intervals 2.5° long. If more accuracy is needed, more subdivisions can be made; one minute will correspond to $.25^{\circ}$ on the scale.

Now, the setting of all scales for the reference orbit is as follows:

- Align the track, the map, and the index mark \#1 as described previously.
- Align the exact time of the EQX of the reference orbit also against the index mark \#1.
- Now the EQX times of successive orbits can be read directly on the time scale just opposite the corresponding index marks.

Once set for any chosen reference orbit of a particular satellite, both the map and the time scale can be cemented together (but not too permanently) and will not require resetting for a period of several months. The rationale is as follows:

- EQX longitudes are separated $P / 4^{\circ}$ apart.
- During one period of the satellite, the Earth rotates $\mathrm{P} \times .25^{\circ}$ ($.25^{\circ}$ per minute) or also $\mathrm{P} / 4^{\circ}$. Therefore, index marks spaced $\mathrm{P} / 4^{\circ}$ apart will correctly indicate the correct time intervals between successive equatorial crossings.
- Cementing the map and the time scale will imply that each longitude of EQX will have a specific time associated with it. This can easily be verified by consulting any long-range orbital predictions. You will find that like equatorial crossing longitudes always occur at the same UTC (GMT) time.

In practice, this relation is not that constant. Due to

Fig. 12. Complete range overlay showing both azimuth and elevation.
various factors, such as the solar year not being exactly 365 days, gravitational pull of the moon, etc., a slight drift between both scales will be noticed over a period of time. Therefore, it will be necessary. to realign the scale slightly a couple times a year if high accuracy is required.

Summary

An orbital calculator described above consisting of four scales (the Earth track, the map, the time scale, and the index scale) provides a complete satellite tracking system, as long as the data of the reference orbits are available. The system allows prediction of EQX times and the longitudes of all successive orbits of that day. In addition, this system permits tracking the exact position of the satellite during the entire 24 hour period when the spacecraft is passing over the Northern Hemisphere.

Azimuth/Elevation Overlay

Just to be able to track a satellite in respect to the Earth is not sufficient for an OSCAR user. Since the communication via satellite is only possible when the satellite is within the "view" (above the horizon) of the tracking station, the user must be able to predict the
rising and setting of the spacecraft at his geographical location. Moreover, if directional antennas are used, the azimuth (bearing) and the elevation (angle above the horizon) of the satellite in reference to the communicating station must be known at all times so the-antenna can be aimed directly toward the orbiting transponder.

Communication Range

Fig. 8 depicts, diagramatically, the Earth and the orbit of the satellite. "Both are drawn to scale. The Earth radius is 3960 miles (6371 km), and the average altitude (H) of AO-D is 542 miles (872 km). Consequently, the radius of the orbit will be 4502 miles (7243 km).

Point A in Fig. 8 represents the QTH of the user and the horizontal line represents the horizon as viewed from point. A. As long as the path of the satellite lies below the horizon, the bulk of the Earth will prevent radio waves from reaching the transponder and no communications will be possible.

At the very moment the satellite crosses the local horizon, it will become "visible" to the user and two-way communication through the spacecraft's transponder will be possible. It stands to rea-
son that at the instant the satellite sets below the horzone, the communication via its transponder will be abruptly terminated.

With the aid of Fig. 8, we can easily calculate the maximum communication range of OSCAR AO-D. Point B on Fig. 8 represents the location of the satellite just crossing the local horizon of a station located at A. A straight line drawn between B and the center of the Earth will intersect the surface of the Ear th at point C, which becomes the subsatellite point of the spacecraft just rising above the horizon.

It becomes evident that the distance $A C$ on the surface of the Earth is the maximum distance from which the satellite will be visible from point A. In other words, as long as the subsatellite point of the spacecraft is no further away than distance $A C$, the satellite will be within communication range of a station at point A.

The distance $A D$, on the surface of the Earth measured in Great Circle degrees, is the angle $A O C$. Careful measurements of this angle, or mathematical calculations, will show that for OSCAR AO-D, this distance is 28.4° Great Circle degrees (1 Great Circle degree equals 69.1 statute miles, or 111.2 km).

Therefore, we may conclaude that as long as the subsatelifite point of AO-D is found within a circle with the radius of 1963 miles (3159 km) from the user's QTH, the satellite will be available for communication.

This circle of accessibility is easily plotted on the globe. Using a compass, measure the distance of 28.4° (using longetude markings on the equator) and inscribe a circle centered on the user's QTH (Fig. 9).

Two stations communicating with each other must have the satellite in view simultaneously. Therefore, their areas of accessibility must overlap. Also, the satellite must be passing through that

Fig. 13. Complete tracking system. Example: Reference orbit - 0032 GMT, longitude 57.2°. Set these values against index \#1. We want to track AO-D during 14 th orbit. Under index \#14, we read EQX data: time 2247 GMT, longitude 37.8°. Tracking: satellite AOS (acquisition of signal) 10 minutes after $E Q X, 90^{\circ}$ azimuth. 15 minutes after $E Q X$ - azimuth 45°, elevation $\approx 8^{\circ}$. LOS (loss of signal) 20 minutes after EQX, 10° azimuth.
overlapping area in order to be visible from both QTHs at the same time. With this in mind, we may conclude that the maximum theoretical separation between two distans stations capable of communicating via AO-D will be $2 \times 28.4^{\circ}=56.8$ Great Circle degrees or 3926 miles $(6318 \mathrm{~km})$.

Equal Elevation Range

Using a procedure similar to the one described above, we may plot distances from which the satellite will be seen at a constant elevation angle above the horizon in respect to point A. Fig. 10 shows how it is done.

Angle $B A D$ is the angle of the satellite above the horizoon, say 20°. Point C is the subsatellite point at this eldration. Consequently, the
angle $A O C$ is its distance culated. As in the previous from A in Great Circle example, a circle corresponddegrees.

Using a graphical method, or mathematical calculations, distance $A D$ can now be cal-
ing to that distance can be drawn on the globe. Repeating this procedure for differint values of elevation angles,

Elev.	~ Distance		
Angle	c	Miles	Km
0	28.4	1962	3158
1	27.4	1893	3096
2	26.5	1831	2947
3	25.5	1762	2836
5	23.8	1644	2647
10	20.0	1382	2224
15	16.8	1161	1868
20	34.3	988	1590
30	10.4	719	1156
40	7.6	525	845
50	5.6	387	623
60	3.9	269	434
70	2.5	173	278
80	1.2	83	133
90	0	0	0

Table 2. Distance between subsatellite point and tracking station at different elevation angles. Note that even a small topological obstacle that elevates the horizon angle by 3° will shorten the distance of accessibility by 200 miles.
a family of concentric circles can be plotted, each representing a different angle of elevation (Fig. 11).

Elevation angles as a function of distance from the user's QTH for OSCAR AO-D are given in Table 2. You may observe, by examining Table 2, that even a small loss of low angle radiation due to topological configuration of one's QTH may result in substantial loss of the maximum communication range.

Azimuth Lines (Bearing)

Once the circle of accessibility is drawn on the globe, the azimuth, or bearing, lines can easily be added.

If, for example, we want to draw azimuth lines every 15°, we divide the circumference of the circle of accessibility into 24 equal parts and draw straight lines toward the center of the circle as shown in Fig. 12. If azimuth lines at 10° intervals are needed, the circle must be divided into 36 equal parts.

Projecting Azimuth/Elevation Overlay on a Flat Map

Once the azimuth/elevation overlay is drawn on the globe, it can be transferred on the circular orbital calculator described previously.

This is accomplished by transferring coordinates (longitudes and latitudes) of various points of the overlay from the globe to the corresponding coordinates of the flat map. The result will be an elliptical overlay with curved azimuth lines as shown on Fig. 13.

Due to projection distortion, the shape of the overlay will be different for different latitudes of the user's QTH circular for North Pole and quite elliptical for points close to the equator. It should be noted, however, that the overlays will be identical in shape for QTHs located at identical latitudes.

Notes

1. A globe produced by
the National Geographic Society comes equipped with a transparent "cap." If the azimuth/elevation overlay is drawn on the cap, it can easily be centered on any chosen location of the globe allowing instant determination of coordinates for azimuth and elevation points from that location.
2. Those who possess a so-called "azimuthal equidistance projection map" centered on (or very close to) his own geographical location can use it easily for plotting the azimuth and elevation overlay and don't have to resort to the more cumbersome globe. (The ARRL DX map is of this type and is centered on Wichita, Kansas. Other maps centered on principal cities are available from the U.S. Dept. of Commerce, Coast and Geodetic Survey.)

Calculations involved in the development of the az/el overlays are quite complicated and involve knowledge
of spherical trigonometry. This subject is bevond the scope of this article.

A circle drawn on the northern projection map (such as used in the ARRL's OSCARLOCATOR) is a reasonable solution, if utmost accuracy is not required. The circle, however, will indicate somewhat shorter than actual range to the west and east of the tracking station.

Application

To use the az/el overlay, we simply follow the satellite's progress and determine its subsatellite points during the pass.

If the location of the satellite is found within the borders of the overlay, the spacecraft is accessible for communication.

Then, the correct antenna bearings are determined by relating the satellite's position in respect to the azimuth/ elevation markings on the overlay as shown on Fig. 13. ■

TEN-TEC 544 DIGITAL. Another ahead-of-its-time achievement from the pioneers in solid-state HF amateur radio technology. The 544 Digital joins its successful companion, Triton IV, to chart new paths in engineering.

THE RECEIVER. Deserving of all superlatives.
Range: $3.5-30 \mathrm{MHz}$ (plus " 160 " with option). MOSFET RF Amplifier with Resonate Control for a sensitivity of $0.3 \mu \mathrm{~V}$ for 10 dB S $+\mathrm{N} / \mathrm{N}$. And overload minimized. Noise Blanker option: remarkably effective against impulse noise, functions in the IF, controls from the front panel. Hetrodyne crystal mixed VFO: steady as a rock. 8 -pole 9 MHz Crystal-Lattice IF filter for a selectivity curve straight out of the text books: steep skirts, flat top, and narrow (2.5 kHz bandwidth, 1.8 shape factor at $6 / 60 \mathrm{~dB}$ points). Offset Tuning, with LED indicator, permits independent tuning of the receiver through a 10 kHz range (approx.). As one owner put it, "it makes SSB nets a breeze." And that beautiful Digital readout: six $0.43^{\prime \prime}$ LED digits, 5 in red and the least significant 6 th in green, reading to 100 Hz with an accuracy of $\pm 50 \mathrm{~Hz}$, settable to WWV. (Who needs a calibrator? And, indeed, it has none). WWV reception at $10 \& 15 \mathrm{MHz}$. The sound? So beautifully clean and clear, it wins raves from all. Less than 2% distortion. Built-in speaker to clear the operating position. And External Speaker/Phone jack. CW Filter option, 2-position, 150 Hz width. Zero-Beat Switch for right-on CW . Whether you operate SSB or CW or both, you'll agree the 544 has a truly superior receiver section.

THE TRANSMITTER. 200 Watts Input - all bands, SSB or CW. Instant band change without tuneup! And no danger of off-resonance damage, even with the wrong antenna. 8-Pole SSB Filter. Automatic Sideband Selection, reversible. Push-Pull Output with the heat outside of the cabinet. 100\% Duty Cycle so you can use it for RTTY and SSTV. Front panel ALC control with LED to show operation in the ALC region. Meter shows SWR when transmitting. VFO circuit is permeability tuned, has less than 15 H_{2} change per F° after 30 min . warmup, less than 10 Hz
change from 105-125 VAC with accessory power supply. SSB speech quality is completely natural, CW signals clean, articulate. And full CW break-in! So right you wonder why it wasn't done before - turns monologs into conversations. Sidetone is adjustable in pitch and volume. Automatic CW offset of 750 Hz P.T-T. Hi-Z mic. input. RF Output-Z $50-75$ ohms, unbalanced.

THE CONSTRUCTION. Styled for today and tomorrow - etched aluminum front panel, black nomenclature, black top and sides. Ruggedized chassis stands up to the rough handling of mobile / portable use. Modular construction: 10 plug-in assemblies, 9 fixed circuit boards $(65$ transistors 38 diodes, 14 ICs, 1 LSI, 6LED displays). Snapup front feet. Size: $4 \frac{1}{2} \times 13-5 / 8 \times 13$. Net weight: 12 lbs.

THE ACCESSORIES. Model 242 Remote VFO for six-mode operation: 241 Crystal Oscillator for 6 spot freqs.: 240 Converter for 160 Meter operation at slightly reduced power level; 215P Microphone \& Stand; 252G protected power supply; 262G power supply plus VOX plus 2 speakers; 207 Ammeter for supply monitoring; 249 Noise Blanker: 245 CW Filter: 212 Crystal for 29.0-29.5 MHz ; 213 Crystal for $29.5-30.0 \mathrm{MHz}$. Plus various sized matching blank enclosures.

TEN-TEC 544 DIGITAL. So right, so advanced, it may well be the last rig you'll ever need to buy!

544 Digital - $\$ 869$
540 Non-digital - $\$ 699$
See the 544 and its companion 540 non-digital transceiver at your nearest TEN-TEC dealer, or write for full details.

ENCORE! ENCORE! TRITON GOES DIGITAL

Build A 2m Power Amp

- great for OSCAR uplink
power levels of 10 to 25 Watts. There is a much better device available in the 25 to 30 Watt range, the Motorola MRF238. For comparison of the data sheets of the 2N5591 and MRF238, see Table 1.

At 150 MHz , the gain of the MRF238 is approximately 0.5 dB higher than at 160 MHz (shown in Table 1). The MRF238 is rated at 30 Watts and the 2 N5591 is rated at 25 Watts. In practice, the MRF238 has proven much more rugged than the 2N5591 series (more tolerant of high VSWR). The MRF238 also has higher efficiency.

The amplifier shown schematically and pictorially in Figs. 1 and 2 respectively is not unlike many others; however, it makes use of the high performance MRF238.

The performance data in Table 2 was recorded for this

Class C amplifiers have been popular for some time for 2 meter use. However, to go to the trouble of adding an outboard amplifier, it must produce enough gain to make it worthwhile. A minimum of 6 to 8 dB is
required to make the additional amplifier worthwhile and 10 dB gain is desirable.

Many amplifiers I have observed, both commercial and homebuilt, have used two generation old transistors, 2 N 5590 and 2 N 5591 , for

Fig. 1. Amplifier schematic. C1-C4 - Arco 463, 464, or 424; RFCl - 10 t \# 20 on 270 Ohm 1/2 Watt resistor; C5 -- $3-90 \mathrm{pF}$ silver mica in parallel or 2-150 pF uncased micas also in parallel; RFC2 - 6 to 8 turns \#18 around toroid core; L1 1/2 turn \#74 approx. 1 娄 inches long; L2 - 4t \#74, 7/4" I.D. spaced wire diameter; L3 - Curved wire $\# 14,1-1 / 4^{\prime \prime}$ long; Q1 - MRF238 Motorola rf power trans;; DI-D8 - 1N4148; T1-T2-1/4 wavelength of $R G-774$ or similar 50 Ohm coax cable; D9 - 2 Amp silicon rectifier.

Fig. 2. Photo showing construction of the amplifier. The input is via the BNC connector at the top.

Device	Voltage	Freq.	Power In	Power Out	Gain	Voltage	Power in	Power Out	Gain
2N5591	13.6	150 MHz	2 Watts	10.8 Watts	7.3 dB	13.7	2 Watts	26 Watts	11.1 dB
			4 Watts	20.5 Watts	7.1 dB	13.7	1.3 Watts	18 Wates	11.4 dB
MRF238	13.6	160 MHz	1.5 Watts	19.5 Watts	11.1 dB				
			2 Watts	24 Wates	10.8 dB		2. Per	mance dat	
			3 Watts	30.5 Watts	10.1 dB				

Table 1. Comparison of 2N5597 and Motorola MRF238.
amplifier.

A small loss is involved with the diode switching.

The amplifier was assembled by using single-sided copper epoxy board and cementing small "islands" of board onto the main board.

The main board is $2-7 / 8^{\prime \prime} \times$ $5^{\prime \prime}$ and the minibox is $3^{\prime \prime} x$ $5-1 / 4^{\prime \prime} \times 2-1 / 8^{\prime \prime}$. A heat sink is mounted to the top of the minibox. The only critical items are L1, L3, and C5. Make sure T1 and T2 are an electrical $1 / 4$ wavelength,
approximately $13-1 / 2^{\prime \prime}$ with polyethylene coax (RG-174). All capacitors should have leads as short as possible. The amplifier is usable with inputs of less than 1 to 2.5 Watts.

The price of the 30 Watt MRF238 is 58.55 in unit quantities, which is less than the 25 Watt 2 N5591 or

2N6082, another point in its favor.

If all items are bought new, the cost is about $\$ 23$; however, with a reasonable junk box, it can be constructed for about $\$ 12$ (the MRF238, a minibox, and miscellaneous items not in the junk box). -

CHANNELIZED OR SYNTHESIZED

CHOOSE THE ONE THAT'S RIGHT FOR YOU

If you operate on just a ferw channsle, you really don't. need complete, fuly-synthesized multiple frequency capability. With the Clegs z-metar Mark. $\overline{3}$ FM transceiver you can select up to 12 fixed frequencies for nets, repeater stations or any other channels you work regularly. So if you're looking for selected channel convenience for a small investment, order your 15 -watt Mark 3 today. th's only 169.50. And if you order before December 31 , get the matched crystals you need for aniy 6.00 per pair.

Or if you need more power with full caverage from 144 to 148 MHz in 5 KHz staps. you're in business with a fuly synthesized Clegs RM-36. Bilght digital display gives you instant frequenay readout. Big 8E-rstit oatput for extra punoh. Built in eapability for standard $\pm 600 \mathrm{KHz}$ repeater splits. Fus your selection of any "odd ball" split you want by just inserting the proper orystals. lt's all yours fon the special price of 959.85

Call us on our toll free WATS line for compligte details on these supervalues. Just dial 1-800.203-0250. (in Pa. call collect $717489-7221$). Or drop us a card and we'l mall you full information on all Clegs products as well as our related HF gear. Glegs Communications Corp.. 1911 Old Homestead Lane, Greenfeld Inoustrial Park Fast, Lancaster, Pa. 17601.

Fon faster service

NEW! \$32.50
plus $\$ 1.50$ s/h
NY res. add tax

Features:
CMOS Electronic Keyer
State-of-the-art CMOS circuniry

- Self completing dots and dashes

Dot and dash memory

- lambic keying wath any squeeze paddle -5.50 WPM
- Speed, volume, tone controls, sude tone and speaker - Low current drain CMOSbastery operation
- Deluxe quarter-inch jacks for keying and outpur
- Handsome eggshe ll wheie base - woodgrain top
- Compact and portable $=1-718 \times 4.1 / 4 \times 61 / 4$
- Grad bleck keying
- Wired and rested - iully guaranteed - less butery - - . Dealer inquiries invited

RAC
Electronics, Inc. 1106 Rand Bidg. 118 Buffalo NY. 14203

BC-206

Frequency Counter FM - AM - SSB \& CW Operates with all transceivers

Frequency range $2,000 \mathrm{kHz}$ to 199.999 MHz Display 6 digit $1 / 2^{\prime \prime}$ LED display

- Input sensitivity 100 MV @ 50 Ohms
- Gate time 80 Ms
- Stability .001\%
- Source Current 500 mA
- Max power 200 Watts
- Size $1.5 / 6^{\prime \prime} \mathrm{H} \times 3.1 / 8^{\prime \prime} \mathrm{W} \times 4-3 / 8^{\prime \prime} \mathrm{D}$
- Fully assembled, not a kit.
- $\$ 149.50$ shipped PP. CA res. add 6%

NCG Companies
1275 N. Grove St.
Anaheim CA 92806

Build A
 General Purpose Preamp

- uses common components!

For those of us who are engineers, it is relatively easy to crank out a custom circuit to fit every little need. However, most experimenters and hams are not in that category, and, for them, the next best thing is an accumulation of a few good circuits about which they know a lot. This article describes a simple audio amplifier which has high gain, low noise, and excellent stability toward temperature extremes.

While it is very simple and is used in many commercial devices, it can be used in almost all those places where you need a preamp, such as mike boosters, first af amplifier after a detector stage in a receiver, etc.

Referring to Fig. 1, the circuit can be seen as a direct coupled pair of 2N3904 transistors. This transistor is
cheap, high gain, fairly low noise, and very easily obtained. The Q2 transistor is hooked up like any ordinary amplifier stage, but the base resistor that normally goes from its base to ground has been replaced with another transistor, Q1. This Q1 transistor varies the bias on Q2, so the circuit is immune to heat effects. The way it's hooked up, if Q2 draws more current, the voltage on R2 rises, turns on Q1 harder via the 100 k resistor connected to its base, and cancels out. the increased current in Q2. The result is almost no change in current due to temperature variations. The capacitor C2 prevents the ac signal from being fed back and reducing the overall gain. By placing the capacitor as shown, a very small value, which is also small in physical
size and cheaper, will permit the amplifier to keep its full gain to low frequencies as well as wouid be the case for a very large C placed across R2. The values in Fig. I will amplify down to about 10 cycles using a physically small capacitor. To make the amplifier roll off at a higher frequency on the low side, reduce C 2 to about 1 uF or less, or, alternately, you could reduce the 100 k sesistor to about 10k. This would make the frequency roll off around 100 cycles and turn the circuit into a speech amplifier rather than a^{-} hi-fi type.

The circuit shown in Fig. 1 performs best when driven by a moderate impedance source from 500 Ohms to 3 k Ohms impedance. With this kind of source, the gain will
be about 250 , and the output noise with no signal in will be about 2 millivolts. This is equivalent to an input noise of only 8 microvolts, so the noise is quite low for all but extraordinary uses.

If you wish to drive the circuit with a low impedance source, such as a speaker of 4 to 16 Ohms or a telephone earphone (which makes an excellent high output mike), use the circuit in Fig. 2. Here, the base is tied to ground via a capacitor, and the signal is fed to the emitter of Q 1 through a capacitor. This circuit will perform very similarly to Fig. 1, but will have slightiy higher gain reaching perhaps 500 and about the same low noise performance.

Ten microfarad capacitors are used throughout because they are small and cheap, and are more than enough to do the job here.

This simple circuit can be made up in a ball smaller than an acorn and put into mikes to give you more gain than you need to drive even the worst transmitter. It also works well when driven by a speaker put out in the yard to let you listen for prowlers at night, when you don't care to get out of a warm bed, but the dog barks like he's on to something. Fed into any hi-fi input, such a preamp will let you hear better than if you were out in the yard. There are many other uses, and most of them will please you because the low noise of this preamp lets you really hear clean audio.

Fig. 1.

Fig. 2.

HEATHKIT:The name in Amateur radio... and now computers!

SB-104A Amateur Transceiver

The world-famous S8-104 with significant improvements. We've increased the sensifivity to $0.5 \mu \mathrm{~V}$ on all bands and included a fully assembled and tested receiver front end circuit board for reduced assembly time. The optional 400 Hz filter is independently selectable for CW operation. We've maintained the features that made it famous too - totally broadbanded, all solid-state, digital frequency readout and more. Make the SB-104A the "heart" of your station. Only $\$ 669.95$

HW-2036 2-Meter Mobile Transceiver

Our value-standard 2-meter rig offers true digital frequency synthesis in 5 kHz steps and a built-in tone encoder to access most repeaters! Also features built-in simplex, + and -600 kHz offsets, and an aux. position that lets you add your own crystal for any other offset crystal you may want. The HW-2036 has $0.5 \mu V$ receiver sensitivity and a transmitter that can operate into an infinite VSWR without damage! Come on up to 2 -meters with one of the best mobile rigs you can get.
Only $\$ 269.95$

 tion and product support services coupled with low Heath prices make the difference.

Nery seli-Instruction Course
 in Microprocessor Operation and Application

Another addition to Heath's famous Continuing Education Series. Learn microprocessor operation, interfacing and programming. Hardware and software experiments let you get hands-on experience using the ET- 3400 Microprocessor Trainer.

Receive CW With A KIM

- micro-controlled, of course!

In the january, 1977, issue of 73 Magazine, WB2DFA presented a fantastic article concerning the use of the KIM-1 microprocessor for the transmission of Morse code. We have used the program repeatedly on the air since that time, and it has been met with never-ending amazement. The KIM was finally given a ham-oriented use. The next step had to be reception of Morse, a formidable project hinged on an entire handful of variables: Morse code was not predictable - speeds changed, intra- and intercharacter lengths were not constant, word spaces seemed unpredictable, and even sending "style" played a big part. Could it be done? Finally, after much writing, rewriting, hour-long QSOs to solve bugs, and a good deal of hair-pulling, the program worked.

The reader should be cautioned at this point that "perfect" reception is nearly impossible without "perfect" sending. This will rarely be encountered, given noise and the multitude of sounds issuing forth from the CW bands. Suggestions will be

Fig. 1. Connecting a code key to the KIM.
offered for copying both hand key and off the air.

The program fits comfortably in the onboard KIM 1 K memory. No additional equipment is needed for hand key decoding. Connection to a receiver requires only a simple adapter, which can easily be constructed for under $\$ 5.00$ with readily available parts. The program allows the option of displaying the decoded Morse on the integral KIM 7 -segment LED display or having the output sent to an ASCII TTY or a video terminal. Due to the slow speed of a mechanical printer, only very slow Morse can be decoded. Of course, a high baud rate video terminal will allow the program to run at full speed without getting
bogged down in the outcharacter subroutine. A video terminal usually offers automatic carriage return/line feed at the end of each line, Obviously, these functions are not part of the Morse code and require terminal generation. Using the KIM display allows the decoded material to be displayed in a "Times Square" format, with letters shifting left automatically with the reception of each new letter. The program even offers automatic placement of word space "blanks" between completed words, for easier reading.-. -.

Finally, the program here has run equally well on the KIM-1 and also on a 6502 -based home brew. It has been tested for several

Fig. 2. Decoded Morse code as it will appear on the KIM display.
months and, we think, does the best job possible with such an unpredictable code as Morse. Using the program on a KIM is straightforward. Using the program on another 6502 -based system would require only changes to call-ups of KIM subroutines and ROM locations. A timer would also be required; the KIM has two built in.

A description of how the program accomplishes its goal is a bit involved. Basically, when pushing "Go," you will see the six digits on the KIM board display random garbage which was in locations 000A000 F when the computer was powered up. About half a second later, the display will shift left one digit, and a blank digit will appear on the right, ready for the first decoded Morse character. After reception has continued for a while, these locations will hold the last six decoded characters. But the microprocessor never sits idle. It is constantly inspecting pin A-8 (PA7) for data input from the hand key or optional receiving adapter. The program loop also checks the onboard timer to see if a 4 -millisecond period has elapsed. Each time the timer expires, the loop breaks long enough to increment location 0001. Assuming no code has been received, after about half a second, location 0001 has been incremented up to hex 7F. At this time, the loop breaks again and jumps to the SHIFT LEFT DISPLAY subroutine. Its next move is to the zero page conversion table. The count in location 0007 is used as an offset to select the proper data in the table.

If, as we are assuming, no Morse has actually been received yet, location 0007 will still be at its initialized value, and an error sign will be called up. This data is placed in location 000F, which serves the right-most digit on the KIM board. Then location 0001 is compared to 0005 , which was initialized to a value of hex 01. Since 0001

Fig. 3. Tone adapter to use the K $M M$ with a receiver.
will contain a greater count, a second trip through the SHIFT LEFT DISPLAY and the conversion table will be accomplished. This time, the code for turning all display segments "off" will be loaded into 000 F . Then the microprocessor reinitializes 0007 and returns to the loop. Also set was 0002 , which serves as a flag for the loop to now bypass its checks on the interval timer. Until actual code is received, this final loop will be repeated endiessly. The visible effect on the activity just described is that about one-half second after starting the program, the random data displayed will shift left twice, with the two right-most digits containing an error symbol followed by a blank.

After this has occurred, you will next initialize the code speed. This is done simply by grounding the input pin (A-8), either by holding down the hand key or, if you're using the receiving adapter, by holding down the initialization momentary switch. As soon as the microprocessor discovers that the status of the input pin has changed, the interval timer is put to work again. Holding the key/ initialization switch down about one second will allow 0001 to again be incremented up to 7 F . Again the loop breaks, but this time a different path is taken because it was learned that the key was indeed "down." Location 0003 is now set equal to location 0001 and will serve as a flag to steer the program through the initialization routine.

Now, as code is entered via
the input pin, the program increments location 0001 every 4 milliseconds, to measure the length of time the key is kept down or up. The first key-down is multiplied by two (i.e., shifted left once) and stored in location 0005. Then, it is shifted right two times, which effectively divides the original count by two. This final count gets stored at 0006.

Why get these counts? The microprocessor will use succeeding key-down counts for comparison to those just stored. The processor must decide which was a dot and which was a dash. The first count, by definition, was either less than half the latest count or greater than twice the latest count. If the first count was a dot, initialization is ended. If it was a dash, counts in 0005 and 0006 are updated with the latest count, since proving that the original count was a dash requires that the latest count was of dot length. Initialization, then, requires both dots and dashes so that a comparison can be accomplished. All future counts will be compared to the one now loaded at 0005 . Any count less than that in 0005 will be considered a dot; those counts greater will be considered dashes. At this point, all the computer knows is the difference between dots and dashes; we still don't have characters!

So, where does the computer begin to determine that there is intelligence in what it is receiving? The magic begins to occur in location 0007. Every time a dot is received, 0007 is shifted left. Also, for

Character	Zero page Address	$\begin{aligned} & 7 \text {-segment } \\ & \text { code } \end{aligned}$	Terminal code
A	15	F7	C1
B	28	FC	C2
C	2A	B9	c3
D	1 C	DE	C4
E	12	F9	C5
F	22	F1	C6
G	1E	EF	C7
H	20	F4	C8
1	14	B0	C9
J	27	8 E	CA
K	1D	FO	CB
L	24	B8	CC
M	17	B7	CD
N	16	D4	CE
0	1F	DC	CF
P	26	F3	D0
0	20	EB	D1
R	1 A	D0	D2
S	18	AD	D3
T	13	F8	D4
U	19	9 C	D5
V	21	BE	D6
w	18	FE	D7
X	29	F6	D8
Y	28	F2	D9
z	2C	C9	DA
1	3F	86	B1
2	37	DB	B2
3	33	CF	B3
4	31	E6	B4
5	30	ED	B5
6	40	FD	B6
7	48	87	B7
8	4 C	FF	B8
9	4 E	EF	B9
0	4F	BF	B0
-	41	co	AD
?	5 C	D3	BF
,	83	84	AC
.	65	88	AE
1	42	D2	AF
ERROR	11	89	C0
WORD SPACE	10	00	A0

Table 1. How to use the table: Decide whether you want to have output of the decoded Morse on the KIM's 7 -segment display or whether you will be using on external terminal (be it TTY or video). If you want:- ...
7-segment Display - Load the appropriate data in the " 7 -segment code" column at the specified zero page locations. For example, you will be loading data for an " A " by loading "F7" at location 9015 . Disregard the "Terminal code" column.
Terminal Display/Printout - Load the appropriate data in the "Terminal code" column at the specified zero page locations. For example, you will be loading data for an " A " by loading "Cl" at location 0015 . Disregard the " 7 -segment code" column. Note: For terminal use, the KIM-1 requires jumpering of pin 21 to pin V on the Application Connector. Installation of an SPST switch between those points allows switching from the KIM's integral display to a terminal for 1/0.
each dot detected, a jump to a speed adjustment subroutine can be taken, if desired (described later). Dashes shift 0007 left once and add " 1 ".
"Key-up" counts must also be considered and serve to complicate the decoding of Morse even more. As long as
the counts test to be less than that count in 0005, the program assumes a single Morse character is still in the process of being sent. But as soon as any key-up count exceeds the value in 0005 , the single character is considered completed. After a check to see that bit 7 in 0007 is not equal
to a one, the program uses this value as an offset to the zero page conversion table. If bit 7 were a one, the program recognizes that the letter received could not have been Morse (no Morse character is 7 elements long!) and displays the error symbol. Note that, in practical use on the air, errors are followed by a string of dots. The computer will advise you of this occurrence!

We have mentioned the data in 0007 as being allimportant, as it represents the actual Morse character. Note several points:

1. 0007 will be initialized to hex 01. (This will serve our "error" condition stated above, if this bit gets shifted left to the 7th bit.)
2. Dots will be entered in
this location simply by a shift left (effectively entering a zero).
3. Dashes will be entered as ones.

Morse character " A " will end up in 0007 as "0000 0101" in binary form. The "di-dah" appears in the first two places to the right, with the initial "one" being shifted to the third position from the right. This code for an "A" has a decimal value of " 5 ", and the program at location 025 F uses this value, offset by 10 , to find the code for an "A" at 0015. At this location, a hex F7 has been entered, if you planned on using the KIM display as your output; if you had decided on using a terminal and wanted ASCII output, a hex C1 would have been loaded in-
stead (see Table 1).
Subroutines are used to shift the display memory, scan that data onto the displays, adjust the code speed during actual operation, and provide for the output of the decoded data to a terminal. Any of these subroutines may be deleted by replacing the appropriate JSR instruction with NOPs. The first two subroutines are required, if the integral KIM display is to be used; the third is optional, to allow automatic code speed adjustment. If you do not use this subroutine, the initial code speed will be considered by the computer to be the only code speed, and it will not adjust to speed changes. Obviously, if you are receiving Morse from a station
using a keyboard or another computer, this speed adjustment routine will not be needed and would only serve to complicate matters by slowing the program down. The JSRs to these subroutines are located at:
0243 - SCANDS - puts the decoded data on the KIM display.
0257 - SHIFT LEFT DISPLAY - allows the data to move "Times Square" format across the KIM display.
02AD - ADJUST SPEED allows the computer to update the code speed it is receiving.
0263- OUTCHARACTER allows the computer to output the decoded character to an ASCll terminal.

For instance, let's say we don't want data to be dis-

Table 2. This detailed flowchart is intended to give a better idea of operation of the program. Hex addresses are provided at key points.
played on the KIM display, but, instead, we want to use a video terminal. You would delete both the SCANDS and SHIFT LEFT DISPLAY subroutines by removing the JSRs and entering NOPs. Example:

Aderest	Date			ap code		02 ab	36	2 F		BCS	
						02ad	20	E?	02	JSh	
						02 BO	06	07		ASL	29
0200	D8			Cus		0232	4 C	3 F	02	JMP	
0201	58			CLI		0285	A9	00		LDA	14im
0202	49	00		LDA imm		0257	85	03		STA	zp
0204	8 D	01	17	STA abs		0239	4 C	3F	02	JMF	
0207	85	01		STA zP		02 BC	A9	01		LuA	1 mm
0209	85	04		STA zp		028E	85	03		STA	zp
0208	A9	01		LDt 1 mm		02 CO	4 C	3 F	02	JMP	
020D	85	07		STA zp		02 C 3	A9	01		LDA	1 mm
0207	85	05		SThe zp		O2C5	85	07		STA	zp
0211	85	02		STA 2 p		02 c 7	4 C	5 E	02	JMP	
0213	A9	80		LDA 1mm		02ca	A9	-0		LDA	1 mm
0215	85	00		STA zp		02cc	85	07		STA	zp
0217	AD	00	17	Lide abs		O2CE	85	01		STA	zp
0214	29	80		AND 1mm		02 DO	4 C	57	02	JMP	
021 C	c5	00		CMP zp		O2D3	A5	01		LDA	zp
021 E	FO	29		BEQ		02D5	c5	05		CMP	2 p
0220	85	00		STA 2 p		02D7	90	OA		BCC	
0222	A5	02		LDA zp		02D9	4 C	57	02	JMP	
0224	F0	4 F		BEQ		02 DC	A5	07		LDA	2 p
0226	A5	03		LDA 2 p		O2DE	Of			ASL	acc
0228	FO	73		BEQ		02DF	09	01		ora	1 mm
022A	A5	00		LDA 2p		02 E 1	85	07		STA	2p
022C	FO	11		BEQ		02 E 3	4 C	3 F	02	$\mathrm{Sm}_{\text {M }}$	
022E	A5	04		LDA zp		02 E 6	EA			MOP	
0230	DO	5A		BNE		02 E ?	A5	01		LDA	$z p$
0232	A9	01		LDA 1mm		02E9	OA			ASL	acc
0234	85	04		STA zp		O2EA	85	09		STA	2 p
0236	A5	01		LDA zp		O2EC	C5	05		CMP	zp
0238	0 O			ASL acc		O2EE	90	0 c		BCC	
0239	85	05		STA zp		02 FO	E5	05.		SBC	zp
0238	4 A			LSR acc		02 Fz 2	4 A			LSR	acc
023 C	4 4			LSR acc		02 F 3	4 A			LSR	acc
023D	85	06		STA zp		02 F 4	4A			LSR	aco
023 F	A9	01		LDA 1 Imm		02 F	18			CLC	
0241	85	01		STA zp		$02 \mathrm{F6}$	65	05		ADC	zp
0243	20	OE	03	JSR		02 F 8	85	05		STA	2 p
0246 0249	4 4	17	02	${ }_{\text {LIM }} \mathrm{LDP}$		02 Fa	60			FTS	
0249 0248	A5	${ }_{7} 7$				02 FB	EA			NOP SEC	
024 D	90	2A		scc		02 FD	45	05		IDA	2 p
0245	A9	00		LDA 1 mam		02FF	E5	09		Stc	2p
0251	85	02		STA 2 p		0301	4 A			LSR	ace
0253	${ }_{\text {A }} \mathrm{F}$	65		${ }_{\text {LEO }}{ }^{\text {z }}$		0302	4			\cdots	acc
0255 0257	20	65 30	03	SER		0203	4 A			LSR	aco
025A	A 5	07	,	2DA 2 D		0304 0306	85 38	08		STA	\% p
0258	30	65		BMI		0307	A5	05		LDA	2p
025 E	AA			TAX		0309	35	08	-	SEC	2p
0258	B5	10		LDA zp.x		ajob	85	05		Sta	2 p
0261	85	0 P		STA zp		9300	60			ETS	
0263	20	45	03	JSR		0)OE	${ }^{\text {A9 }}$	75		LSA	1 mm
0266	${ }_{4}{ }^{5}$	01		LDA zp		0310	8 D	41	17	STA	abs
0268	4 A			LSR acc		0313	40	09		LDX	2mm
0269	Es			NOF	(see article)	0315	${ }_{4}^{42}$	${ }^{0 .}$		LDOA	$\frac{18 \mathrm{~m}}{\text { 2p, }}$
026A	B0	${ }_{5} 5$		$\mathrm{CCS}^{\text {zp }}$		0319	8 B	40	17	SPA	abs
026 E	A9	01		LDA 1 mam		031c	8 C	42	17	STI	abs
0270	85	07		STA zp		0317	84	23		STY	2p
0272	4 C	3 F	c2	JMF		0321	${ }^{\text {A }}$ O	00		COY	1 mm
0275	${ }^{\text {A9 }}$	01		LDA 1min		0323	8 C	42	17	STX	abs
0277	85	02		STA 2 p		0326	24	23		LDX	1 mm
0279	${ }^{\text {A }}$	02		LDA ${ }^{\text {zp }}$		0328	c8			INX	
027B	Fo	C6		BEQ		0329	C8			INX	
0270	AD	07	17	LDA abs		032A	E8			$\underline{\operatorname{Iax}}$	
0280	10	C1		BPL		0328	E0	10		cmx	1 mm
0282	A9	04		LDA 1 mm		032 D	DC	58		3NE	
0284	8 D	07	17	STA abs		032 F	60			RTS	
0287	E6	01		INC 2 P		0330	${ }_{4} 5$	OB		LDA	zp
0289	4 C	43	02	JKP		0332	85	OA		5 SA	zp
028C	A5	01		LDA zp		0334	A5	${ }^{\circ} \mathrm{C}$		LDA	zp
028 E	C5	05		CMP zp		0336	85	${ }^{0 B}$		STA	z^{p}
0290	B0	23		BCS		0338	A5	$\bigcirc{ }^{\text {O }}$		LDA	2p
0292	C5	06		CMP 2 F		033A	85	${ }^{\text {OC }}$		STA	2 p
0294	B0	A9		BCS		033 C	A5	OE		LDA	zp
0296	A9	00		LDA 1 mm		033 E	85	$\stackrel{O}{\circ}$		STA	${ }_{\text {zp }}^{\text {zp }}$
0298	85	03		STA zp		0340	A5	${ }^{\circ}$		LDA	${ }_{\text {zp }}$
029A	4 C	36	02	JMP		0342	85	OE		STA	${ }^{2 p}$
0290 0298	85	04 00		STA LDA zp		0344 0345	60 4	OF		RTS	zp
02A1	Fo	30		BEQ		0347	20	AO	1E	JSR	
02A3	A5	07		LDA zp		034 A	60			ETS	
02A5	30	98		8MI							
02 A	A5	01		LDA zp							
02A9	c5	05		CMP zp		END					

Before
024320 0E 03

0257203003
After
0243 EA EA EA

Fig. 4. Program listing. KIM-7 Morse code receive program.
not removed the ADJUST SPEED subroutine or the OUTCHARACTER routine, the resulting program will still adjust to new code speeds and output the decoded data to a terminal. The KIM display will not light. It is pos-
sible to run the entire program unchanged, but running the SCANDS without using it would waste valuable time; running the OUTCHARACTER routine, when you're only interested in the KIM display, could be a disaster. As a good, general rule, remove unwanted subroutines with NOPs. Don't waste the computer's time; it has been given enough to do!

A few words about the heretofore unexplained SPEED ADJUST subroutine - this subroutine, if it has not been replaced by NOPs, will be called up each time a dot is received. The subroutine divides the count stored in 0005 by two and compares the result with the current dot value stored in 0001 . Any difference is divided by eight and added to, or subtracted from, the count in 0005 . This new value, then, has gradually been adjusted to a new code speed. Obviously, the computer will not accurately handle great single jumps in code speed but does well with substantial changes if they are gradual. Without this subroutine, the initial count in 0005 becomes the dot comparison and cannot change. There is, as usual, one catch to trying to "cover all corners": Occasional bursts of static and noise can easily fool the subroutine into raising the expected code speed. In this case, a string of "Ts" will be displayed. Reinitialization is easy, though. Hold the initialization
momentary switch down for about a second. The computer will "start over" in its search for code speed.

Ready to try it? Load the program, the character lookup table (Table 1), and begin by NOPing the OUTCHARACTER subroutine. Connect a hand key to the computer, as in Fig. 1. Although not a major problem, the 0.1 uF capacitor across the key serves to get rid of some switch bounce. Some keys we have used worked fine without it; others seemed to require it. Take a look at Fig. 2, so you have a little idea of what will appear on the KIM display once the program is up and running after several characters.

Since there is no way to display all letters (let alone punctuation!) on a 7 -segment LED, we have chosen symbols that seem easiest to identify. Note that an " S " must be distinguished from a " 5 ", an " O " from a " \emptyset ", and even a " T " from a " 7 ". Once you have gotten used to the oddballs, you'll recognize them right away. On a terminal, of course, you'll get standard characters (with the exception of ERROR, which will print as an "@").

If you've gotten this far, set up address 0200, and press " G ". Hold the tape key down about a second, then simply begin sending. The first few characters will produce garbage until the computer determines your average dot and dash. Then, you'll see proper Morse being
displayed. You'll soon discover how well you're sending. Articulate! The computer and other OM will appreciate it: Try sending the entire alphabet one letter at a time. Pause between each and you'll see a word space placed on the display between your letters. This is an ideal way to get used to the odd characters and to see which letters you don't send very weil.

After becoming thoroughly familiar with the program's operation, you will probably want to try it connected to a receiver. The schematic in Fig. 3 offers one suggestion which works amazingly well for its low cost and simplicity. Connect pin 3 of the 567 through the .01 capacitor to your headphone jack. Don't forget to run a ground from the jack to ground on this adapter board. The 567 will be looking for a frequency of about 2100 Hz . This is simply to allow the same adapter to work for RTTY (we're working on it). You won't be able to use a CW filter, since this frequency will be outside its bandpass. When you tune in a CW signal, flip the "tune" switch on. The LED will light" when the 567 hears the proper tone. Adjust your receiver from the highest frequency the LED will stilllight with, to the lowest. Set your receiver in the middle. The circuit is designed to have pin 8 ground when it decodes the proper tone. The 567 will thereby simulate key-up and key-down for the
computer. Again, a common ground must be shared between the adapter and the computer. Begin by trying to copy a clean-sending station, one that is on a fairly open frequency, and one that is sending moderate speed (13 wpm is fine). Again, set up address 0200 and hit " G ", and then, after a second or so, press the initialization momentary switch down on the adapter board. Let go after a second, and the computer will begin to decode. It is advisable to have the "tune" switch off after you have tuned up.

Should you be troubled by too many word spaces being displayed on slow CW, add a second LSR to the program at 0269. A NOP has been placed there as a space filler. The second LSR instruction lengthens the time that must pass before the computer enters a word space.

In retrospect, a program this simple (anything that fits in less than 1 K can't be too involved) cannot be expected to produce perfectly decoded Morse. Your initial patience will be required until you "get the feel" of how the computer is accomplishing this task. The program is not infallible, as it's being required to decode a language overflowing with variables. It does, however, a very respectable job given these conditions. This is at least another step in bringing ham radio and computers together; the future will be what we make it.

Build This

 SSTV Pattern Generator

 SSTV Pattern Generator}

-- now, if only the FCC...

The microcomputer. The large box onthe right contains the Digital Group Z-80 system and power supply.

Iwent directly to programming in BASIC after completing the construction of a Digital Group Z. 80 system from a kit. I postponed machine language programming until recently, in order to experience the games and other slow speed applications available in BASIC. I've been interested in slow scan television for the past couple of years, and the generation of a slow scan video signal appeared to be a logical place to get my feet wet in machine language programming. The following program is what resulted. I think you'll find it interesting.

Slow Scan Video Signals

It takes about 7.5 seconds to generate a single frame in the slow scan format currently used by radio amateurs. Each frame begins immediately following a vertical synchronization pulse. This pulse consists of a burst of 1200 Hz oscillations and lasts 30 milliseconds. This is equivalent to 36 cycles, with each cycle lasting 833 microseconds. Each frame consists of 128 lines, and each line starts with a horizontal synchronization pulse which lasts 5 milliseconds. The frequency is 1200 Hz , and the burst, therefore, consists of 6 cycles, lasting 833 microseconds each. Following each horizontal synchronization pulse, there are approximately 60 milliseconds available for the information required to generate one of 128 lines in each frame. The line information consists of oscillations from 1500 Hz to 2300 Hz , with 1500 Hz representing black and 2300 Hz representing white. The line data for an intermediate grey tone only would, therefore, consist of 60 milliseconds of 1900 Hz oscillations, or 114 cycles, each 526 microseconds in length. The fre-

Option list showing the addition of the seventh option.

A 3-bar grey scale.
quency range required to generate a slow scan signal is, therefore, 1100 Hz , between 1200 Hz and 2300 Hz . The generation of these frequencies should be well within the capability of a CPU clocked at 2.5 MHz .

Square Wave Generator

The first requirement is for a machine language subroutine which can generate audio frequency oscillations. Three possibilities were considered:

1. The program would simply generate an 8-bit word, which it would output to one of the available output ports. This word would be used by external hardware in the form of a digital to analog converter and a voltage controlled oscillator, to produce a sine wave of the appropriate frequency. The pro and con are simple software and complex hardware.
2. The program would generate sine waves using only a digital to analog converter at the output port. This would not be a true sine wave, but would consist of discrete steps of voltage changes at the output of the D/A. Each step would require the outputting of a different digital word under software control. Using this approach, the software is relatively complex, and an external D/A is still required.
3. The program would
generate audio frequency square waves at the Isb of any output port by simply outputting 01 and 00 alternately. The advantages are simple software, with little or no external hardware required. The disadvantage is that a square wave is generated instead of a sine wave. If sine waves are required, however, low pass filter hardware could easily filter the high frequency component of the output, yielding a sine wave.

The latter was chosen because most SSTV monitors will accept square waves quite successfully. The subroutine, which generates the square wave output, begins at program address $0678(16)$ and works as follows.

Prior to calling the subroutine, two numbers are entered into registers H and L. The number which is loaded into register H is a timing constant. It will determine the length of each half cycle and, therefore, the frequency of the generated square wave. The second number, which is entered into register L, is the number of pulses to be generated. The combination of frequency and number of oscillations defines burst duration and function (synchronization pulse or line information data). The square wave generator in the program first outputs $01(16)$ to output port one. It then loads the
liming number, which we previously entered into register H , into the accumulator. The timing number is then sequentially decremented with a check for zero after each reduction by one. On zero, the program jumps to memory location 06 $84(16)$, where a $00(1-6)$ is outputted to port one. The Isb of port one, therefore, drops from about (+) 5 volts to 0 volts. The same timing number from register H is then reloaded into the accumulator, and the decrementing procedure begins again. When the contents of the accumulator equal zero, one complete cycle has been generated. The number of cycles number in register L is then decremented by one, and a check is made to see if it is equal to zero. If it's not equal to zero, then another cycle is generated by jumping back to the top of the subroutine. If the number of cycles number is equal to zero, then a jump is made to the return from subroutine statement in memory location 06 99(16).

The Timing Constant

Using the square wave generator just described, the numbers which were loaded into register H to determine frequency turned out to be $2 \mathrm{~B}(16)$ for the 1200 Hz synchronization pulses and $22(16)$ to $16(16)$ for the

1500 to 2300 Hz grey shade information. Since $22(16)$ minus $16(16)$ equals thirteen, there are 13 different shades of grey which can be generated using this system. One of the patterns generated by this program is a thirteen-bar grey scale.

Program Execution

Generally, the generation of the slow scan-signal takes place in the following sequence:

1. First a vertical synchronization pulse is generated by loading $2 \mathrm{~B}(16)$ into H and $26(16)$ into L and then calling the square wave oscillator subroutine.
2. Next, the line data subroutine at $06 \mathrm{C} 6(16)$ is called. This routine first determines which line data sequence is to be used, then vectors to one of 9 routines. Each routine systematically loads H and L and calls the square wave generator subroutine as many as 13 times to generate the information for a single line.
3. A horizontal synchronization pulse is generated by loading $2 \mathrm{~B}(16)$ into H and $06(16)$ into L and calling the square wave oscillator subroutine.
4. The line data subroutine at 06 C6(16) is again called to output line data for line number 2.
5. The sequence of horizontal synchronization pulse

A 5-bar grey scale.

A 2×2 alternating checkerboard.
followed by line data is repeated until 128 lines have been generated.
6. The vertical synchronization pulse is repeated after restoring register E to 128 or 80(16), and the next frame begins.

Specifically, I have used the operating system supplied with the computer to implement the program. The operating system consists of cassette read, write and dump and program routines, in both hexadecimal and octal number systems. This is a good place to relate a feature of the Digital Group Operating System which is particularly valuable in debugging machine language programs. By simply inserting an $\mathrm{FF}(16)$ into any memory address in the program, you
can stop the program and examine the status of all registers in the CPU, and any memory location can be examined or altered. When the system encounters the F7, it stops and displays register status, including all flag status, and it waits for further instructions. I used that feature repeatedly in developing this program, and it's a tremendous debugging tool.

An addition was easily made to the options list, which provided a seventh option of SSTV, as you can see in the photograph. Entering seven results in the message "HOW MANY BARS" being written on the screen. The routine which does this uses a couple of subroutines located in the operating system. As

A 13-bar grey scale.

A4×4 checkerboord.
you go through the program listing, any address less than $0600(16)$ is in the operating system. If you adapt this program to another system, these subroutines will obviously have to be supplied or the call and function deleted. The remarks in the listing provide function information. The slow scan test pattern generator portions of the program, however, do not utilize the operating system, and, by getting the correct number in address 06 C5 (16), you can select one of nine line data routines. The selections available are:

B1. 4×4 checkerboard pattern.
B2. A split screen, with black on the left side, white on the right side. B3. A 3-bar grey scale.

B4. A 4bar grey scale. B5. A 5-bar grey scale. B6. A 6-bar grey scale. B7. A 7-bar grey scale. B8. A 2×2 checkerboard, which alternates black and white areas with each frame.
B9. A 13-bar grey scale.
All instructions used in the program are common to both Z-80 and 8080 chips. Instruction execution time may be a minor problem, if the program is implemented on an 8080 system. The number of grey tones which can be generated may be reduced. I have it running on a Z-80 system with a clock frequency of 2.5 MHz.

Results

The output from the Isb port one was connected to
the tape input of a Robot 300 slow to fast scan converter. The patterns were then displayed on a 9 -inch black and white fast scan receiver. The scan converter accepted the square waves nicely, and, therefore, no filtering was implemented. The system is capable of resolving the 13 grey tones,
when displaying the 13-bar pattern, and the corners of the checkerboard patterns line up quite well. The vertical lines are reasonably straight, and, overall, the generator appears to be doing the job it was intended to do.

Conclusion

Presented is a machine
language program which is easily adapted to any Z-80 based microcomputer system. The program generates 9 different slow scan test patterns as square wave oscillations appearing at the isb of one of the microcomputer's output ports.

Generating these patterns
using only hardware would be a monumentai task, while producing new patterns with a microcomputer is simply a matter of altering a few software instructions.

Reference

1. Slow Scan Television Handbook, Don C. Miller W9NTP and Ralph Taggart WB8DOT, 73 Inc., 1972.

Program listing.

0600	C3		0581	C3	Juap back to decrement again
0601	57		0582	71	
0602	06		0683	06	
0657	CD	call subroutine	0684	$3{ }^{3}$	Lead a with zero
0558	94		0685	00	
0659	06		0686	D3	Output A to port 1
0654	06	Load B witt 0	0687	01	
065 5	00				
0650	1E	Load z with 128(10)	06	7 C	d
065 D	80		05 89	3 D	Decrement A
065 E	26	Load F with time constant for 1200 hz	OS 8A	Ch	Jump on zero
065 F	2B		0688	90	to 0690
0660	2E	Load 4 with $38(10)=$ number of aycles for	Ó́ 8c	06	
0661	26	vertical syme pulse	0680	C3	Jump unconditionally to decrement A
0662	CD	Call square vave generator subroutine to	068 EE	89	-
0663	78	generate vertical sync pulse	0685	06	
0664	06		0690	7D	Load A with Io
0665	CD	Call subroutine to generate line data	0697	3D	Decrement A -
0666	66		0692	CA	Jump on zero to retum from call
0667	06		0693	99	
0668	26	Load if with $1200 \mathrm{hz} \mathrm{freq}$.		06	* --
0669	28		0695	$6 F$	Load A writh L
0664	\%	Load I with as to pet 6 cycles	0596	c3	Jump to beginning of subroutine to
066 A	2		0697	78	add another cycie .
0663	06	1200 hz for horizontal sync pulse	05	7	an another cycle .
066 C	CD	Generate norizontal sync. pilse	0698	05	- - - -
C6 6D	78		0699	69	Rewurn from call
66 68	06		0694	06	Load B with 06
0665	73	Leac conzents of E into tecuaulatot	06 92	06	
0670	32	Decrement accumilator	0690	OE	Load C with B7
0571	C4	Junp on zero to reset rumber of lines	060 D	B7	
0672	50	per frame and restart new frame	0698	OA	Load A with contents of mezory location EC
0573	06		0697	00	Call Print Character subroutine which is
0674	57	Load accumajator into E	0680	CD	part of the operating syster
0675	C3	Jump to line information subroutine	05 A 1	\%A.	
0676	65		0512	00	
0677	06		O6 23	00	Increment C
0678	3 E	Square Wave generator subroutine	06 A ${ }^{2}$	79	Load A witin C
0679	01	Load A with one	06 A5	FIE	Compare
067 A	D3	Output to port one	06 A6	c5	
067 B	01		06 A7	CA	Jump on zero to stop printing
067 C	70	Load A with H	06 A8	AD	message
067 D	3 D	Decrement A	0649	06	
067 E	CA	Jump on zero to generate second	06 AA	63	Jump to continue printing message
067 F	84	half of each cycle	06 AB	9E	
0680	06		06 AC	06	

O7 1D	06		0755	CD	
07 1E	c9	Retum from 3 bar subroutine	0756	78	
O7 1F	26	Begin 4 bar line routine	0757	06	
0720	22		0758	26	
0721	2 E		0759	16	
0722	17		075	2 E	
0723	CD		075	1 C	
0724	78		0750	CD	
0725	06		075	78	
0726	26			06	
0727	1 L		075	c9	Return from 5 bax subroutine
0728	2 E		0760	26	Begin 6 bar line subroutine
0729	1A		0761	22	
07 2A	CD		0762	28	
072 B	78		0763	16	
072 C	06		0764	c	
0720	26		0765	78	
0725	14		0766	06	
0725	$2 E$		0767	26	
0730	1 F			1 F	
0731	CD		0769	2 E	
0732	78		0768	11	
0733	06		076 B	CD	
$07 \quad 34$	26		0760	78	
0735	16		076 D	$0 G$	
0736	28		076 E	26	
0737	23		076	1 D	
0738	CD		0770	2 E	
0739	78		0771	12	
0738	06		0772	CD	
0738	69	Retum	0773	78	
0735	2	Begin 5 bar subroutine	077	05	-..
07 3D	22			26	
07 3E	25			18	
0735	12		0777	28	
0740	CD		0778	14	
0741	78		0779	CD	
0742	06		077	78	
0743	26		07 7	06	
0744	1 F		O? 70	26	\cdots
0745	2 E		077	19	
0746	14		077	$2 \mathbb{1}$	
0747	CD		077	15	-
0748	78		0780	CD	
0749	06		0781	78	
07 + ${ }^{\text {¢ }}$	26		078	06	
074 B	1 C		0783	26	
O7 4C	2 E		0784	16	
of 4 D	17		0785	$2 E$	
O7 4E	CD		0785	17	
0745	78		0787	CD	
0750	06		0788	78	
0754	26		0789	06	
0752	19		078	69	eturn fro on 6 bar line subro
0753	$2 E$		078	26	egin 7 bar line subroutine
0754	19		078 C	22	

0780	2 E	07 A	2 E
0788	OF	07 A	11
0785	CD	07 :	CD
0790	78	07 AC	78
0791	06	07 AD	06
0792	26	07 A	26
0793	20	07 AF	18
0794	2 E	07 BO	2 E
0795	OC	0781	13
0796	CD	$07 \mathrm{B2}$	CD
0797	78	07 B	78
0798	05	07 B	06
0799	26	07 B	26
0798	1 E	$07 \mathrm{B6}$	16
0798	$2 E$	$07 \mathrm{B7}$	2 E
O7 90	0 F	07 B	14
0790	CD	07 B	CD
0798	78	07 BA	78
$07 \mathrm{9F}$	06	07 BB	06
0780	26	07 BC	c9
07 Al	10	07 BD	26
07 A 2	2 E	07 BE	22
07 A3	10	07 BF	2 E
07 A ${ }^{4}$	CD	07 Co	07
$07 \mathrm{A5}$	78	07 c	CD
07 А6	06	07 C	78
07 A 7	26	07 C	06
07 A8	1A	07 C	26

Return from 7 bar line subroutine
Begin 13 bar line subroutine

YOUR HAM TUBE menduyaters!
 TUBES BOUGHT. SOLD AND TRADED
 SAVE \$\$\$ - HIGH \$\$\$ FOR YOUR TUBES

MONTHLY SPECIALS
3C $\times 1000 \mathrm{~A} 7 / 8283 \quad \$ 285.00 \quad 811 \mathrm{~A} \quad 10.80$ $\begin{array}{lllll}3 C \times 1500 A 7 / 8877 & 240.00 & 313 & 18.00\end{array}$ $\begin{array}{llll}3-500 Z & 58.00 & 6146 B & 4.95\end{array}$ $\begin{array}{llll}3-10002 & 145.00 & 6360 & 3.75\end{array}$ $4-125 A \quad 42.00 \quad 68838 \quad 5.25$ $4-400 \mathrm{~A} \quad 48.00 \quad 8122 \quad 51.00$ 4-10004 $4 \mathrm{C} \times 250 \mathrm{~B}$ 5728
intelligent Ham alternative to CB Two meter mobile 40 watt rf power transistor 2N6084-\$16.00

Eimac Tubes \& Accessories In Stock Write or phone for types not fisted
BRAND NEW****FACTORY GUARANTEED
TOP BRAND Popliar Receiving Tube Types. BRAND NEW 72% Off List* Factory Boxed. FREE LIST Available Includes full line of RF Power Transistors. Minimum Order $\$ 25$.

07	C5	21	07 E 1	1 D
07	C6	28	07 Ez	2E
07 C	67	07	07 E 3	08
07	c8	CD	07 EL	CD
070	9	78	07 EF	78
07 C	Ch	06	07 E6	06
07 C	CB	26	$07 \mathrm{E7}$	26
07	cc	20	O7 E8	1 C
07 C	CD	2 E	0789	$2 E$
07 C	CE	08	07 EA	09
07 C	CF	CD	07 ES	CD
07	DO	78	07 EC	78
07 D	D1	06	07 ED	06
07	D2	26	07 ETE	26
07 L	13	1 F	07 BF	18
07 D	D_{4}	2 E	07 FO	2E
07 D	D5	08	07 Fl	09
07 D	D6	CD	$07 \mathrm{F2}$	CD
07 D	07	78	07 F 3	78
07 D	D8	06	07 F 4	06
07 D	D9	26	$07 \mathrm{F5}$	26
07 D	DA	1E	07 P6	1A
07 D	DE	2E	$07 \mathrm{F7}$	2 E
07 D	DS	08	07 FB	09
07 D	DD	CD	O7 F9	CD
07 D	DE	78	07 FA	78
07	DF	06	07 FB	06
0712	120	26	07 FC	26

2.32 MHIZ RECEETERS

AN/WRR-2 TRIPLE CONYERSION RECEIVER-2-32 MHz for reception of SSB; upper and lower sideband separately or simultaneously, AM, MCW, and CW. Tunes in 1 KHz increments, or continugusiy. Power required: $105-125 \mathrm{~V}, 60 \mathrm{~Hz}, 250$ Watts. Size: 26 x $22 \times 24^{\prime \prime}$; WL: 250 libs.: Shpg. WL: 300 lbs. With power and RF connecting plugs and wiring diagram for making cables.
AN/WRR-2 - For table mounting, Used,
$\$ 300^{00}$
AN/FRR-59A - Tunes in 500 Hz increments or continuously; for rack mounting, Used.
Reparable... $\$ 375^{00}$
RECENER - Checked, good operation, add $\$ 100^{\text {®o }}$
MANUAL with purchase of Receiver onfy.... $\$ 20^{\circ 8}$ SASE for Data Sheet. Prices are F.O.B., Lima, Ohio. Please allow for shipping charges.
USE YOUR VISA Or MASTER-CHARGE CARD! Address: Dept. 73 - Phone:419/227-6573

FADi RADIO GACGE 1016 E. EUREKA - Box 1105 + LIMA, OHIO-45902
$07 \mathrm{FD} \quad 19$
$07 \mathrm{FE} \quad 2 \mathrm{E}$
07 FF OA
$0800 \quad$ CD
08 of 78
$0802 \quad 06$
$0803 \quad 26$
$0804 \quad 18$
$0805 \quad 2 E$
08 O6 OA
0807 CD
$08 \quad 08 \quad 78$
080906
08 OA 26
08 昭 17
$0806 \quad 2 \mathbb{}$
08 OD OA
08 OE CD
08 OF 78
$08 \quad 10 \quad 06$
$08 \quad 11 \quad 26$
$\begin{array}{lll}08 & 12 & 16\end{array}$
$08 \quad 13 \quad 28$
$0814 \quad 0 B$
0815 CD
$08 \quad 16 \quad 78$
$08 \quad 17 \quad 06$
$08 \quad 18 \quad c 9$
$\begin{array}{lll}08 & 19 & 04\end{array}$
08 1A $3 E$
$08 \quad 1 \mathrm{~B} \quad 20$
$081 \mathrm{C} \quad 90$
08 1D PA
08 3E 3D
08 1F 08
$0820 \quad 26$
082122
0822 2E
$0823 \quad 17$
0824 CD
$0825 \quad 78$
$08 \quad 26 \quad 06$
$0827 \quad 26$
$0828 \quad 16$
08292 E
$0824 \quad 23$
08 2B CD
$0820 \quad 78$
082006
$0828 \quad 26$
$08 \quad 2 F \quad 22$
$08 \quad 30 \quad 2 \mathrm{E}$
$08 \quad 31 \quad 17$
$08 \quad 32 \mathrm{CD}$
$08 \quad 33 \quad 78$
$08 \quad 34 \quad 06$

Return from 13 bar line subroutine

Incxement B

Load 32（10）into A

Subtract B from A
Jump on sign negative

Load 64（10）into A

Compare with $⿴ 囗 十$

Jump on zero to 0860 to set B to zero

Returin

Load zero into B

Return

Inorement E；Begin 2x2 alternating boara Load 64（10）into A

Subtract B from A
Jump on sign negative to 0879

NEW DUAL BAND VHF AMPLIFIERS

Buy one amplifier and cover both VHF amateur bands -2 meter and 220 MHz
Now you can cover both bands in one unit with these new low cost amplitiers by UHF industries．All units are built for rugged performance utilizing a design capable of withstanding infinite VSWR at all phase angles when operated at rated power and supply voltage．Each unit has automatic T / R switching and a uniquemicrostrip relay that results in practically zero receive loss and negligible mismatch in either the input or output lines during transmit．All units feature a compact desion and easy installation．

BUY DIRECT NOW AND TAKE ADVANTAGE OF OUR SPECIAL INTRODUCTORY OFFER：

MODEL NO．	2m POWER INPUT	2m POWER QUTPUT	BEGULAR AMATEUR NET	SPECIAL INTRODLICTORY OFFER＊
2－15	1.5 watts	15 watts	\＄ 69.50	\＄ 59.50
2.40	1.5 watts	40 watts	129.50	109.50
15－40	15 watts	40 watts	89.50	76.50
20－80	20 watts	80 watts	199.50	169.50

All orders should melude $\$ 7.50$ for shipping and handling．Michigan residents add 4% state sales tax．
＊Osfer expires November 31， 1977.
For ordering and information on other UHF Industries products，see your Iacal dealer or write：

85 D	45	0878 2\%
086 E	09	0870 28
086 F	78	08 TD CD
0870	06	$087 \mathrm{~F} \quad 78$
0871	26	087 F 06
0872	22	088026
0873	2F	0881
0874	2 E	$08 \quad 22 \quad 2 \mathrm{E}$
0875	CD	$0883 \quad 45$
0876	78	0884 CD
0877	06	
0878	c9	088606
0879	26	0887
87 7	22	

Return from $2 x 2$ alternating board
subroutine

TRUE 15 KHz CAPABILITY? ONLY THE FM-DX HAS IT!

Just take a look at the adjacent channel rejention curve of the Clegs FM-DX 16-pole filter. Then compare it to the rejection ourve of the typicel fitter. You ean see immediately why the FM-DX is considered the only 2 -meter transceiver with true 35 KHz capability. Because the 16 poie filter provides the necessary adjacent channel rejection to le: you cony that weak signal, even when a powerful "local" goes on the air only 15 KHz sway. And it's no wonder-when actual tests show rejection at $\pm 10.5 \mathrm{KHz}$ is better than 90 db . With the optional FM-DX I6 pole filter, you can work any open channel-anytirie.

If you're in an unorowdod area, you can use the standard 8 -pole monolithic crystah filter supplied with the YM DX. Rejeetion is 40 db at $\underline{+1} 13 \mathrm{KHz}$. Then if tie band becomes crowded in the fusure, you neadn't be concerned about obsolescence. The I6 pole filter is always available from Clegg ready for factory installation.

For full 2-metar capability-now-or in the future, you're in complete control with a Clegs JM-DX a-meter transcoiver. Synthesized for total band coverage ia 5 KH 號 steps; With standard and "add ball" pegeater spilts, you can tell at a glanes your exact frequency from the bright twgital readout.

And transmilting power? With an PM-DX you've got it. Forty watte plus to your antenna. Clean. With rook-like btablily.

Compare the 学-DX with suything you've ever worked or heard. Then check the price. Oniy 499.00 . The optional l6 poie filter only 5100 . Or order the FM-DX with the 16 pole filter factory installed before December 31 at tie extra-sevings price of 336.00 . For complete information on the FM-DX call toll free 1-800-233-0250. (In Pernsylvania call collect l-717-299-7221) Or send a postcard to Olegs Communications Corp., 1911 Old Homestead Lane, Greenfield Industrial Park East, Jameastaf, Fa. 1.7601

CANADIANS!

Eliminate the Customs Hassles Save Money and get Canadian Warranties on IMSAI and S-100 compatible products.

IMSAI 8080 KIT \$ 838.00 ASS. $\$ 1163.00$
(Can. Duty \& Fed. Tax Included) AUTHORIZED DEALER
Send $\$ 1.00$ for complete IMSAI Catalog.
We will develop complete application systems.
Contact us tor further information.
(A) Complete Service Facilities
(B) Good Deals on most Brands
(C) Shipping within 24 Hours
(D) All inquiries handled by Active Hams with over 20 years experience in ham radio
CALL TOLL FREE

1-800-238-6168
IN TENNESSEE, CALL 901-452-4276 MONDA Y - SATURDA Y 8:30-5:30 FOR YOUR SPECIAL. W4GD CuSTOM HIGH POWER AMPLIFIERS

NO MONKEY BUSINESS!

Don Lancaster's ingenius design provides software controllable options including:

- Scrolling - Full performance cursor
- Over 2K on-screen characters with only 3 MHz bandwidth
- Variety of line/character formats including 16/32, 16/64 even 32/64
- User selectable line lengths

TELLME MORE! () SEND FREE CATALOG P9

() Send instruction manual for the TVT-6 Kit with full operational details: $\$ 1$ enclosed.

Name: \qquad
MAIL TODAY To:
Address: \qquad
$i A^{1}$
City: \qquad State: \qquad Zip: \qquad
ELECTRONICS, INC.
DEPT. 10-H. 1020 W. WILSHIRE BLVD., OKLAHOMA GITY, OK 73116

Super

Baud Bumper

- - for your SWTP 6800

Iwas frustrated by the time that was required to load and punch 110 baud programs on my SWTPC 6800 computer using an ASR 33 as an I/O. So I took a long look at the alternatives offered by SWTPC in the computer documentation. Southwest had apparently settled for a maximum speed of 300 baud, using Kansas City Standard audio cassettes. This would allow loading a basic length program in five minutes, instead of the fifteen minutes required at 110 baud. This would be a significant improvement, but, since you're faced with procurement of additional equipment anyway, why not shoot for something faster?

A careful review of the SWTPC 6800 system revealed that baud rates up to 1200 baud were presently being generated in the system and,
in fact, were bused and clearly identified on the mother board and the CPU board. The next step was to settle on an $1 / O$ for the higher baud rate, because the ASR 33 couldn't hack it. SWTPC's TV typewriter, with the optional baud rate generator, appeared to be the least expensive route to obtaining an 1/O with a 1200 baud capability. Then the only bottleneck in the system appeared to be the serial control interface board (MP-C) in the computer, which doesn't pick up the higher baud rates from the mother board. Alas, why did SWTPC pass up the opportunity to provide the user with full baud rate control (110 to 1200 baud) throughout the system? With the TV terminal, I now had 110, 150, 300, 600 , and 1200 baud capabili$t y$, with the exception of the bottleneck at the serial con-

Fig. 1. Panel layout. $H=$ home up cursor to start of page; $E L=$ erase screen to end of line; $E F=$ erase screen from cursor location on; $U=$ move cursor up; $D=$ move cursor down; $L=$ move cursor left; and $R=$ move cursor right.
trol interface board.
Investigation of the system design and subsequent discussions with some of the helpfus folks at SWTPC indicated that probably nothing would be lost in trying, except the effort. Hoping that all advice was sound and that I wouldn't smoke the system, I began the project. The following paragraphs outline the steps 1 took and the results \downarrow achieved. They are in sufficient detail to guide anyone through the conversion.

- Step one was to develop a convenient switching system to permit:

1. Changing of the baud rates, at the computer serial control interface board and at the TV terminal, simultaneously.
2. Interconnecting the tape recorder, the Teletype ${ }^{\top}{ }^{M}$, the TV terminal, and the computer; and
3. Control of which pieces of equipment were on line at any given time for maximum flexibility in operations.

To accomplish the modifications at minimum disruption to the up and going system, I decided to provide switches on the control panel already in use at the TV terminal. The control panel already provided cursor con-
trol switching for the terminal. A neat little two-pole, five-position rotary switch was procured, which permits separate simultaneous switching of baud rates at the TV terminal and at the serial contral interface board on the computer. Fig. 1 shows the panel layout for anyone who would like to cold copy what has proven to be very efficient. The seven momentary contact push-button switches on the left are for the cursor controls.

Space is provided for an additional switch or indicator at the lower left of the panel, if a need should develop later. The two-pole, five-position rotary baud rate selector switch is located in the upper center, with a terminal ready indicator LED located below it. On the right side, six single-pole, single-throw toggle switches provide selective control of the Teletype, the TV terminal, and the tape recorder. Each peripheral is controlled with two singlepole, single-throw switches. This arrangement provides split bus control and permits input and/or output selection of the peripheral units desired. A single-pole, doublethrow is shown in the righthand corner, which controls the baud rate selection at point C on the serial control interface board. Changing point C from low to high controls the number of stop bits at the computer. A subsequent improvement has deleted this control by replacing the two-pole, fiveposition baud rate selector switch with a three-pole, five-position switch. Wiring of the cursor control pushbutton switches is described in the TV typewriter documentation and won't be addressed here. Fig. 2(a) shows the wiring diagram for the two-pole, five-position baud rate selector switch and separate single-pole, double-throw switch. Fig. 2(b) shows the three-pole baud rate selector switch, which also automatically switches the baud rate selection at point C on the

Fig. 2(a).
serial control interface board.
The peripheral unit selection switches are straightforward on-off control of the input and output of the RS232 data to and from the units. A wiring diagram for the switching is shown in Fig. 3. Additional peripheral devices can be controlled by additional pairs of switches on the control panel.

The actual connections that were made to the computer and the terminal will be described for those who may be hesitant to experiment. A step by step test out will also be described. The only drawback is the additional wiring that runs from the computer and the terminal to the switches. A neat installation can be had with average care.

Step 1. Locate a convenient place for the control panel. A word of caution: Limit the length of the wires from the baud rate selector switch to the computer to an absolute minimum. You are dealing with digital devices, and long leads leaving printed circuit boards invite problems. I experienced none, but the possibility always exists.

Step 2. Lay out the switching control that best suits your needs. The panel layout in Fig. 1 can be used, if it suits you, or you can come up with your own. There is nothing critical in the layout, only convenience. Mount the switches in the
control panel.
Step 3. Solder one set of leads on the baud rate selector switch, S1a. It's suggested that you color code the leads for troubleshooting convenience. Five leads go from switch S1a directly to JS-1 on the serial interface or UART board of the TV typewriter. Connections are shown in Table 1. A sixth lead from the wiper of the switch goes to ground, because grounding activates the baud rate selected by the switch. See Fig. 2(a) or 2(b), depending on which switching arrangement. you used.

Step 4. Solder the second set of leads on the second pole of the baud rate selector switch, S1b, using the same color code as used in Step 3. Solder a female molex connector, that matches the pins on the mother board, to the computer end of these leads. This connector can be plugged onto any vacant set of pins from the baud rate buses on the mother board. The molex connector is available from Southwest Technical Products Company, if you can't find it locally. The sixth lead from the wiper of the second pole of the baud rate selector switch, S1b, goes to point "D" on the serial control interface board of the SWTPC 6800. There are no connections to " 110 " and " 300 " adjacent to point " D " on the serial control interface

Fig. 3.

Fig. 2(b). Note that switch 52 is not used in this scheme.
board. Be sure to remove any jumpers you may have installed at these points. These two sets of leads should be bundled or six-conductor cable should be used, to provide a neat installation. See Fig. 2(a) or 2(b).

Step 5. From switch S2 in Fig. 2(a), connect three wires to the switch. These wires all go from switch S2 on the control panel to the serial control interface board of the computer, so consider bundling them with wires in step 4 for neatness. The center pin of the switch is connected to point " C ". The 100 baud speed side of the switch goes to " 110 " adjacent to point "C", and the "other" side of the switch provides all other baud rates and is connected to " 300 " adjacent to point" "C" of the serial control interface board.

Step 6. Connect the computer side of switches S3, S5 and S7 together. This forms the "output from computer" bus. Connect the computer side of switches 54,56 and S8 together. This forms the "input to computer" bus. You have now established common input and output buses for the computer. Connect switch S3 to the input side and switch $S 4$ to the output side of the TV terminal (TVT). Connect switches S5 to the input side and S6 to the output side of the tape recorder (TAP). Connect switches 57 to the input side and S 8 to the output side of the Teletype (TTY). The grounds for all peripheral devices and the computer are connected together, as shown by line G in Fig. 3.

Step 7. If you want the
terminal ready LED, connect the anode of the LED to the terminal ready connection, which is pin 2 of JS-1 on the TV terminal. The cathode of the LED should be grounded through a $250 \Omega, 1 / 4$ Watt resistor. The terminal ready line is limited to sensing and to a 5 mA current, so don't forget the resistor.

Now, if you have carefuily checked your connections, you are ready to check out your conversion job. At this point, you probably have abandoned the step by step procedure and have changed things around to suit yourself and that's fine. I did, too, remember! But, far the more timid, I will go ahead with a checkout procedure. These tests assume that you have the optional baud rate generator in your TV terminal and that you have a digital tape recorder for have Eorrowed one). The tests don't have to be performed in any particular order. Depending on the peripherals you have connected, the checkout must be arranged to suit your conditions.

In all cases, the input to computer side of the RS232 connections from the peripherals should show a negative voltage when the peripheral is switched on. Check each one individually at the input to computer bus to assure proper connection. If you don't get a negative volt-

Baud rate	JS-1
110	pin no. 9
150	pin no. 10
300	pin no. 11
600	pin no. 12
1200	pin no. 3

Table 1.
age, try reversing the leads from the peripheral you are testing.

Test 7. Open 5 witches S 3 , S4, S5 and S6. Close switches S7 and S8. Set baud selector switch to 110 baud. Set switch S2 to " 110 ". This arrangement connects only the Teletype to the computer. Test your MikbugTM memory address functions they should work normally. If they don't, you have probably reversed the leads from the Teletype to S7 and S8, so try reversing them. If you are satisfied at this point, load a machine language program such as tic-tac-toe or blackjack into the computer via the paper tape reader on the Teletype. Open switches S5, S6, S7 and S8. Close switches S3 and S4. Set switch S2 to "OTHER." Set baud selector to 1200 baud. Type in " S 9 " and " G " on the TV terminal, and the progam should be initiated at 1200 baud. Check the remaining baud rates, 600 to 150 , on the TV terminal.

Change S2 to " 110 ", and check the 110 baud rate out. If this step has checked out, go to test 2. About the only problem you would encounter is reversal of leads from switches 55 and 56 to the tape recorder.

Test 2. Open switches 55 , S7 and S8. Close switches S3, S4 and S6. Set baud rate selector switch to 1200 baud. Set switch S2 to "OTHER." This arrangement connects the "from computer" side of the tape recorder and the TV terminal to the computer, and it sets up for a printpunch operation, which will transfer the program resident in the computer to the tape recorder. After you have the program dumped to tape, turn the computer off to clear the program from memory. Power the computer back up. Using the TV terminal at 1200 baud, type "L" to initiate the program load function. Open switches S3, S4, S5, S7 and S8. Close switch S6. Load the program
from tape into the computer. Open switches S5, S6, S7 and S8. Close switches S3 and S4. Initiate the program at 1200 baud by typing " S 9 " and " G ". Go through the above listed procedures for baud rates of 150 through 600 . Then set S1 and S2 to " 110 ", and check out the 110 baud rate for dumping and loading of programs.

Test 3. If steps 1 and 2 were successful, let's proceed. So far we have checked out the Teletype, the TV terminal, and the tape recorder, individually. Now it's time to try split bus operation. Set the baud rate selector switch and switch 52 to 110 baud.

Open switches 54,55 and S6. Close switches S3, S7 and S8. We now should be able to input data from the Teletype keyboard and output data on the Teletype and TV terminal, simultaneously. Try it and see. This will only work at 110 baud, because that's the limiting speed of the Teletype. Experiment with the
other functions.
There are obviously other tests you could run, but, if tests 1 through 3 were okay, you should now have a system that has reduced load and print-punch time by a factor of 12 , if you were using 110 baud, and by a factor of 4 , if you were using 300 baud. Quite an improvement, wouldn't you say? We set out to provide faster loading of the SWTPC 6800, and we succeeded!

Once again, if you are reasonably careful you probably will have no probiems. Too long leads from the baud rate switch to the computer could cause probiems, but check for wising errors, switch setup errors, and/or reversed wiring before you blame lead length. I hope this gives others as much fun as it's given us. 1 would like to see what control panel and switching arrangements you come up with, so how about dropping me a line and sending me a picture?

TELETYPE ${ }^{\circ}$ MODEL 33 ASR

complter l/0 complete with: - Tape Punch - Ready to Go

$\$ 840^{\circ 0}$

INCLUDING PACKING
F.O.B. - N.J. FACTORY

- Tape Reader - Line/Local Wired
- Guarantced 30 Days

Lef!. Hard to Get Parts \& Supplies for 33 ASR/KSR's

PAPER SPINDLE (181043) $\$ 1.25$
TAPE SPINDLE (182918) $\$ 1.25$
PLATEN KNOB (180039) $\$ 1.00$

QRZ -- P-K4!

- - relax with ham chess

Russell C. Parker W9CQD 7814 Keeler
Skokie IL 60076

Avid chess players will recognize P-K4 as the opening Bobby Fischer uses in the majority of his chess games. What's your favorite, and have you tried it on ham radio? There is plenty of
radio chess going on in the ham bands. If you like chess, why not join in? You don't have to be an expert, you just have to like the game. Combining two interests makes them even more enjoyable.

OK, you say, I like chess. Where can I find a game on the radio? First of all, here are some frequencies where chess players can be found:

Midcars, 7258 kHz; Eastcars, 7255 kHz ; and Westcars, 7255 kHz are service groups which operate most of the daylight hours. Check in and ask if any chess players are on the frequency. When you make contact arrange to QSY and start your game. If you don't make contact ask the service control to list your request or just monitor for a

Rus W9CQD playing radio chess.
while until someone else checks in and asks for a chess game.

Another frequency to monitor, starting about noon, is 7235 kHz . There is a pretty regular group on every day, and they will welcome some fresh talent. Evenings, after 7 pm, try around 3990 kHz and 3928 kHz for two other informal, friendly gatherings.

Now for some tips on beating the dipoles for opponents on your own. Firstly, bring up the subject during your usual QSOs. It's surprising how many hams you will find who know how to play and might be interested in a game. If they don't have time immediately, try to arrange a schedule. Check in any traffic net, and make a request for chess players. Always move off frequency quickly. Decide beforehand where you want to move so you will not hold up the net. Contact any local amateur radio club. Leave your phone number with the officers, and ask them to inquire of their membership whether anyone would like to set up a schedule. Put out a call on 2 meter FM repeaters. Again, always arrange to QSY quickly when you make contact with a player. Ask your opponents if they know of anyone else interested in playing radio chess. Keep at it, and soon you'll have a good list to choose from.

Now for some hints about actual play. It may be a little hard to maintain concentration - because of noise or QRM. Remember, this is for fun, so enjoy it and don't fret about losing a game or two. You'll find a great variety of skill in the various challengers, so if you are up against an excellent player, don't prolong a game when you are down one or more pieces. Resign and start over rather than iry to make him mate you. He's more apt to be willing to play you again.

Always score the game, that is, write down the moves. This helps if you have a mix-up and want to straighten out the board. Say
your moves twice and always acknowledge the other fellow's moves. In radio chess you have the opportunity to move the pieces around to see how a particular position looks, and it is easy to forget to move a piece back to the right square. Try to avoid this if you can. You certainly would not be allowed to do it if you were playing across the board. It becomes a bad habit as well as leading to messing up the board.

Don't be afraid to play
because you don't know chess notation. It can be learned in a few minutes. Ask an experienced player to explain it or check any elementary chess book at your local library. Try not to talk to your opponent while he is contemplating his move. Sometimes it helps to keep the frequency clear if two or three games are going on at the same time. It may be a little hectic at the beginning, but after the moves start slowing down, you'll be able
to maintain the frequency since someone will be making a move more frequently than if only two were playing, and it won't seem like the frequency is clear. Explain to polite hams who ask if the frequency is in use that you are playing chess and are quiet between moves.

Don't rule out CW for your games. They can be just as rewarding as phone. Also, look out for the ladies. They play, too, and some are excellent players.

When you get established, why not go for PAS - Played All States? DX hounds will find overseas players, though the bands may not hold up for the length of the game. You may want to adjourn a lengthy game and finish another day, another reason to write down the moves. No reason not to try SSTV or RTTY either.

And who knows? When you get a winning streak going, try for a phone patch to Bobby Fischer.

ALL BAND TRAP ANTENNA!

 ONLY ONE NEAT SMALL TRANSMITTERS GUARAN ANTENNA. FOR CONG- TEED FOR 1.000 WATTS ESTED HOUSING ANO APARTMENT DWELLERSI

POWER, LIGHT NEAT WEATHERPROOF

RGmplete as shown tota! length 102 ft . with 90 ft . of 52 hm nant traps. (wt. 3 oz . $1^{\prime \prime} \times 5^{\prime \prime}$ long.) You just tune to desired band for excellent reports! EXCELLENT FOR ALL WORLD - WIDE RECEIVERS AND AMATEUR TRANSMITTERS

For NOVICE AND ALL CLASS AMATEURSI NO EXTRA TUNERS OR GADGETS NEEDED! ELIMINATES 5 SEPARATE ANTENNAS WITH EXCELLENT PERFORMANGE GUARANTEED. CAN EE USED IN ATTICS. TOPS OF BUILDINGS OR AS V, S IN MINIMUM SPACE, ETC. NO HAYWIRE HOUSE APPEARANCE! EASY INSTALLATIONI FULL DETAILS FURNISHED.

80-40-20-15-10 meter bands. Complete 40-20-15-10 meter bands. $54-\mathrm{ft}$. ant.
-15-10 meter bands. 24-ft. ant.
COD ONLY $\$ 3.00$ (cash, ek., mo.) and pay postman balahce COD plus postage on arival or sens full price for pp. del. EANK AMERICARD - - - MASTER CHARGE - - by mall or Ph 308-236-5333 Free info avallable only from. WESTERN ELECTRONICS Dept. AT-1

Kearney, Nabraska, 68847

You asked for it!

 A $\$ 70.00$ digital multimeter kit Now there's just no excuse for not having a digital multimeter at our low price. Our unit is based on the famous $\$ 29.95$ DVM kit you have heard about and has the following features:DC volts; Better than 0.1% accuracy. Reads 0 to 1200 volts in 4 ranges
AC volts: Better than 0.3% accuracy. Reads 0 to 750 volts RMS/4 ranges
Ohms: Better than 0.2% accuracy. Reads from 0 ohms to 20 megs
You get all parts including dual tracking, $A C$ power supply, laser trimmed reference, and thick film attenuator.
CA res. add tax. Pls. inc. $\$ 8.95$ for postage handling.
As alwass we have calibration ard repair service

[^3]
Don't Buy an Amplifier on Toothpaste Claims

Buy a tube of foothpaste on the basis of outrageous exaggerations as to what it'll do for your social life and it still may clean your teeth.
BUT if you buy a linear amplifier on the basis of toothpaste claims - or ambiguous specifications - you may end up with a real turkey! ...

Large differences in quakty and perigmance exst among so-called 2 KW PEP amplifters Thinking of buying another model that's "just as good as an AlPHA? Better thoroughly investigate the manufacturers reputation. and what, exaclly, :s promised in his specifications and warcaly tuless, of course you like surprises.

EXAMPLE - Power Output \& Efficienay:
Ar ALPHA 76 ruming ker-down at one kllowan DC input delivers weth over 600 watts if oulput, averaged over the 100 thru 10 meter umateur bands Another current model -teluxe " inear managed less than 400 watts average output in identical tests using the same instrumentation. You d never suspeet it from reading the mantiacturer's clams

It's understandable why cestain of our competitors hedge. the ALPHA 76 's tory-ive pound iranstormer alone weighs as much as some of the complete linears for which they clanta capabolity rqual to the 76 s And every ALPHA power transiommer es eficuently cooled by elos exclisive ducled air system. You owe il co yoursell. before buying. to check the smaller transformers in those other dest-top linears are cooled
and specs. $=$ and the deficrency was largely conceated by gross errors in the interial melering circuits'
EXAMPLE - Duty cycle
Ratings are sometimes ambuguous and can be misleadirg One prominent amplifier manufacturer rates his desk model for full powes in intermittent amateur service (Just how intermiltent he doesn t say. Another manufacturer hedges his continuous rating watl! time limits for one model. but not wo a second model.

ALPHA specs say clearly, "No Time Limil And every ALPHA is backed by a tactory warranty that extends 18 months - six times as long as other amplifier warrames

To get the tacts about what an ALPHA inear ampliter can do in your station. call or wrile your dealer or ETO direct for detailed literature And ask for a tree copy of our rewly. upoated gurde to compaing linears

ALPHA: Sure you can buy a cheaper linear, . But is that reaily what yous want? ETo Ehrhorn Technological Operations, Inc. PO Bon 708 . Cainon Ciay, Colorado 81212 - (303) $275 \cdot 1613$

Digital Timer

Goes Mobile

- - battery power keeps it trucking!

Frank W. Knotingham K7QCM P.O. Box 734

Gold Beach OR 97444

Having built the frequency counter written up by Thomas Harper and published in the August ' 73 issue of 73 Magozine, three alarm clocks from the 50250 chip outward and five of the 5314
kits, I was captivated by the flying numbers, and it was easy to convince myself that I needed a time period counter in my service truck.

So 1 built up out of 7400 series ICs a 3 digit timer to count the time I was on a service call. This worked quite well until the engine of the truck was started during the counting period. Then the readouts would maybe show correct time interval or
maybe not. So back to the old think tank and, lo, the perfect interval counter was born.

An order was sent off to S.D. Sales for their current clock kit using a 50250 chip and a 60 Hz CMOS timebase, which was the one being advertised at the time. The two kits were assembled and mounted in a small $101 / 4 \mathrm{~cm}$ wide by 4 cm high by 11 cm long metal box hinged to a

base at the lower rear corners. Two switches were installed in the bottom of the box. A push-button switch as used in a table lamp turned the 12 volts from the car battery on and off at a touch of the top of the metal box. At the same time a microswitch made up of two miniature micros fastened together and operated by a common push-button served to momentarily connect the hours-set and minute-set pins of the clock chip to the positive supply voltage which then would start the seconds counting. This interval timer has been in use for a couple months now and has not been caught giving a false reading.

When power is interrupted, a 50250 clock chip will return to either 12;00:00 or all zeros, depending on whether it is used as 12 hour time with a 60 Hz timebase or 24 hour time with a 50 Hz timebase. Some day I will get a CMOS 50 Hz timebase and go for the 24 hour format. At the present, starting at 12:00:00 is a bit awkward, especially around noon time.

Why didn't the original timer work? My best guess is that since the 7400 series ICS needed 5 volts, which were obtained through a 309 regulator IC which . Fequires at least 10 volts for stable regulation, then probably the starter puiled the voltage down to or near this point. and caused the confusion.

The clock chip and time-base-use 12 volt supply direct and are quite tolerant of low voltage.

A cabinet to house a project such as this always presents as much problem as the circuitry, to me at least. What. really took place there was that during the first lash-up and test period I found a box made of thin cardboard that just fit the circuit boards. The timebase was wrapped in crumpled newspaper and shoved down in this cardboard box. Then came the main circuit board with the clock chip on it, and the readout board was last with
the readout board plugging the whole box top and the switches dangling. This lashup was tied to the steering post and put through the smoke test in this unfinished condition. When it looked like everything would work, a metal box was made to just cover the cardboard box; a hole drilled through this received the push-push power switch, which in turn held the works in the metal box. Another hole permitted the power wires to be led out and
the two microswitches to be wired outside of the box.

The choice of switches is a determining factor in the placement of the microswitches and the lever arrangement. In this case the two microswitches were lightly hinged to the box by putting small screws in the plate of the switch pair and the push-buttons of the switches up against the box. The wires are stiff enough to provide the necessary force to close the switches. If the larger
microswitches requiring more force to trip them were used, it would be necessary to provide a spring to supply this force, as a push-push switch needs an overrun on the stroke to trip it. The hours and minutes switch can be closed first, but has to give down enough for the push-push switch to turn the power on.

The current available 50250 clock chip seems to have turned into a 50252, possibly an updated version.

There may be other clock chips which will work, but remember the requirement: The readouts must go to zero when the power switch is opened and closed again. Many of the clock chips will show some random number which, of course, is unsatisfactory.

A one finger push down toward the base will start this timer counting the seconds, and another push will turn the whole thing off again. -

ATTENTION GARY AND SABTRONIX OWNERS!

.... Come let us tweak your pots! If you just built the Gary Model 101 or the Sabtronix model 2000 we can calibrate it for you to factory specs.

We use custom built lab calibration equipment designed expressly for these meters. You get a professional job!

Sabtronix $2000 \$ 24.95$
Gary model $101 \$ 10.95$
Also add $\$ 3.95$ per unit for special delicate equipment packing, insurance, and postage.
Send via Air Mail or Parcel Post to:
custom cal sepvice
Gary MeClellan and Co. PO Box 2085
G10 1001 W. Imperial Hwy.
La Habra CA 90631

PRINTED CIRCUIT SUPPLIES

Do a PC layout using only a drill press and a set of Stahler Drill/Mills. You can also do a prototype using Datak ER-2, ER-13, ER-14 tape resist. Positive resist permits identical reproductions from an artwork layout on matte film.

PC Techniques Booklet, Positive Resist instructions, and catalog: $\$ 1.50$

TRUMBULL COMPANY 833 Balra Dr., El Cerrito, CA 94530

More Economical RTTY

 HEX [0-5.5000

The ST-5000 from HAL

The HAL ST-5000 sets the pace for an economical demodulator/keyer for radio-teletype (RTTY). All the features you need for reception and transmission of HF and VHF RTIY are here.

The demodulator features a hard-limiting front end; active filter discriminator, and active detector circuitry for wide dynamic range. Autostart and motor control circuitry make for easy VHF and HF autostart operation.

Convenient front panel switches are provided for 850 and 170 Hz shift, normal or reverse sense, autostart on/off, print - line or local, and power on/off. 425 Hz press transmissions may also be copied with the ST-5000. High voltage 60 ma. loop output as well as low level RS-232 compatible output are provided by the demodulator.

The audio keyer section of the ST- 5000 generates stable, phase-coherent audio tones. Transmission is a simple matter of applying these tones to your HF SSB or VHF FM transmitter.

The ST-5000 is housed in an attractive blue and beige cabinet and is backed by the HAL Communications one year warranty.

For complete specs on the HAL ST-5000, write or call HAL today.

$\$ 275.00$
 HIL

HAL Communications Corp., Box 365, 807 E. Green St. Urbana, Illinois 61801 - Telephone (217) 367-7373

WEATVEWHIT YOUTE: DITo.

YAESU
 ADVANCED COMMUNICATION EQUIPMENT

QTR-24 Worid Clock

Left to right - FRG-7, Solid State Synthesized Communications Receiver - FR-101 Digital. Solid State Receiver - SP-101B, Speaker - FR-101, Digital Solid State Receiver - FL-101, 100 W Transmitter - FL-2100B. 1200 W PEP Input Linear Amplifier

Left to right - FT-620B, 6 Meter Transceiver - YP-150, Dummy Load Wattmeter - YO-10̂0, Monitor Scope - FTV-250, 2 Meter Transverter - FTV-650, 6 Meter Transverter - FV-101B, External VFO - FT-101E 160-10 M Transceiver

Left to right - YC-601, Digital Frequency Display - YC-355D, Frequency Counter - FP-301, AC Power Supply - FT-301S Digital, All Solid State Transceiver - FV-301, External VFO - FT-221, 144-148 All Solid State All Mode Transceiver

USED GEAR • TRADE UP • FREE UPS SHIPPING ON PREPAID ORDERS

Th: LOWES POSSIBL PRIGES

6)KENWOOD

 THE PACESETTER IN AMATEUR RADIO

TR.7400A
$\$ 399.00$
2m MOBILE TRANSCEIVER. Synthesized PLL. Selectable output, 25 watts or 10 watts. 6 Digit LED freq. display. $144-148 \mathrm{MHz}, 800 \mathrm{CH}$. in 5 KHz steps, 600 KHz repeater offset. Continuous tone-coded squelch (CTSC). Tone Burst.

TS-520S

$\$ 649.00$
SSB TRANSCEIVER. Proven in the shacks of thousands of diseriminating hams, field day sites, DX and contest stations and mobile installations. Superb engineering and styling.

SP-520
$\$ 22.95$
Optional external speaker for better readability.
TV-502
$\$ 249.00$
TRANSVERTER. Puts you on 2 M the easy way. 144.145 .7 MHz or optional 145.146 MHz .

PS. 5
$\$ 79.00$
POWER SUPPLY FOR TR8300. Desigred especially for home QTH.

TR-7200A

2M MOBILE/BASE FM TRANSCEIVER. Ignition interference control. 2 pole X tal filter in IF revr. Protection for final stage transistor \& reverse polarity connections. Priority Ch. switch. Quick release mount. LED CH. indicators. Switchable 10W or IW output.

MC-50
Dynamic microphone designed expressly for amateur radio operation. Complete with PTT and LOCK switches, and a microphone plug. (600 or 50 k ohm)

COMMUNICATIONS RECEIVER. 1.8 to 29.7 MHz , WWV and CB band. $50 \mathrm{MHz}, 144 \mathrm{MHz}$ converter optional. Stahle VFO \& oscillator for 5 fixed chaneels. 1 KHz dial readout. Xtal filters (SSB/8 poie, CW/8 poie, AM/G pole). Squelch. Smeter. Noise blanker.

S-599.\$19.94 R-599D-\$499.00 T-599A-\$499.00
SSB TRANSMITTER. 3.5 to 29.7 MHz . Stable VFO. 1 KHz dial readout. 8 pole Xtal fiter. AM Xmission available. Built-in AC pwr supply. Split frequency control available.

TR-2200A
$\$ 229.00$
PORTABLE 2 M FM TRANSCEIVER. 12 Ch . canacity. Removable telescoping antenna. External 12 VDC or internal NI-CAD batteries. 146-148 MHz .6 CH . supplied. Switchable 2 W or 400 mW output.

[^4]$\$ 239.00$
ALL BAND COMMUNICATIONS RECEIVER. $A C$, batteries or external DC. 170 KHz to 30 MHz in 6 bands. Foreign broadcasts or ham radio in AM, SSB and CW. Dual gate MOS/FET transistors \& double conversion, Band spread dial. 500 KHz marker.

WEDAVEWHIT YOULEFDAToo

RECEIVERS

TRANSMITTER
T-4XC
TRANSCEIVERS

SYNTHESIZER

L-4B

KNOWN FOR QUALITY THROUGHOUT THE WORLD
$\begin{array}{ll}\text { SSR-1 } & \text { General Coverage, } .5 \text { to } 300 \mathrm{MHz} \\ \text { SPR-4 } & \text { Programmable, Solid State } \\ \text { DSR-2 } & \text { VLF-HF Digital Synthesized SSB, }\end{array}$ AM, CW, ISB, RTTY C-Line. HF. 160-10M Noise Blanker for R-4C
Noise Blanker for SPR-4
\$350.00
$\$ 629.00$
$\$ 2950.00$
$\$ 599.00$
$\$ 70.00$
$\$ 70.00$

C-Line. HF. 160-10M
$\$ 599.00$

TR-4CW	80-10M. SSB, AM, CW	$\$ 699.00$
TR-33C	2M, FM, 12 CH. Portable	$\$ 229.95$
MMK-33	Mobile/Dash/Desk Mount for TR-	
	33C	$\$ 12.95$
34PNB	Plug-In Noise Blanker for TR-4	
	Series	$\$ 100.00$
MMK-3	Mobile Mount for TR-4	$\$ 7.00$
RV-4C	Remote VFO for TR-4 CW	$\$ 150.00$
FF-1	Crystal Control for TR-4	$\$ 46.95$

FS-4 General Coverage for 4-Line and SPR-4

LINEAR AMPLIFIER
Linear and w/power supply \& tubes
$\$ 895.00$
MATCHING NETWORKS

MN-4
MN-2000
RCS-4
MN-4
MN-2000
RCS-4
W-4
WV-4
7072
7075
1525EM
HS-1
AA-10
TV-300-HP
TV-75-HP
TV-42-LP
TV-3300-LP
TV-5200-LP
Antenna Matching Nétwork. 200W Antenna Matching Network. 1000W Remote Control Antenna Switch

RF Wattmeter, 1.8 to 54 MHz
RF Wattmeter, 20 to 200 MHz
Hand Held Microphone
Desk Top Microphone
Pushbutton Encoding Microphone Head Phones
10W, 2M Amplifier
300 ohm High Pass TV Set Filter
75 ohm High Pass TV Set Filter
Transmitter Low Pass Filter. 100W
Transmitter Low Pass Filter. 1000W
Transmitter Low Pass Filter. 1000W. 100W, 6M
$\$ 120.00$
$\$ 240.00$
$\$ 120.00$
$\$ 72.00$
$\$ 84.00$
$\$ 19.00$
$\$ 39.00$
$\$ 49.95$
\$10.00
$\$ 49.95$
$\$ 10.60$
\$13.25
\$14.60
$\$ 26.60$
$\$ 26.60$

USED GEAR • TRADE UP • FREE UPS SHIPPING ON PREPAID ORDERS

H2 LOW SI Possible pices

COLLINS AMATEUR EQUIPMENT

KWM-2A TRANSCEIVER
$\$ 3533.00$ Unmatched for mobile and fixed station applications. 175W on SSB, 160 W on CW. Switch select up to 14 optional Xtals. Can be used for RTTY. Filter type SSB generation. Automatic load control. Inverse RF feedback. Reimeability-tuned variable oscillator.

75S-3C RECEIVER
$\$ 2504.00$ Sharp selectivity. SSB, CW and RTTY. Single control rejection tuning. Variable BFO. Optional mechanical filters for CW, RTTY and AM. 2.1 KHz mechanical filter. Zener regulated oscillators. 3-position AGC.

32S-3A TRANSMITTER
$\$ 2597.00$
Covers all ham bands between 3.4 MHz and 30 MHz . Nominal output of $100 \mathrm{~W} .175 \mathrm{~W}, \mathrm{SSB}$ and 160 W CW. Dual conversion. Automatic load control. RF inverse feedback. CW spotting control. Collins mechanical filter.

30L-1 LINEAR AMPLIFIER
$\$ 1536.00$ 1000 watts PEP on SSB and 1000 Average on CW. Single control rejection tuning (50 dB). Variable BFO. 2.1 kHz Mechanical filter. Zener regulated oscillators. 3 position AGC. Exclusive comparator circuit.

MASTERCHARGE \& BANKAMERICARD ACCEPTED

Weitye Whin rount peloo

Bina thruline wattmeter

- BUY ONLY THE ELEMENTS YOU NEED AND ADD EXTRA RANGES AT ANY TIME
- READ RF WATTS DIRECTLY

	Power Range	Frequency Bands (MHz)					
Table		$\frac{2-}{30}$	$\begin{aligned} & 25- \\ & 60 \end{aligned}$	$\begin{array}{r} 50- \\ 125 \end{array}$	$\begin{aligned} & 100- \\ & 250 \end{aligned}$	$\begin{aligned} & 200- \\ & 500 \end{aligned}$	$400-$
STANDARD	5 watts	-	5A	58	5 C	5D	$5 E$
ELEMENTS	10 watts	-	10A	108	10 C	100	10 E
	25 watts	-	25A	258	25 C	250	25 E .
	50 watts	50 H	50 A	50 B	50 C	500	50 E
	100 watts	100 H	100A	1008	100C	100D	100F.
	250 watts	250 H	250.4	250 B	250C	2500	2505
	500 watts	500 H	500 A	500 B	5000	500 D	3005
	1090 watts	1000 H	1000A	10008	1000C	10000	7000E
	2500 watts	2500 H					
	5000 watts	5000 H					

Table 2
Low. POWER ELEMENTS

WE HAVE A COMPLETE STOCK OF ALL BIRD WATTMETERS AND SLUGS

USED GEAR • TRADE UP • FREE UPS SHIPPING ON PREPAID ORDERS

LL LOWES Possuliz Piges

(D)
 ICOM
 VHF/UHF AMATEUR \& MARINE EQUIPMENT

MASTERCHARGE \& BANKAMERICARD ACCEPTED

DIVISION OF TREVOSE ELECTRONICS 4033 Brownsville Rd - Trevose, Pa. 19047 (215) 357-1400/(215) 757-5300

TEMPO

TEMPO ONE ACIONE VF/ONE

HF Transceiver. 80-10M. USB, CN \& AM
Power Supply for TEMPO ONE
External VFO for TEMPO ONE
TEMPO VHF/ONE Transceiver. 2M. 144 yo 148 MHz. PLL
TEMPO SSB/ONE SSB Adapter for TEMPO VHFIONE
Transceiver. $80-10 \mathrm{M}$. USB,
LSB, CW and AM. PLL. Digital
2W, VHF/FM, 6 Ch . Hand
Held. $144-148 \mathrm{MHz}$
59.00
199.00

Wattmeter \& SWR Bridge 42.95
Desk Mike. 600 or 50K ohm.
PTT \& Lock Switches
39.00

MS-2
4 Ch . Pocket Scanning Revr.

210X
215X
OMK

220CS
350-XL
DD6-XL
305
311
350-PS
DMK-XL

Transceiver. $10-80 \mathrm{M} .200 \mathrm{~W}$ Transceiver. $15-160 \mathrm{~N} .200 \mathrm{~W}$ Deluxe Mitg, Kit for 210X \& 215X
AC Console for 210X \& 215X Transceiver. SSB. Solid State. 10-160 M. 350w
Digital Dial Readout for 350 .
XL
Plug-In Auxiliary VFO. For 350.XL

Plug-In Auxiliary Crystal Oscillator for 350-XL
AC Pwr Supply v/Spkr \&
Phone Jack for $350 \cdot \mathrm{XL}$ Mobile Mounting Bracket for 350-XL. Easy Plug-in
679.00 679.00
48.00 149.00

SWAN

FC. 76

WM6200

FS-2
SWR-3
SWR-1A
W2000
WM. 3000
FS-1
WM1500

MARK II
$1200 \times$

Frequency Counter. 5 Digit LED
169.95

In-Line Presicion Wart or $2 \mathrm{M}, 2$ Scales io 200 W Reads SWR. =
59.95

SWR \& Field Strength Meter 15.95 Pocket SWR Meter
Relative Power Meter \& SWR Bridge
In-Line Wattmeter. 3 Scales to 2000 W .3 .5 to 30 MHz
25.95
59.95 Peak/RMS Watmeter. Tells The Truth About SSB
79.95

Pocket Field Strength Meter In-Line Wattmeter: 4 Scales to 1500 W .2 to 50 MHz
74.95

Linear Amplifier. Full Legal Power. W/100W input. 80-10 M.
849.95

Portable Linear Amplifier 1200 W PEP. SSB. 700W, CW. 300W, AM. 80-10 M.

USED GEAR • TRADE UP • FREE UPS SHIPPING ON PREPAID ORDERS

| Den/ron Kilowatt Tuner Matches |
| :--- | :--- |
| Everything From 160 to 10 |

160.10 MAT

Built-In Wattmeter
Front Panel Antenna
Selector for Coax, Balanced Line and Random Wire.

only $\$ 299.50$

Deniron

Super Tuner

160-10 Meters Balanced Line, Coax, Random or Long Wire Maximum Power Transfer, Xmitter to Antenna. 1 KW Model \$129.50 3 KW Model \$229.50

1000 to 1200 WATTS OUTPUT TO YOUR ANTENNA Denion SUPERAMP

$\$ 499.50$
If the arnplifier you're thinking of buying doesn't deliver at least 1000 to 1200 watts oucput, to the antenna, you're buying the wrong amplifier.
Our New Super Amp is sweeping the country hecause hams have realized that the DenTron Amplifier will deliver to the antenna, (output power), what other manufacturers rate as input power.
The Super Amp runs a full 2000 watts P.E.P. input on SSB, and 1000 watts DC on CW' RTTY or SSTV $160-10$ meters, the maximum tegal power.
The Super Amp is compact. Iow profile, has a solid one-piece eabinet assuring maximum TVI sheitding.
The heart of our amplifier, the power supply, is a continuous duty. self-conzained supply built for contest periormance.
We mounted the 4-811 A's, industrial workhorse whes, in a cooling chamber featuring the on-demand waxiable cooling system,
The hams at Den Tron pride themselves on quality work, and we fight to keep prices down. That's why the dynamic DenTron Linear Amplifier beats them all at $\$ 499.50$.
now avalitable with $57 z^{\text {B }}$ for $\$ \mathbf{\$ 7 4 . 5 0}$

Deñron ANTENNA TUNER

The 80-10 Skymatcher

Here's an antenna tuner for 80 thraegh, in meters, handles 500 w P.E.P. and matches your 52 ohm transeaiver to a random wire antenna.

Contimuous tuning 3.2-30 mc
"L" network 12 position rotary switch - Ceramic 12 position rotary switch - SO-239 receptional to transmitter - Random wire tuner

3000 vol: capacitor spacing - Tapped inductor

Cevamic antenna feed thru
"W. 5 " H. $8^{\prime \prime}$ D., Yreight: 5 lbs ,
$\$ 59.50$

Dentron W-2 PAD INLINE WATTMASTER

Read forward and reflected watts at the same time

Tired at constant switching and guesswork?
Every serious ham knows he must read both forward and reverse wetteope simultaneously for that perfect match. So upgrade with the DenTron W-2 Dual in line Watmeter.
$\$ 99.50$
USED GEAR - TRADE UP • FREE UPS SHIPPING ON PREPAID ORDERS
\$2,000,000 HAM ITVETTORY

Hiflow Si Possime prices

MASTERCHARGE \& BANKAMERICARD ACCEPTED
DIVISION OF TREVOSE ELECTRONICS 4033 Brownsville Rd • Trevose, Pa. 19047 (215) $357-1400 /(215) 757-5300$

Gamber-Johnson Deluxe slide mount \$17.88

- Solid snap in design
- Attaches to radio mtg bkt (or directly to radio)
- Four molex pins for power and external speaker
- BNC RF slide connector
- pigtail UHF (SO-239) connections to radio and antenna
- designed for commercial use thru $1000 \mathrm{MH}_{3}$

Gamber-Johnson Console floor mount $\$ 31.50$

- utilizes deluxe slide mount
- built in speaker
- mount attaches securely to floor

extra slide mount

base
stationary half of deluxe slidemount allows use of radio in second car or location

Frequency Register Search Indicator Scan or Search

Program Panel
Channel Panel
16 Scanning L.E.D.'s

Regency Digitally Programmable Scanner

 with Keyboard EntryModel ACT-T-16K
Frequency Range:

Lo VHF	
Hi VHF	$30-50 \mathrm{MHz}$
$146-174 \mathrm{MHz}$	

Sensitivity:
(20 DB quieting)
Lo VHF $\ldots \ldots .0 .5 \mu \mathrm{~V}$
Hi VHF $\ldots \ldots .0 .6 \mu \mathrm{~V}$
UHF $\ldots \ldots .0 .7 \mu \mathrm{~V}$
special \$299
Selectivity
$\pm 7 \mathrm{KHz}$ (min.)@6DB
$\pm 15 \mathrm{KHz}$ (max.)@60 DB
Squelch: (threshold)
Lo VHF $\ldots \ldots .0 .4 \mu \mathrm{~V}$
Hi VHF $\ldots . . .0 .5 \mu \mathrm{~V}$ UHF $0.6 \mu \mathrm{~V}$
Search Scan Range: (max)
Lo VHF 4000 channels
Hi VHF 5600 channels UHF 5760 channels

ШESTCOM

Ruggedized DC

Power Supplies
Ideal for VHF Transceivers and Amplifiers

- 105-125 VAC, $50 / 60 \mathrm{~Hz}$
- Fold back current limiting
- $13.8 \mathrm{VDC} \pm .05 \mathrm{~V}$
- UL listed \& computer grade components
- One year warranty
- 5 mV peak-peak max ripple

Astron RS-6A $\$ 49.95$ Astron RS-20A $\$ 89.95$
4.5 ADC Continuous * 16 ADC Continuous
6.0 ADC Intermittant $\quad 20 \mathrm{ADC}$ Intermittant

Recommended for uD to Recommended for up to 30 W amp's \& xevrs 120 W amp's
Astron RS-10A $\$ 74.95$ Astron RS-35A $\$ 129.95$
8 ADC Continuous \quad. $\quad 25 \mathrm{ADC}$ Continuous
10 ADC Intermittant -35 ADC Intermittant
Recommended for up to Recommended for up to
70 W amp's

Larsen

Electronics

Larsen mobile antennas
$5 / 8$ wave, 3 dB gain, 200 W rating

LM-150-K	2M roof mount	$\$ 30.20$
LM-150	w/magnetic mount	$\$ 38.45$
LM-150	witrunk lid mount	$\$ 37.90$

LM-150 witrunk lid mount $\$ 37.90$
for Motorola NMO type mount add $\$ 5.25$
220 MHz and 450 MHz available at same price

Master Charge \& B of A
We ship prepaid in USA
Calif. residents add 6% tax
Check with order or COD

10 day money back guarantee full satisfaction guaranteed Factory warranty on all items

This article describes a simple wind speed indicator which can be built very inexpensively and is complete within itself. It. can be constructed as just a fun project or can have a serious application in functioning as an alarm indicator to indicate that a certain wind speed is being exceeded and a beam should be lowered. For those who desire to build a more precise anemometer, refer to the article "Inherit the Wind," 73 for March, 1976. It describes a very good home brew wind speed indicator. Its advantages are accuracy and the detection of low wind speeds. It requires a bit of circuitry, a power supply and a frequency counter as an indicator. The wind speed article described in this article is far from that elaborate, however; it requires no power supply, is a self-contained unit, and can serve the basic purpose of "saving your beam."

The heart of any wind speed indicator is a device that will generate and/or transmit a voltage proportional to the speed at which the wind vanes are rotating. Quite by accident, it was discovered that the dc motors found in cassette tape players make excellent little dc voltage generators when their shaft is externally rotated. These motors are inexpensive but relatively well-made as a mass-produced item. Their bearings are good enough that they should last for several years of service and of low enough friction that a moderate size wind vane will start the shaft turning in anything more than a gentle

Straining the Wind

- - simple wind speed indicator

breeze. They can be purchased from various surplus outlets for a few dollars, or almost any serviceman will. have a few available from discarded cassette tape players. Don't confuse this type of motor, however, with the "cheapie" dc motors used in toys. The latter type of motor will work also as a dc voltage generator, but will last only a short while in continuous rotational service.

The motor-turned-generator can be secured to a mast with a large hose clamp, or a much neater mast mounting arrangement can be made using a bell-type reducing joint. The latter can be found in plumbing supply houses. They are meant to join pipes with fairly great thread diameter changes. Usually one can be found which will mate with a desired mast diameter, and the large end of the bell joint then forms a cup into which the dc generator can be snugly fitted and glued into place.

The construction of the wind vanes can be as simple or as elaborate as one desires. The overall dimensions shown in Fig. 1 yielded good results with winds ranging from a bit more than a light breeze to gale force winds. The principal requirement is that the vanes turn in one direction only or else the generator will not always produce a

Fig. 1. Advanced design wind vane assembly.
voltage of the same polarity. To ensure this, some sort of cup or cone assembly is needed at the end of each vane. The assembly shown in Fig. 1 is about as simple as one can get. The center piece of the vane assembly is a plastic cover from a large glass jar. It serves two purposes. One is to act as a central mounting piece for the vanes, and it also serves, because of its shape, as a weather cover for the upper part of the generator. The generator used had a pulley permanently attached to the shaft, and apparently most all cassette motors come this way. The end of the pulley was filed flat and then the jar cover fastened to it with epoxy cement. The individual vanes are simply plastic sauce strainers found in a household goods store. The strainer holes are sealed up by painting them, and the handle end is secured to the jar cover by some screws. The whole assembly does look a bit funny, to say the least, but it works. It can be made a bit more professional-looking by a good overall aluminum spray painting. Also, once it is up in the air, the simple components of its construction are no longer as obvious.

The generator voltage is transferred by regular line cord to a remote indicator.

The remote indicator can be a simple meter or something more elaborate, like a digital readout. The generator will turn fast enough to easily activate a microampere meter even over long transfer line lengths. In very high winds, enough voltage will be generated to activate an LED. Fig. 2 shows a remote indicator circuit using a 150 uA meter. An adjustment potentiometer allows the meter to be set for full scale with a strong wind blowing. The optoisolator circuit (an LED and a switching transistor in an IC package) can be used to switch on a buzzer or bell when a particularly high wind gust is sensed. The main value of this feature is that one can be alerted, usually during the night, of the presence of a high wind condition. The metek. can be approximately calibrated in wind speed values by comparing its reading to locally broadcast weather reports under various wind conditions.

Fig. 2. Remote indicator. Alarm circuitry might be a 6 volt battery in series with a Mallory Sonalert, for example.

Find That Meter Resistance

-- with this simple bridge

There comes a time in every ham's life when he must seek that unknown meter resistance. Here's a simple solution to that ageold problem. The schematic is shown in Fig. T. It's equivalent circuit is shown in Figs. 2 (a) and 2 (b).

In Fig. 2(b), R2 is equal to $R 2$, and $R_{B P}$ is the equivalent parallel resistance of branch 1 and branch 2. Neglecting R_{BP}, the current through R2

Fig. 1.
would be $1.5(\mathrm{E}) / 1500(\mathrm{R})=$. 001 A or 1 mA , the full-scale reading of most meters. Thus, when we reinsert $R_{B P}$, we know that the current is less than 1 mA . This keeps the current through each branch (Fig. 1) less than 1 mA , protecting both meters.

In Figs. 1 and 2(a), when the resistance of branch one is equal to the resistance of branch two, the currents through both are equal. Thus, you know that when the reading on the meter under

Fig. 2 (a).
test and the current reading on your meter are equal, the resistances of the twọ branches are equal.

The resistance of branch one is equal to the resistance of M1 (which must be known) plus R1, a potentiometer with a calibrated dial. If we select $R \times$ so that it is equal to RM_{M}, then, when R1 is equal to $\mathrm{R}_{\text {M-test, }}$ the resistances of the branches are equal. If the resistances of each branch are equal, the currents through them are equal.

To find the meter resistance, one must plug in the meter under test and rotate

Fig. 2(b).

R1 until the currents through both meters are equal. Then we know that R1 $=$ RM-test and its resistance can be read directly off the calibrated dial.

The smaller the value of potentiometer R1, the more accurate is the measurement of R_{M}-test- This is because the dial can be calibrated in smaller units.

As an option, a more accurate circuit is shown in Fig. 3. A rotary switch can select different values of resistance to be added to R1. Thus, R1 can be made as small as you wish. RM-test is now equal to R1 plus the switched-in resistance.

Let's say you wanted to measure a meter's resistance using only R1 (Fig. 1). If your dial was calibrated with 100 notches, the result would be 5 Ohms per notch. If we use the circuit in Fig. 3, the potentiometer is only 200 Ohms, leaving 2 Ohms per notch on the same calibrated dial. Thus, we see how there is more accuracy in a circuit such as the one shown in Fig. 3.

I would suggest that you choose a meter with a low resistance. Also, if you prefer, you can use an ohmmeter to read the resistance of R1, thus saving yourself the trouble of finding a calibrated dial.

As you can see, the circuit is a flexible one and can be customized by the builder. All that is needed is a pen, paper and $E=I R$.

Fig. 3.

－General Communicatlon \＆Industry
－Citizen＇s 日and
（Standard $\&$ Synthesized）
－Two－Meter－Monltor－Scanners
－Marine VHF－Amateur Bands

Depend on Jan Crystals

 made in U．S．A．for－Frequency Control＊Frequency Stability
－High Pertormance
Send 10^{4} for our latest cetalog Write or phone for more detalls

2400 Crystal Drive
Ft．Myers，Florida 33901
all phones（813）936－2397

＂THE PROFESSIONALS＂ DEOD ELECTRONICS

500 MHz and 1 GHz Counters

freouency counter
 5ロロ．77日4日

The CTF－2 Series Counters are designed and built to the highest standards to fulfill the needs of commercial communications，engineeringlabs and serious experimentors．With an accuracy of $\pm .00005 \%$（oven option）the CTR－ 2 can handle the most critical measurements and is about half the cost of other commercial counters．

If you need a reliable counter at an affordable price，the CTR－2 is the answer．
－ 8 Digit ．3＂LED Display
－High Stability TCXO Time Base
－Built－in VHF－UHF Prescaler
－Automatic Dp Placement
－TCXO Std．$\pm 2 \mathrm{ppm}$
－Input Diode Protected
－ 12 V －DC Operation（Optional）
－Oven Controlled Crystal（Optional） $\pm .5 \mathrm{ppm}$
－Selectible Gate Times

CTR－2．500
RANGE
10 Hz to 512 MHz

500 MHz Kit CTR－2－500K

500 MHz Kit CTR－2－500K
500 MHz Assembled CTR－2－500A ．．．．．．．．．．．．．．$\$ 249.95$

1 GHz Kit CTR－2－1000K
1 GHz Assembled CTR－2－1000A ．．．．．．．．．．． 549.95

CTR－2－1000 10 Hz to $>1000 \mathrm{MHz}$

（OPTIONS）		（OPTIONS）
（02）Oven Crvstal $\$ 49.95$	$(04) 12 \mathrm{~V}-\mathrm{DC}$	$\$ 10.00$
（03） $.43^{\prime \prime}$ LED	10.00	$(05) 10 \mathrm{sec}$ ．Time Base

NO TRAPS－NO COILS－NO STUBS－NO CAPACITORS

MOR－G AIN HD DIPOLES ．．．One half the length of conventional half－wave clipoles．Multi－band，Mylti－frequency．Maximum effi－ ciency－no traps，loading coils，or stubs．Fully assembled and pretuned－no measuring，no cutting．All weather rated－-1 KW AM， 2.5 KW CW or PEP SSB．Proven parformance－more than 15,000 have been dialivered，Permit use of the full capabilities of today＇s 5 －band xevrs．One feedline for operation on all bands，Lowest cost／benefit antenna on the market today．Fast OSY－no feedrine switching，Highest parfarmance for the Novice as welt as the Extra－Class Op．

EXCLUSIVE 66 FOOT， 75 THRU 10 METER DIPOLES

NOTES

－All models above are furnished with crimp／solder lugs．
All models can be furnished with a $\$ 0-239$ female coaxial connector at additional cost．The $\$ 0-239$ mates witf the standard PL－ 259 mate coaxial cable connector．To order this factory installed option，add the letter＇A＇after the model number．Example： $40-20 \mathrm{HD} / \mathrm{A}$
75 meter models are factory tuned to resonate at 3950 kHz ．（SP） models are factory tuned to resonate at 3800 kHz .80 meter models are factory tuned to resonate at 3650 kHz ．See VSWF curves for other resonance data．

\＃ 1640% Copper Weid wire annealed so it handles like soft Copper wire－Rated for better than full legal power $A M / C W$ or SSB－Coaxial ar Bitanced 50 to 75 ohm feed line－VSWF under 1.5 to 1 at most heights－Stainless Steel Fardware－Drop Proof Insulators－Terific Performance－No coils or traps to break dovm or change under weather conditions－Completely Assembled ready to put up－Guaramtecd 1 year－ONE DESIGN DOES IT ALL： 75．10HD－ONL Y \＄12．00 A BANDI

MODEL	BA）dDS （3）Preate）	PRicE	WETSHT 102% Kgi	LENGTH iFu／kurs！
40.20 HD	40／20	\＄69．50	260：73	397109
80.40 HO	$80: 40 \div 15$	57.60	41／1．15	69／21．0
75：40 HD	75．40	55.00	40，＇112	6e／20 I
3540 ＋60 1．PP：	75／40	57.50	407.12	66201
75－20 H0	75．40：20	36.50	44.1 .23	$66120: 1$
75.20 HD（SP）	$76 \mathrm{r} 40 / 20$	56.60	4472．23	EL／ 20.1
75110 HD	$75 / 40 / 20 / 15 / 10$	74.501	$48: 1.34$	C6i20？
75．10 HD［5P1	75：40／20：15／10	7450	488： 1.34	E6．20）
90－10 40	30：40：20／15／10	7E50	5013．40	Eg／21．0

2200 T South 4th Street Leavenworth，Kansas 66048 19131682．3142

Monufactured \＆Guarantmed by MOR－GAIN

Call Toll Free $1800-63334910$ for HF transceivers

TEN-TEC Century 21 novice/CW transceiver
Features: Full break-in 70 watts input - Solid-state - Built-in speaker - Receives CW or SSB - Instant band change - Offset receiver tuning - Overioad protection - Sidetone with adjustable level - Regulated power supply - 80 thru 20 meters with crystals supplied
289.00 list price. Call for quote.

TEN-TEC Triton IV digital HF transceiver
Triton IV features: 3.5 to 30 MHz coverage - Totally solid-state - Instant band change - 8 -pole crystal IF filter - Large LED digital readout - 200 W input all bands © WWV at $10 \& 15 \mathrm{MHz}$ - Full CW break-in • S-meter and SWR bridge 100% duty cycle, full power for RTTY \& SSTV
869.00 list price. Call for quote.

DRAKE
 TR-4CW transceiver

TR-4CW covers 80 thru 10 meters - Modes: SSB, AM, CW - 300 watts PEP input: SSB, 260 watts: $A M$ \& CW - Transceive or separate PTO - Wide range receiving AGC - Solid-state VFO - CW semi-break-in - VOX or PTT - Shifted-carrier CW - Constant calibration mode to mode.
699.00 list price. Call for quote.

YAESU
FT-101E transceiver
FT-101E is completely solid-state - Coverage: 160 thru 10 meters - Builtin AC/DC power supplies * Built-in RF speech processor - 260 watts PEP: SSB, 180 watts: CW, 80 watts: AM - Solid-state VFO • VOX • Auto breakin CW sidetone - WWV/JJY reception - Heater switch.
729.00 iist price. Call for quote.

The NEW KENWOOD TS-820S transceiver
TS-820S now has factory installed digital readout - 160 thru 10 meter coverage - 200 watts PEP - Integral IF shift - Noise blanker vOX \& PLL circuitry - DRS dial - IF out, RTTY, XVTR capabilities - Phone patch IN and OUT terminals - RF speech processor.
1048.00 list price. Call for quote

HYGAIN 3750 HF transceiver

The 3750 is the ultimate transceiver. - Covers 160 thru 10 meters Ad vanced PLL - Narrow band SSB crystal filter eliminates receiver image \& spurious response problems - 200 watts input - Gated, adjustable noise blanker - Transmitter has audio compression circuit \& auto level control - And so much more!
1895.00 list price. Call for quote.

Remember, you can call TOLL-FREE: 1-800-633-3410 in U.S.A. or call 1-800-292-8668 in Alabama for our low price quote. Store hours: 9:00 AM til 5:30 PM, Monday thru Friday.

MAIL ORDERS: P.O. BOX 11347 BIRMINGHAM. AL 35202 - STREET ADDRESS: 3521 10TH AVENUE NORTH BIRMINGHAM, ALABAMA 35234

Call Toll Free $18800-6833410$ for 2 m transceivers

KENWOOD TR-7500 2 m transceiver

The TR-7500: PLL synthesized * 100 channels $(88$ preprogramed, 12 extras are diode programmable) - Single-knob channel selection - 2 -digit LED frequency display - Powered tone pad connection - 10 watts HI output, 1 watt LOW output.
299.00
list price. Call for quote

ICOM IC-245
2m transceiver
1C-245 has: LSI synthesizer PLL - 4-digit LED readout - Transmit \& receiver frequencies are independently programmable on any separation - TX output: 10 W PEP - Receiver front-end is a balance of low-noise, high-gain MOS FET \& a 5 section filter
499.00 list price. Call for quote.

YAESU FT-221R 2m transceiver
144 to 148 MHz coverage in 8 bank segments - Built-in AC/DC power supply Modes: SSB, CW, FM, AM VOX CW break-in PLL circuitry - Noise blanker - External touch pad connector - 11 crystal channels (88 total channels) - Selectable 600 KHz repeater offset
595.00 list price. Call for quote

WILSON 1405 SM 2m handheld radio

6 channel operation - 0.3 micro volt sensitivity - 12 KHz ceramic filter • Individual trimmers on all TX/RX crystals - 10.7 \& 445 KHz IF - Switchable 5W or 1W output • Touchtone pad included. Recharger base available.
339.90 list price Call for quote.

The NEW KENWOOD

 TS-700S 2m transceiverTS-700S has these new builtins: Digital readout, receiver preamp, VOX, semi-break-in and CW sidetone! Plus: - Solid-state construction - AC or DC capability - 4 band (144 to 148 MHz) coverage 11 fixed channels 0600 KHz repeater offset.
679.00 list price. Call for quote.

DRAKE TR-33C 2m

 transceiver- 12 channel provision (2 supplied) - All FET front-end crystal filter for superb intermod. rejection * Ni-Cad cells supplied - Built-in charger - Low power drain circuit or squelched receive - Lighted dial when using external power
229.00 list price. Call for quote.

Remember, you can call TOLL-FREE: 1-800-633-3410 in U.S.A. or call 1-800-292-8668 in Alabama for our low price quote. Store hours: 9:00 AM til 5:30 PM, Monday thru Friday.

MAIL ORDERS: P.O. BOX 11347 BIRMINGHAM. AL 35202 - STREET ADDRESS: 3521 10TH AVENUE NORTH BIRMINGHAM. ALABAMA 35234

Call Toll free $18800-6833410$ for amplifiers

YAESU FL-2100B linear amplifier
The FL-2100B has: 1200 W PEP - Input on 80-10 meters * Primary voltage change 117 to 234 VAC - Dual meters for plate current voltage - Adj. SWR meter - Individually tuned input coils on each band * Drive requirement: 30 to 100 W .
399.00 list price. Call for quote.

DENTRON MLA-2500 linear amplifier
Features: Continuous duty power supply - 160 thru 10 meters - 2000plus watts PEP on SSB - 1000 watts DC input on CW, RTTY, SSTV - Variable forced air cooling - 2 external-anode ceramic metal triodes operating in grounded grid © Covers MARS without modifications.
799.50 list price. Call for quote.

DENTRON MLA-1200 linear amplifier
The MLA-1200 is designed to fill the gap between your bareloot transceiver \& a full 2 KW amplifier. - Single external-anode ceramic/metal triode yields. 1200 watts PEP on SSB \& 1000 W DC on CW - Most other features same as MLA 2500 - AC power supply is list priced at 159.50. DC power supply available.
399.50 ist price. Call for quote.

DRAKE L-4B linear amplifier

The L-4B features: 2000 watts PEP on SSB, 1000 watts DC on CW, AM, \& RTTY * High efficiency Class 8 grounded grid circuit Transmitting AGC - Broad-band tuned input - Directional wattmeter - RF neg. feedback - 2 taut-band suspension meters - Solid state power supply.
895.00 list price. Call for quote.

2m RF amplifier
TPL 702 has: Solid-state - Linear switch (FM/SSB) - Broad band - Input: 10 W to 20 W , output: 50 W to 90 W - Typical: 10W in/70W out • Frequency coverage: 143 to 149 MHz . 702B (iist price: 179.00) available, typical: 1 W in/70W out. Input 1 W to 5 W , output 60 W to 80 W
149.00 list price. Call for quote.

DRAKE AA=10

 2m power amplifierThe AA-10 power amplifier is made for use with the Drake TR-22C or any transceiver with up to 1.8 watts output power. - 10 dB power increase At least 10 watts output@ 13.8 VDC.No relays-automatic transmit/receive switching - Compact.
49.95 list price. Call for quote.

Remember, you can call TOLL-FREE: 1-800-633-3410 in U.S.A. or call 1-800-292-8668 in Alabama for our low price quote. Store hours: 9:00 AM til 5:30 PM, Monday thru Friday.

MAIL ORDERS: PO. BOX 11347 BIFMINGHAM. AL 35202 - STREET ADDRESS: 3521 10TH AVENUE NORTH BIRMINGHAM. ALABAMA 35234

Call Toll Free $18800-63383410$ for microphones

YAESU YD-844 desk microphone

The YD-844 is designed for use with your Yaesu transceiver or transmitter. - Dynamic generating element * Frequency response: 350 to 2700 Hz . PTT switch \& lock switch • 50 Kohm - Coil cord and microphone input plug for instant hook-up.
29.00 list price. Call for quote.

SHURE 414A

 compact hand mikeThe 414 A is ideal for your portable transceiver. - One-half the size of most hand mikes - Omnidirection polar pattern - Frequency response: 400 to 4000 Hz - High impedance - Output level 54.5 dB - $51 / 2$ foot coil cord with input plug.
45.50 list price. Call for quote.

Remember, you can call TOLL-FREE: 1-800-633-3410 in U.S.A. or call 1-800-292-8668 in Alabama for our low price quote. Store hours: 9:00 AM til 5:30 PM, Monday thru Friday.

DRAKE 1525 EM hand microphone

The 1525 EM is an auto-patch encoder \& mike in one compact unit. - High accuracy ic tone generator, no frequency adjustments - Digitran ${ }^{\text {a }}$ keyboard - Low output impedance - 4-pin plug \& coiled cord allows use on most transceivers.
49.95 Call today for yours.

MAIL ORDEAS: PO BOX 1347 BIRMINGHAM, AL 35202 . STREET ADDRESS: 3521 10TH AVENUE NORTH BIRMINGHAM, ALABAMA 35234

Call 7011 Free $18800-63383410$ for antennas

DENTRON all band HF doublet antenna
This all band doublet or inverted antenna covers 160 thru 10 meters. It has a total length of 130 ft . of 14 gauge stranded copper wire. Tuned \& center fed thru 100 ft . of 470 ohmPVC covered transmission line. Assembly is complete.
24.50 Call today for yours.

HYGAIN TH3MK3 HF 3-element beam

Covers 10, 15 , and 20 meters. Features: Separate \& matched Hy-Q traps for each band e Feeds with 52 ohm coax Up to 8 dB forward gain 25 dB front-to-back ratio - Max. power input 1 Kw on AM , 2 Kw PEP - SWR less than 2:1 on all bands.
199.95 list price. Call for quote.

CUSHCRAFT ATB-34

 HF 4-element beamCatch $D X$ insteàd of chasing $D X$ with the ATB-34! - Covers 10, 15, and 20 meters * High-Q coax traps rated for 2 Kw power. - Direct 52 ohm feed thru 11 balun - Forward gain: $7,5 \mathrm{~dB}$, all bands Front-to-back ratio: 30 dB * Turn radius: $18^{\prime} 9^{\prime \prime}$ •Wind survival: 90 MPH .
239.00 list price. Call for quote.

Remember, you can call TOLL-FREE: 1-800-633-3410 in U.S.A. or call 1-800-292-8668 in Alabama for our low price quote. Store hours: 9:00 AM til 5:30 PM, Monday thru Friday.

MAIL ORDERS P.O. BOX 11347 BIRMINGHAM, AL 35202 - STREET ADDRESS 3521 10TH AVENUE NORTH BIRMINGHAM. ALABAMA 35234

Call Toll Free $18800-6333410$ for accessories

ESI POS-1220Z power supply

This one really works! - 13.8 VDC regulated power supply Current rating: 20 amps continuous, 30 amps surge *use protected - LED power indicator - ON/OFF switch on front panel. This unit wilf power a TR-7400A AND a KLM 160 watt 2 m amplifier!
69.95 Call for yours today.

NYE VIKING 114-320-003 key

This heavy-duty key is constructed on a heavy die-cast base. The hardware is nickel-piated. Has smooth adjustable bearings and heavy-duty coin sifver contacts. Black wrinkle finished base, switch and Navy knob.
10.60 Call for yours today.

BIRD Model 43

Thruline ${ }^{(8)}$ wattmeter

The model 43 features: - 50 ohms nominal impedance - VSWR insertion with N connectors: 1.05 max. Accuracy: plus or minus 5% of full scale - Shock mounted 30 microamp meter has 3 expanded scales of $25,50, \& 100$ to permit direct reading of full scale power from 100 milliwatts to 10,000 watts - Plug-in elements are optional. 2 to $30 \mathrm{MHz}, 42.00 .25$ to 1000 MHz , 36.00. Other elements and accessories are available
$\mathbf{1 2 0 . 0 0}$ list price. Call for quote.

The NEW DENTRON BIG DUMMY

Now you can tune-up off the air with Dentron's Big Dummy load. A full power dummy load, it has a flat SWR, full frequency coverage from 1.8 to 300 MHz and a high grade industrial cooling oil furnished with the unit. Built to last! Fully assembled and warrantied. Help cut out the QRM factor now!
29.50 Call for yours today.

DRAKE W-4
RF directional wattmeter
W-4 covers 2 thru $30 \mathrm{MHz} \cdot 2000$ watts continuous duty power capability - Line impedance: 50 ohm resistive - VSWR insertion: no more than 1.05 to 1 - Accuracy: plus or minus 5% of reading - 4 position switch selects: scale, forward, or reflected power.
72.00 list price. Call for quote.

MFJ 2BX =

 super CW filterThe MFJ CW fitter has: - Selectable band width: $80,110,180 \mathrm{~Hz} \cdot 60 \mathrm{~dB}$ down one octave from center frequency of 750 Hz for 80 Hz BW - Reduces noise 15 dB - 9 V battery. Plugs in between receiver and phones - 8 -pole active $1 C$ filter.
29.95 Call for yours today

Remember, you can call TOLL-FREE: 1-800-633-3410 in U.S.A. or call 1-800-292-8668 in Alabama for our low price quote. Store hours: 9:00 AM til 5:30 PM, Monday thru Friday.

MAIL ORDERS: P.O. BOX 11347 BIRMINGHAM, AL 35202 - STREET ADDRESS 3521 10TH AVENUE NORTH BIRMINGHAM, ALABAMA 35234
A. Sturko VE8NS

Ft. Smith NWT
Canada

VE6 DXer Tells All!

.- what to do all winter

During the fall of 1971, I took the opportunity to transfer from VE6 land to VE8 land to work in what was at that time the largest national park in the world, a total of 17,300 square miles of wilderness.

Wood Buffalo Nationa! Park straddles the boundary
between the Province of Alberta and the Northwest Territories. The park holds the distinction of having the largest herd of free-roaming bison in the world and the nesting site of the endangered whooping crane.

We arrived in the small community of Fort Smith,
N.W.T., with an approximate population of 2,500, on January 12,1972 ; it was $-40^{\circ} \mathrm{C}$. After traveling for 1400 miles on winter roads with a house cat and a back seat full of house plants which were still alive, it was a godsend to be at our new home. It was a land not very well known by

From left to right: VE8NS, VE8LG and VE8RZ.
the average North American, let alone the average radio ham.

The area is located in the northwest extremity of the Great Northern Plains, well within the Boreal Forest Region. It is a land of sharp contrasts, 24 -hour daylight, a semiarid region with $10-12$ inches of precipitation per year, and hordes of mosquitoes and black flies that could drive a human being crazy in hours. It's a land of northern lights, $-50^{\circ} \mathrm{C}$., dog teams, hunting and trapping still a way of life, short winter days, and ice crystals to brighten the way.

At the time of my arrival, Terry Keime VE8OK was an avid DXer. I enjoyed the bands from this QTH. VE8s were in demand, which made DXing interesting. With the eventual arrival of VE8OO and VE8RO on the same block, would you believe we had QRM alley in VE8 land? There it was in full bloom. I checked out the ham population, and, according to the list, there were- 82 licensed operators, with approximately 20 active hams. And three of them were on the same block.

Time was the pacifier untif the opportunity presented itself - a move to the other side of town. Now was my chance to get away from rf burns on everything 1 touched.

Once we were settled in, with beds on the floor and boxes piled everywhere, my thoughts turned towards an antenna structure. The days were becoming shorter and colder rapidly. The concrete base was poured by candlelight, and prayers were said for a warm weekend, just one good weekend to put up the structure. God was willing, and the antenna was on top with hours to spare. The following week proved how unpredictable the weather can be - snow and wind with minus $10^{\circ} \mathrm{C}$. (It's a smug feeling to have all the outside work done.) The antenna performed as expected,
loaded well, and all that was left was to pile up the DX.

But my rule of the roost was soon to be shattered with the arrival of an old friend, Gerry VE8LG, a graduate from an electronics school and now a radio inspector with the Department of Communications in Fort Smith, N.W.T. The die was cast. Gerry was moving in next door! How is this possible with 2 million square miles of VE8 land? Two DXers squeezed into an area of 1,000 square feet made me wonder at the mathematica! odds and shake my head.

Once the initial shock was over and I became somewhat rational, we discussed old times, invariably getting around to amateur radio. A plot was formed. VE8LG had intentions of purchasing a Wilson 520 (for the uninitiated, the Wilson 420 has 4 elements on a 30^{\prime} boom; the 520 has 5 elements on a 40^{\prime} boom) and a self-supporting 64' tower to support the beam (with a Ham II rotator to turn it). The entire construction procedure went well and 5 elements were soon up.

The area of residence of VE8NS and VE8LG was taking on an air of space age mystery. In the space of 100^{\prime}, two 64^{\prime} towers and one 40^{\prime} tower, supporting a Wilson 520,420 , and 415, and an inverted vee for 40 and 80 , were serving two amateur radio stations - the VE8LG Kenwood twins and the VE8NS TR-3 Drake line. We were rather amused whenever people or vehicles passed by. Invariably they slowed down to look at all the flying aluminum and shake their heads, with quizzical looks as if to say, "What is going on here?" Thank goodness for rather nonstringent town bylaws, or we would not have been allowed to proceed.

Tests were started immediately, and, as expected, the beam performed according to specifications. We decided to hook both transmission lines to an antenna switch. Since

VE8NS contemplating the job.

VE8NS' beam was only 50^{\prime} away, it presented no problem to extend a coax a little bit.

The results from the experiment were confusing. With both beams pointing to Europe, transmitted signal strengths were basically the same in all cases. However, on received signals the 520 beam registered as much as 3 S-units over the 420 beam. In some cases we were unable to copy signals on the 420 beam which were an S2 on the 520 beam.

With beams pointing toward ZL-VK land, again we were in for a surprise. ZLs were consistently giving better reports from the 420 beam than from the 520 beam, by as much as 1 S -unit. At no time were the transmitted signals better on the 520 beam. Received signals were better by as much as 3 S-units on the 520 beam. Perhaps further experiments will be carried out to determine whether adjustments to both beams may change the present pattern. However, the experiments were a lot of fun. Maybe the old adage, "the bigger the better," does not hold true in this case.

It is impossible to work on the same band. However,
with 15 m openings, VE 8 NS is able to operate with minimum QRM. If all the bands are out, then work is continued on the 2 accu-keyers, with one working and one more to go. But that's another story.

A matter of interest to hams looking for contacts in
zone 1 VE8 land - VE8RZ, VE8LG, VE8OV and VE8NS are active on 20 , both CW and SSB. VE8NS is the QSL bureau manager for VE8 land.

A thought just occurred to me, I haven't noticed any rf burns at this QTH. Could it be there never were any?

From front to back: the WiIson 520, the Wilson 415, and the Wilson 420.

■ヨロ 三》。
 PROFESSIONAL HEADPHONES \＆HEADSETS

BOOM MIC HEADSETS

For the ultimate in communications convenience and efficiency select a boom mic headset．Long－time favorites of professional communications，boom mic headsets allow more personal mobility while alwavs keeping the mic properly positioned for fast，precise voice transmission．Boom microphones are completely adjustable to allow perfect positioning．And，boom mic headsets leave both hands free to perform other tasks．
All models are supplied with＂close－talking＂microphones to limit ambient noise piek－up and provide superior intelligibility．Each model has a convenient，inline push－to－talk switch，which can be wired for either push－to－talk relay control or mic circuit interrupt for voice operated transmitters．The switch may be used as a momentary push－button or it can be locked in the down position．All models have tough，flexible， 8 foot cords whirh are stripped and tinned，unterminated．Communication grey with black trim．

MODEL CM－610

MODELC－610 Economical，dual receiver magnetic headphone．Delivers clear re－ ception．Lightweight and comfortable yet ruggedly constructed for daily use．Ear－ cushions seal out distracting noise and are removable for cleaning．Price：$\$ 9.95$ MODEL SWL－610 Similar to Model C－610 but with 2000 ohm impedance．Ideal for shortwave receivers requiring high im－ pedance headphones．Price：$\$ 9.95$
MODEL．C－1210 Medium priced，dual re－ ceiver dynamic headphone．Precise sound reproduction．Deluxe foam－filled earcushions are extremely comfortable for those long sessions．The removable cushions reduce ambient noise penetra－ tion and concentrate signal strength Great for noisy environments or for dig ging oul weak signals．Price．$\$ 28.30$ MODEL C－1320 Our finest communica－ tions headphone．Audiometric－type dual dynamic receivers assure the ultimate in reception and performance stability．Ex－ tremely sensitive receivers provide high output levels even from weak signals． Luxurious foam filled circumaural ear－ cushions are removable for cleaning． Price：$\$ 37.90$

DUAL MUFF HEADPHONES

The following headphones offer outstanding sound quality and superb comfort for long term wearing．All the models have circumaural earcushions to seal out distracting ambient no ise and concentrate the signal at your ear．Foam filled vinyl earcush ions on Models C － 1210 and C－1320 add an extra margin of comfort．Adjustable headbands and self－aligning earcups assure proper fit．All models are equipped with a five foot cord terminating in a standard $.250^{* \prime}$ diameter phone plug and have 3.2 to 20 Ohm impedance．Communication grey with black trim．

MODEL CM－610 Lightweight，dual receiver magnetic headohone（similar to Mode C－610）．Ceramic boom microphone with－ 51 dB output．Can be used with any mobile or base station with high z mic input and 3.2 to 20 ohm audio output．Price：$\$ 42.80$ ．

MODEL CM－1320 Deluxe dual receiver dynamic headphone with audiometric－type headphone elements（similar to Model C－1320）．Ceramic boom microphone with -51 dB output．For use with any mobile or base station requiring high impedance mic input and 3.2 to 20 ohm audio output． Price：$\$ 68.30$ ．

MODEL CM－1210 Rugged，reliable，dual receiver dynamic headphone（similar to Model $\mathrm{C}-1210$ ）．Ceramic boom microphone with -51 dB output．For use with any wobile or base station with high z input and 3.2 to 20 ohm audio output．Price：$\$ 56.90$ ．

MODEL CM－1320S Deluxe single receiver dynamic headphone with audiometric－type headphone element（similar to Model C－1320）．Ceramic boom microphone with 51 dB output．For use with any mobile or base station requiring high impedance mis input and 3.2 to 20 ohm audio output． Price：$\$ 54.50$ ．

MODEL	C－610	5WL．610	C． 1210	C－1320	CM－610	CM－1210	CM－ 1320	CM． 13205
Headphone Sensitiwiy Ref． 0002 Cynes $/ \mathrm{cm}^{2}$ （Q） mW ： $\mathrm{mp} \mathrm{BI}, \mathrm{kHz}$	$\begin{gathered} 103 \mathrm{~dB} \mathrm{SPI} \\ \vdots 50 \mathrm{~B} \end{gathered}$	$\begin{gathered} 103 \mathrm{~dB} \mathrm{SPL} \\ \pm 5.8 \end{gathered}$	$\begin{gathered} 103 \mathrm{BB} \mathrm{SPL} \\ \# 3 \mathrm{~dB} \end{gathered}$	$\begin{gathered} 105 \mathrm{~dB} \mathrm{SPL} \\ \pm 5 \mathrm{~dB} \end{gathered}$	$\underset{ \pm 5 \mathrm{~dB}}{703 \mathrm{AB} \mathrm{SL}}$	$\begin{gathered} 103 \pm \mathrm{B} \text { SPL } \\ \pm 3 d \mathrm{~B} \end{gathered}$	$\begin{gathered} 105 \mathrm{~dB} \mathrm{SPL} \\ \pm 50 \mathrm{~B} \end{gathered}$	$\begin{gathered} 105 \mathrm{~dB} \mathrm{SPL} \\ \pm 5 \mathrm{~dB} \end{gathered}$
Headiphona Frequency Response［useablet	$\begin{gathered} 40 . \\ 15,000 \mathrm{~Hz} \\ \hline \end{gathered}$	$\begin{gathered} 40 . \\ 15,000 \mathrm{~Hz} \\ \hline \end{gathered}$	$\begin{gathered} 20 . \\ 20,000 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 20 \cdot \\ 20,000 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 40- \\ 15,000 \mathrm{~Hz} \end{gathered}$	$\left\|\begin{array}{c} 20- \\ 20.000 \mathrm{~Hz} \end{array}\right\|$	$\stackrel{20}{20.000 \mathrm{~Hz}}$	$\begin{gathered} 20 \\ 20,000 \mathrm{~Hz} \end{gathered}$
Headphone Impedance	$\begin{gathered} 3.2 \\ 20 \text { ohms } \end{gathered}$	2000 ohms	$\begin{gathered} \frac{3.2}{20 \text { hms }} \end{gathered}$	$\begin{gathered} 3.2 \\ 20 \mathrm{ohms} \\ \hline \end{gathered}$	$\begin{gathered} 3.2- \\ 20 \mathrm{hmms} \end{gathered}$	$\begin{gathered} 3.2- \\ 20 \mathrm{hms} \end{gathered}$	$\begin{gathered} 3.2 \\ 20 \text { ohms } \end{gathered}$	$\begin{gathered} 3.2 . \\ 20 \text { ohms } \\ \hline \end{gathered}$
Microphone Frequency Response	－	－	－	－	$\begin{gathered} 50- \\ 8000 \mathrm{~Hz} \end{gathered}$	$50 .$	$\begin{gathered} 50 \\ 8000 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 50 . \\ 8000 \mathrm{H}_{2} \end{gathered}$
Miciophone Impedanca	－	\cdots	－	－	High	High	High	High
Microphane Sensitivity Below 1 volt／micrabar at 1 kHz	－	－	－	－	$\begin{gathered} -51 d B \\ \pm 5 d B \end{gathered}$	$\begin{gathered} -51 \mathrm{~dB} \\ \pm 5 \mathrm{~dB} \end{gathered}$	$\begin{aligned} & -51 \mathrm{~dB} \\ & \pm 5 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 51 \mathrm{~dB} \\ & \pm 5 \mathrm{~dB} \end{aligned}$
Cord	5	5	5	5	$\begin{gathered} 8 \\ 124 \mathrm{ml} \end{gathered}$	8	8	8
Plug	$250{ }^{\circ}$ da	250 dia	$250{ }^{\circ}$ dia	250\％dıa	unter－ minated	unter－ minated	unter－ minated	unter－ minated
Gross Weight	$\begin{gathered} 802 \\ 1227 \mathrm{gl} \\ \hline \end{gathered}$	802.	$\begin{gathered} 1202 . \\ 13419) \end{gathered}$	$\begin{gathered} 1502 \\ 142691 \end{gathered}$	12 az ．	1502.	$\begin{aligned} & \hline 802 \\ & 151191 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \mathrm{oz} \\ & 1341 \mathrm{~g} \mid \end{aligned}$
Gatalog Number	61630.063	61630.062	61210－031	61320－012	61630.064	61200－058	61320.013	61320－015

HRM RRDID / MOEILE COMMUNIERTIONS

MODEL	NET PRICE	$103 R$	$\$ 39.95$
12 V 4	$\$ 19.95$	$* 13 \mathrm{HM} 4$	$\$ 41.95$
600	$\$ 20.50$	104 R	$\$ 49.95$
102	$\$ 24.95$	$12 / 115$	$\$ 69.95$
612	$\$ 27.95$	$108 R \mathrm{~A}$	$\$ 79.95$
107	$\$ 28.95$	108 RM	$\$ 99.95$
12 HM 4	$\$ 29.95$	109 R	$\$ 149.95$

MODEL 108RM
NPC 12 Amp Regulated Power Supply.
Solid State. 3-Way Protected. Current Meter.

This heavy duty unit quietly converts 115 volls $A C$ to 13.6 volis DC ± 200 millivolts. 8 amps continubus, 12 amps max. All solid state. Features dual currem overload and overvoltage protection. Ideally meivers in your home or office. Gan also tee used to trickie-charge 12 voll car batteries

Oupu; Vollage
LinedLoad Regulation
Rippte/Nase
Transent Response
Curremt Limit
Current Folcoback
Owervoltage Prolection
13.6: 2 VOC MAXIMUM

20 mV : $135 \pm 3 \mathrm{VOC}$ $\begin{array}{ll}2 \mathrm{mVRMS} & 50 \mathrm{mV} \\ 20 \mathrm{uS} \text { ec } & 5 \mathrm{mVRMS}\end{array}$

25 Amp
14.5 V 15 V
(W) 5% (Ol. Shipeng Werght: 5.5 fb ALSO AVAILABLE AS MODEL 108RA PROTECTION.

MODEL 12HM4

NPC 2.5 Arro Regulased Power Supply Solio State Short Circuit Protected

Case: $3^{\prime \prime}(H) \times 4^{\prime \prime}(\mathbf{w}) \times 5 \%^{\prime \prime}$ O). Snipping wergrat: 3 las.

MODEL 109R

NPC 25 Amp Ragulated Power Supply, 4-Way Protected. Output Voltage and Current Meters.
Extra heav-duty unil quietly converts 115 volts $A C$ to 13.6 volts $0 C \pm 200$ millivolts. 10 amps contintious, 25 amps max. All solid state. Features dual current overioad, overvoliage and thermal protection. Ideally suiled for operating mosie wam ado and inear amplifier in your home or office Excelient bench power supply for testing and servicing of mobile commu nications equipment

	Trpacal	maximum
Qulput voltage	13.61 2VDC	13.5 + 3 VDC
LinetLad Pegulation	50 mv	100 ma/
Ripole No:se	5 mV RMS	10 mv RMS
Transten: Response	2 CuSec	
Current Corinubus	10 Amp	
Curent Limil	$2 \overline{5} \mathrm{Amp}$	
Overvolzage Prolection Thermal Overtoad	$\begin{aligned} & 1.5 \mathrm{~V} \\ & 1805 \end{aligned}$	15 V

MODEL 104R

NPC 6 Amp Power Supply Regulated. Solio State. Dual Overload Protection

Converts 115 volts $A C$ to 13.6 volts $0 \mathrm{C} \div 200$ millizalts. Handeles 4 zmps contirumus and 6 amps max ideafly suited tor applications where excenlent DC stavility is important, such as CB iransmission. small Ham radio transmither, and high quality sight-fack cat stereos. Can be used to gickle-charọe 12 volt car batteries.

	maximus	Fipca-
Outpul Voltage	$13.6 \pm 2 \mathrm{VOC}$	$13.6=$ \% VDC
Lime/Load Regutaton	20 mv	53 m
Rlpste/Noise	2 mV FMs	5 mVAMS
Transizat Response	ztuSec	
Curremt Contipuous	4 Ame	
Current Limit	6 Amp	
Current Foliback	2 AmP	
Case: $31 \times{ }^{\prime \prime}(H) \times 5!$	(0). Shippon	

MODEL 103R
NPC 4 Amp Regu'ated Power Supply. Solid State, Dual

Converts 115 volts AC to 13.6 velts $\mathrm{DC} \pm 200$ milliwolts. Handes 2.5 amos continuous and 4 amps max. Ideally suited for applications has continous and 4 amps max. Ideally suited for applications small Ham radio transmitter, and high quality eightitrack car stereos Can also be used io trickle-charge 12 volt car batteries.

Outpur Volage inerLoad Reguiatio RipplerNoise Transtemt Respons Current Continueus Current Limil

MDDEL 12V4

NPC 1.75 Amp
Power Supply
Functions silemtly in converting 115 valts AC to 12 volts
DC. liealy suited tor mos
applicaions cassette tape player within power rating.
Continupus Current (Fuall Load)

Fubtering Cupactiot
Repole ifull Load)
1.75 Amp
16 V max
12 Vmin
nore Circuit Prolechun
MAX1M10
$15 \mathrm{E}-3 \mathrm{VDC}$
50 mV
5 mV RUS

MODEL 102
NPC 2.5 Amp
Power Supply.
4 Amp Max. Solid State Querload Protected.

Funcuians silently in converting 115 velts AC to 12 -volis DC. 2.5 amps continuous, 4 amps max. Erables anyone to enicy CB radid, car 8-track cartridge, cassette tape player or car redio in a home or office
Continuas Currem ffullicad
Outpu: Votage (No Load)
Filtering Capacitor
Fippie (Full Load)
horl Circuit Protection
2.5 Amp

16 V max
-2 m mia

5.000 uF

Therm
Gase: $3^{\prime \prime}(H) \times 4 \%^{\prime \prime}(W) \times(5) "^{\prime \prime}(0)$. Snipping Weignt 4 lB

1. Drop-resistant, hand-size V-O-M with high-impact thermoplastic case.
2. 20,000 Ohms per volt $D C$ and 5,000 Ohms per volt $A C$; diode overload protection with fused Rx 1 Ohms range.
3. Single range switch; direct reading AC Amp range to facilitate clamp-on AC Ammeter usage.

RANGES

DC Volts: 0-3-12-60-300, 1,200 (20,000 Ohms per Volt).

AC Volts: 0-3-12-60-300-1,200 (5,000 Ohms per Volt)
Ohms: $0-20 \mathrm{k}-200 \mathrm{k}-2 \mathrm{M} \Omega-20 \mathrm{M} \Omega$ (200 Ohm center scale on low range).
DC Microamperes: 0-600 at 250 mV DC Milliamperes: 0-6-60-600 at 250 mv .
Accuracy: $\pm 3 \%$ DC; $\pm 4 \%$ AC; (full scale)
Dealer Programs
NOW Available Scale Length: 2-1/8*.
Meter: Self-shielcied; diode overload protected; spring backed jewels. Case: Molded, black, high impact thermoplastic with slide latch cover for access to batteries and fuse, $2-3 / 4^{\prime \prime} w \times 1-5 / 16^{\prime \prime} \mathrm{d} \times 4-1 / 4^{\prime \prime}$ h.

Batteries: NEDA 15 V 220 (1), $11 / 2 \mathrm{~V} 910 \mathrm{~F}$ (1): Complete with $42^{\prime \prime}$ leads, ailigator clips, batteries and instruction manual. Shpg. Wt. 2 lbs.
Model 310 Cat. No. 3018
$\$ 53.00$

7ra|ten-tec

$\overline{\text { Dealer Programs }}$ NOW Available

ARGONAUT, MODEL 509
Covers all Amateur bands 10-80 meters. 9 MHz crystal filter. 2.5 kHz bandwidth. 1.7 shape factor c G:50 dB points. Power required 12.15 VDC e 150 mA receive. 800 mA transmit at rated output. Construction: aluminum chassis, top and front panel, molded plastic end panels. Cream front panel, walnut vinyl top and end trim. Size: HWD $4 \%^{\prime \prime} \times 13^{\prime \prime} \times 7^{\prime \prime}$. Weight 6 lbs .

LINEAR AMPLIFIER MODEL 405
Covers all Amateur bands $10-80$ meters. 50 watts output power, continuous sine
wave RF watmeter SWR meter Power required 12-15 VDC e 8 A max. Construc tion: aluminum chassis, top and front panet. molded plastic side panels. Cream front pane:, walnut vinyl top and end itim. Size HWD $4 \%{ }_{2} \times 7^{\prime \prime} \times 8^{\prime \prime}$. Weight 2% libs
Argonaut, Model 509 $\$ 359.00$ Linear Amplifier, Model 405 . 159.00 Power Supply, Model 251 (Will power both units) 85.00 Power Supply, Model 210 (Will power Argonaut only)

The new ultra-modern fully solid-state TRITON makes operating easier and a lot more fun, without the limitations of vacuum tubes.

For one thing, you can change bands with the flick of a switch and no danger of off-resonance damage. And no deterioration of performance with age. But that's not all. A superlative 8 -pole i-f filter and less than 2% audio distortion, transmitting and receiving, makes it the smoothest and cleanest signal on the air.
The TRITON IV specifications are impeccable. For selectivity, stability and receiver sensitivity. And it has features such as full CW break-in, preselectable ALC, off-set tuning, separate AC power supply, 12 VDC operation, perfectly shaped CW wave form, built-in SWR bridge and on and on.

For new standards of SSB and CW communication, write ior full details or talk it over with your TEN-TEC dealer. We'd like to tell you why "They

Don't Make 'Em Like They Used To" makes Ham Radio even more fun.

TRITON IV $\$ 699.00$

ACCESSORIES:
Model 240 One-Sixty Converter $\$ 97.00$ Model 244 Digital Readout 197.00

Model 245 CW Filtes Model 249 Noise Blanker Model 252G Powe Supp Model 249 Noise Blanker 109.00
Mod 252 G Power Supply
Model 262G Power Supply/VOX . . 139.00

7 下ol

TEN-TEC
TRITON IV
Digital Model 544 $\$ 869.00$

KR20-A ELECTRONIC KEYER

A fine instrument for all-around high performance electronic keying. Paddle actuation force is factory adjusted for rythmic smooth Weying Contact adjustments on front Weighting factor factory set for optimum "straight key" conveniently located fide emphasis, QRS sending or tune-up. Reed emphasis, QRS sending or tune-up. Reed djustable level. Self-completing characters Plug-in circuit board. For 117 VAC, $50-60$ Hz or $\mathrm{G}-14$ VDC. Finished in cream and walnut vinyl. Price $\$ 69.50$

KR5-A ELECTRONIC KEYER
Similar to KR20-A but without side-tone oscillator or AC power supply. Ideal for portable, mobile or fixed station. A great value that will give years of troublefree service. Housed in an attractive case with cream front, walnut vinyl top. For 6-14 VDC operation. Price $\$ 39.50$

KR1-A DELUXE DUAL PADDLE
Paddle assembly is that used in the KR50, housed in an attractive formed aluminum case. Price $\$ 35.00$

KR2-A SINGLE LEVER PADDLE
For keying conventional "TO" or discrete
character keyers, as used in the KR20-A Price $\$ 17.00$

KR50 ELECTRONIC KEYER

A completely automatic electronic keyer fully adjustable to your operating style and preference, speed, touch and weithting, the ratio of the length of dits and dahs to the space between them. Seif-controlled keyer lately and almost effortless The fambie (squeeze) feature allows the insertion of dits squeeze) feature anows the insertion of dits and dahs with perfect timing.

An automatic weighting system provides increased character to space ratio at slowey speeds. decreasing as the speed is increased, keeping the balance between smoothness at low speeds and easy to copy higher speed. is maintelliged at all speeds auto transmissio

Mermories provided for both dits and
dahs but either may be defeated by switches on the rear panel. Thus, the KR50 may be operated as a full iambic (squeeze) keyer, with a single memory or as a conventional type keyer. All characters are self-completing. Price $\$ 110.00$

SPECIFICATIONS
Speed Range: 6-50w.p.m
Weighting Ratio Range: 50% to 150% of
classical dit length.

Memories: Dit and dah. Individual defeat ddle Actuation Force: $5-50 \mathrm{gms}$
Power Source: 117VAC, $50-60 \mathrm{~Hz}, 6-14$ VDC.
Finish: Cream front, walnut vinyl top and side panel trim.
Output: Reed relay. Contact rating .15 VA , 400 V . max.
Paddles: Torque drive with ball bearing pivot.
Side-tone: 500 Hz tone,
Adjustable output to 7 volt,
Size HWD: $2^{1 / 2^{\prime \prime}} \times 51 / 2^{3 / 3} \times 81 / 4^{\prime}$
Weight: $13 / 4 \mathrm{lbs}$.

KR50

4 ELEMENT BEAM - $10-15-20$ METERS Price : $\$ 239.95$
Frorn one package you receive every component to quickly and easily assemble your beam. ATB-34's rugged construction, full power handling capability, broad band coverage, and four active elements will give vou superior performance on all three bands. Our new coaxial traps are very h igh Q, resuting in extremely low ohmic losses and longer full performance elements. They are rated for $2 \mathrm{~K}, \mathrm{~W}$ power handling. Feed is direct 52 ohm through the $1-1$ balun, supplied at no extra cost.

Now You Can Receive The Weak Signals With The ALL NEW

AMECO PREAMPLIFIER

> Model PT-2 is a continuous tuning $6-160$ meter Pre-Amp specifically desibned for use with a transceiver. The PT-2 com bines the features of the well-known PT with new sophisticated control circuitry that permits it to be added to virtually any Iransceiver with No modification. No serious ham can be without one.

Improver sensitivily and signal-to-noise ratio.

- Boosts signals up to 26 db .
- For AM or S8B.
- Bypasses itself automatically when the transceiver is transmitting.
- FET amplifier gives superior cross modulation protection.
- Advanced solid state circuitry.
- Simple to install.
- Improves immonity to transceiver front-end overload by use of its built-in attenuator. - Provides master power control for station equipment.

MODEL PT. 2
$\$ 69.95$

The indispensable BIRD model 43 THRULINE ${ }^{\text {® }}$ Wattmeter

Read RF Watts Directly.
$0.45-2300 \mathrm{MHz}, 1-10,000$ watts $\pm 5 \%$, Low Insertion VSWR-1.05.
Unequalled economy and flexibility: Buy only the element(s) covering your present frequency and power needs, add extra ranges later if your requirements expand.

Dealer Programs NOW Available

Table 1 STANDARD ELEMENTS (CATALOG NUMBERS)

MODEL
43

Power Range	Frequency Bands (MHz)				
	30	$\begin{aligned} & 25- \\ & 60 \end{aligned}$	$\begin{aligned} & 100- \\ & 250 \end{aligned}$	$\begin{aligned} & 200 . \\ & 500 \end{aligned}$	$\begin{array}{r} 400- \\ 1000 \end{array}$
5 watls	-	5 A	5 C	5 D	5E
10 watts	-	10 A	102	100	10E
25 watts	-	25A	25 C	250	25E
50 watts	603	50.4	30 C	500	SUE
100 watts	toon	100A	100 C	1000	100E
250 watts.	250 H	250A	2506	2500	250 E
500 watls	500 H	500A	5006	500 D	500 E
1000 watts	13000 H	70004	10006	10000	10008
2500 watts	2500 H				
5000 watts	5000 H				

PRICE \$120
Elements (Table 1) $2-30 \mathrm{MHz}$
(Specify Type N or SO 239 connectars)
Novice crystals (Specify Band Only)
Motorola HT 220 Crystals in Stock!
Standard \bullet Icom • Heathkit \bullet Ken \bullet Clegg \bullet Regency \bullet Wilson •VHF Eng - Drake And Others! \$4.50 @ Lifetime Guarantee

Make/Model	Xmit Freq.	Rec. Freq.

THE BLG sglan s 12 wid "W2AU" BALUN
the Approved leolig hим and commerciac amun in the woglo todar.

 THE PROVEN BA

sta (Q) | | $?$ |
| :--- | :--- |
| | |
| sาा | |

SERIES 31 - BNC CONNECTORS
Amphenol's BNC connectors are smail, lightweight,
weatherproof connectors with bayonet action for
quick disconnect applifications.
Shells, coupling rings and male contacts are
accurately machined from brass. Springs are made of
beryllium copper. All parts in turn are ASTRO-
plated $\left(\begin{array}{l}\text { a } \\ \text { to } \\ \text { give }\end{array}\right.$
$\begin{aligned} & \text { plated(®) to give you connectors that can take } \\ & \text { constant handling, high temperatures and resist }\end{aligned}$
abrasion.

BNC BULKAEAD RECEPTACLE 31-221-385 UG-1094 Mates with any BNC plug. Receptacle can be mounted into panels up to $104^{\prime \prime}$ thick. $\$ 1.25$
BNC (M) TO UHF (F) ADAPTER 309-2900-385 UG 255 Adapts any BNC jack to any UHF plug. $\$ 3.63$ UHF plug. \$3.63
DOUBLE MATE ADAPTER 83-877-385 Both coupling rings are free turning. Connects 2 female components. $\$ 2.72$
JACK ADPATER $\$ 1.95$
575-102-385 Adapts 83-1SP-385 to Motorola type $8.1 S P-385$ to Motorola type
auto antenna jack or pin jack. auto antenna jack or peo jack.
RANELEEPEACLE $\begin{array}{lc}\text { RANEL } & \text { RECEPTACLE } \\ 83-1 R-385 & \text { SO239 Mounts }\end{array}$ $83-1 \mathrm{R}-385$ SO239 Mounts
with 4 fasteners in $21 / 32^{\prime \prime}$ with 4 fasteners in $21 / 32^{\prime \prime}$ diameter hole. $\$ 1.17$
PANEL RECEPTACLE 83-878-385 SO239SH Mounts in single $21 / 32^{\prime \prime}$ diameter hole. Knurled lock euts prehole. knurled lock
vent turning. $\$ 1.59$
vent turning- \$1.59 ANAPTER 31-009-385 UG-306 Adapts any BNC plug for right angle use. \$4.23
BNC TEE ADAPTER 31-008-385 UG-274 Adapts 2 BNC plugs to $31-003-385$ or other female $B N C$ type receptable. $\$ 4.56$

UG-1 094
575-102-385

BNC(F) TO UHF (M) ADAP TER 31-028-385 UG-273 Adapts any BNC plug to any UHF jack. $\$ 2.39$
PUSH=ON
83-5SP-385 Features an unthreaded, springy sheil to push fit on female connectors. $\$ 2.27$
LIGHTNING ARRESTOR 575-105-385 Eliminates static build-up from antenna. Protects your valuable equipment against lightning damage. $\$ 4.80$
BNC PLUG 31-002-385 UG88 Commonly used for communications antema lead cables. For RG $55 / \mathrm{C}$ \& RG 58/U cables. \$1.59
BNC STRAIGHT ADAPTER 31-219-385 UG-914 1 9/32' long, allows length of cables to be joined. Mates with BNC plugs $\$ 2.12$
BNC PANEL RECEPTACLE 31-003-385 UG-290 Mounts with 4 fasteners in $29 / 64^{\prime \prime}$ diameter hole. $\$ 1.74$

$85-877-385$

SO239SH

PL-259 . . . 90d UG-175 (Adapter for RG 58U) ... 254

50239

83-5SP-385

UG-306

UG-255

575-105-38.5

ALL BAND PREAMPLIFIERS

- 6 THRU 160 METERS
- two models available
- RECOMMMENDED FOR RECEIVER USE ONLY - INCLUDES POWER SUPPIY

MODEL PLF employs a dual gate FET providing noise figures of 1.5 to 3.4 db ., depending upon the band. The weak signal performance of most receivers as well as image and spurious rejection are greatly improved. Overall gain is in excess of 20 db . Panet contains switching that transfers the antenna directly to the receiver or to the Preamp. Model PLF 117 V AC, 60 Hz . Wired \& Tested $\$ 44.00$ Model PCLP Uses nuvistor

Now It's Crystal Clear

Yes, now ICOM helps you steer clear of all the hassles of channel crystals. The new IC-22S is the same surprising radio you've come to know and love as the 1C-22A. except that it is totally crystal independent. Zero crystals. Solid state engineering enables you to program 23 chamels of your choice without waiting. Now the ICOM pexformance you've demanded comes with the convenience you've wanted, with your new 1C-22S. Price: $\$ 299.00$

IC-245 Transceiver
The VFO fevolution goes mobile with the unique, $1 C O M$ developed LSI synthesizer with 4 digit LED readout. The $I C-245$ offers the most for mobile on the market. The easy to use tuning knob moves accurately over 50 detent steps and assures excellent control as easily as steering the vehicle. With its optional adapter, the IC-245 puts you into afl mode operation on 12 V DC power with a compact dash-mounted transceiver. In FM, the synthesizer command frequency is displaved in 5 kHz steps from 146 to 148 MHz , and with the side band adapter the step rate drops to 100 Hz from 144 to 146 MHz . For maximum repeater flexjbility, the transmit and receive frequencies are independently programmable on any separation. The $1 \mathrm{C}-245$ even comes equipped with a multiple pin Molex connector for remote control. The IC-245 is a product of the revolution in VFO design, from its new style front panel, to its excellent mechanical rigidity and Large Scale Integrated Circuitry. Your IC-245 will give you the most for mobile. $\$ 499.00$

THE NEW ICOM 4 MEG, MULTI-MODE, 2 METER RADIO - IC 211
ICOM introduces the first of a great new wave of amateur radios, with new styling, new versatility, new integration of functions. You've never before laid eves on a radio tike the IC-211, but you'l recognize what you've got when you first turn the single-knob frequency control on this compact new model. The $\mid C-211$ is fulty synthesized in 100 Hz or 5 kHz steps, with dual tracking, optically coupled VFOs displayed by seven-segment LED readouts, providing any aplit. The $10-211$ rolls through 4 megahertz as easily as a breaker through the surf. With its unique ICOM developed LSI synthesizer, the $I C-217$ is now the best "do everything" radio for 2 meters, with FM. USB, LSB and CN operation. $\$ 749.00$

Hold it:
 two low cost twins. ICOM'S new portable IC 202

 your reach wherever you are. You can take it with you to the hill top, the highways, or the beach. Three portable watts PEP on two meters or six!Hello, DX! The TCOM quality and excellent receiver characteristics of this pair make tulky tonverters and low band rigs unnecessary for getting started in SSB-VHF. You just add your linear amp, if you wish, connect to the antenna, and DX! With the 202 you may talk through OSCAR VI and VII! Even transceive with an "up" receiving converter! The IC-502, similarly, makes use of sixmeters in ways that you would have always liked but could never have before. In fact, there are so many things to try, it's like opening a new band.
Take hold of Single Side Band. Take hold of some excitement. Take two.
$1 C-202$
2 Moter SSE- 3 Watts PEP. True if Nolsa Blanker
 Price: $\$ 259.00$

IC-5和
 Price: $\$ 249.00$

Now ICOM intoduces 15 Chamnds of FMto Gol The New IC-215: the FM Grabber

This is ICOM's tirst FM portable, and it pets good times on the go. Change whicles, walk stroush the park, climb a hill. and fCON quality FM communcetions go right along with you. Loon lasting internal barteries make portable FM really portable, while ecepessble featuses make comeraion to extermal poukr and antenan fast ard eass Grob for Slexibility with the new IC-215 FM portable. momerted antmna

- Narres filer (15 KHz - compatille spacing
- 15 chanals (12 en dial is preriny)
- Folly collapaible artenno
* Comparthe mount featurv for Alevible amkennt
- Duel peever is chams hiph $/ 409 \mathrm{mmu}$ low (scmioll
- External powir and antantarpror - Iighted dial and miver

Price: $\overline{\$ 259.0 \bar{O}}$

ICOM
model 333
dummy load
wattmeter
Favorite Lightweight Portable-250 WATT RATINGAir Cooled
Ideal field service unt tor mobile 2 way radio- CB , marine, busifiess bead. Gest 'or QRP amateur use. CB, with zero to 5 waits full scale low power range.

- specifications
Froquency Range
vSWA
Power Range
Wattmeter Ranges
Connector
Size
Shipping weigh
Price

DC to 300 MHz
Less than 1.3:1 to 230 MHz 250 watts intermitten $0-5.0-50.0-125.0-250$ \$0.239
$4^{\prime \prime} \times 7^{\circ} \times 8^{\prime \prime}$ 7 lbs. 598.50

model 374 dummy lead wattmeter
Top of the Line- 1500 WATT RATING-Oil Cooled Our highes: power combination unit. Rated io 1500 wats inpui fimerrittent. Meter ranges are insividually calibrated for aighesi acturacy.
spacifications
Froquency Rangs
vSWR
Power Range

Wathmeter Rargies
Input Connector
Size
Shipping Weight
Price

OC to 300 MHz
Less than 1.3:1 to 230 MHz 1500 watts DC intermittent. Warning light * signals maximum heat limit. $0-15,0-50,0-300,0-1500$ So-239 linermencally saaled! $4.3 / 4^{-1} \times 9^{\prime \prime} \times 10.1 / 4^{-}$ 12 lbs .
5215.00

BW
 BARKER \& WILLIAMSON, INC.

Economy High Power Load-1500 WATT RATINGOil Cooled
model 384 dummy load
For high power when all you need is the load.

- specifications

Fregusency Range	DC to 300 MHz
VSwn	Less than 1.3:1 to 230 MHz
Power Range	1500 watts entermittent. Warning ligbr* sigmals maximum heat limit.
Cormactor	S0-239 (her metically soaled)
Size	$4.3 / 4^{\prime \prime} \times 9^{\prime \prime} \times 10.1 / 2^{\prime \prime}$
Shipping Weight	12 bs.

Shipping Werght
Price

DC to 300 MHz
Less than 1.3:1 to 230 MHz
Warnime ligbt" sionals maximum heat limit.
$4-3 / 4^{\prime \prime} \times 9^{\prime \prime} \times 10.1 / 2^{\prime \prime}$
12 bs.

High Power- 1000 WATT RATING-Oil Cooled model 334A dummy load wattmeter Our irost popular cormbinaton unit. Handles full amateur power. Meter ranges individually calibrated. Can be panet mounted.

- spacifications

Frequency Range	OC to 300 MHz
VSWR	Less than 1.3:1 to 230 MHz
Power Range	1000 watrs CW interntitent. Warning light* signals maximum heat limit.
Wattmoter Ranges	0-10,0-100,0-300.0-1000
Input Connactor	So-239 thermetically seabedl
Size	4.3/4" $\times 9^{\prime \prime} \times 10.1 / 4^{-\prime}$
Shipping Weight	12 lbs .
Prica	\$174.00

LITTLE DIPPER

model 331A
transistor dip meter-

Portable RF single generator, signal monitor. or absorttion wavemeter. Lightweight (1 pound, 6 ounces with all coils). baitery-powered unit is deal for field use in testing tianticeivers. tuning antennas. EIc. Can aiso be used to measure caparity, inductance. c rout Q, and oiner factors Indispensable for exper menters, it is easily the most versatile nstrument in the shog. Conthmus coverage trom 2 MHz :o 230 MHz in seven ranges.
Unit consists of a transistorized RF dip ostillator and 100 -microampere meter circuit. Metes circuit uses a single-transistor DC amplifies with a potentioneter in the emitter circuit to control meter sensitivity. A 3 position slide swith connects the meter circuit to the ascillator for dip measulements. to 3 diade for absorption waverneter penk messuements, or provices zurio madulation of the RF signal.
Frequency dal nas a cabiateg reference po m ior Q and bandwidth measurements. Each coil has its ow frepueacy dia- there's no confusion with mult pig markings or small hard-to-read scales near the center of the disl.

- specifications

Frequency Coverage
2 MHz to 230 MHz in 7 overlapping
ranges by plug-tin coil assemblies:
$2 \mathrm{MHz}-4 \mathrm{MHz}_{2} 4 \mathrm{MHz}-8 \mathrm{MHz}$
$8 \mathrm{MHz}-16 \mathrm{MHz}, 16 \mathrm{MHz}-32 \mathrm{MHz}_{\text {. }}$ $32 \mathrm{MHz}-64 \mathrm{MHz}, 50 \mathrm{MHz}-190 \mathrm{MHz}$ $110 \mathrm{MHz}-2300 \mathrm{MHz}$
Accuracy
Modulation
Powar
$=-$
Size
$1000 \mathrm{~Hz}, 25$ 市 to 40%
9 .volt iransistor hartery
Burgess 206 or equivalent
$7^{\prime \prime} \times 2-1 / 4^{\prime \prime} \times 2.1 / 2^{\prime \prime}$
1 lb . 6 oz.
Price $\$ 120.00$
Price

Nodel 371-1
Frotect youl eceiver or corvette from owesioad or pio. vide stem attenuatron of lew teve: RF sgas form signa! generators. preamelifars, or converters Seven norker swithies provide atentuation tran 1 AB vo 6 i dS in : de steps. Switches are marked in dB, 1-2-3-5-10-20.20. Sum of actuated switches (IN possich) gives attenuation Wish all switches in OUT position, there is NO insertion loss Attenuator installs in coaxiai line using UHF connectors

- specifications

Power Capacity	1/4 watt
VSWR	1.3:1 maximum, OC to 225 MHz
Impedance	50 ohms
Accuracy	$1 \mathrm{de} / \mathrm{dB}, \mathrm{DC}$ to 60 MHz $0.1 \mathrm{~dB} / \mathrm{dB} \cdot 0.5 \mathrm{dE}, \mathrm{DC}$ to $160 \mathrm{MHz}_{z}$ $0.1 \mathrm{~dB} / \mathrm{dB}+1.0 \mathrm{~dB}$. DC 10225 MH M
Size	$8.1 / 2^{*} \times 2-1 / 2^{\prime \prime} \times 2.1 / 4^{*}$
Shipping Wright	1-1/2 lbs.
Price	\$40.50

Larsen Külrod
 Antennos

MAGNETIC MOUNT
stays put even at 100 mph !
MM-JM- 150 for 144 MHz use) MM-JM-220 for 220 MHz use MM-JM-440 for 440 MHz use)

Only $\$ 38.50$

TRUNK LID MOUNT

No holes and low silhouette too! TLM-JM-150 for 144 MHz use) Only TLM-JM-220 for 220 MHz use $\mathbf{\$ 3 8 . 5 0}$ TLM-JM-440 for 440 MHz use) complete And $1 / 4$ wave antenna for trunk and magnetic mount $-\$ 18.50$

plug, allen wrena

ROOF or FENDER MOUNT Goes on quick and easy in $3 / 8^{\prime \prime}$ or $3 / 4^{\prime \prime}$ with fewest parts. JM-150-K for 144 MHz use JM- $220-\mathrm{K}$ for 220 MHz use And $1 / 4$ wave antenna for roof and fender mounts \$11.50

COAXIAL ANTENNA CHANGEOVER RELAY

Model 377 - \$17.95

BARKER \& WILLIAMSON, INC Model $359-\$ 37.50$

Dealer Programs NOW Available

increase your transfillser's elfective sperch power uo to specifications
 andistoried Aus mproved performance This twestage, transistorized A.udio Preamplifiet/Eumater can be used womh all tyoes of transmitters. Powered By a long-iastirg dry-cell battery-no external power needed. Installs without ony wining changes in your transmiter. Just connect the
Compreame betwoen your miccoohone diynamic or hight-mpedance ceramicl and your transmit ter's micropthone inpus ronnectos, Front.panel racker swifch lets you bypass the Compreamp when you want 10. Compression lewel is adjustable, too.

COAXIAL SWITCHES AND ACCESSORIES
for antema selection and $A F$ switching

Thase high-quality switches nave set the standard for the industry for vears, Ceramic switiches with stwer alloy cen
tacts and siver-plated connuctors give inmatched perfortacts and silver-plated connuctors give onmatched perfor
mance and reliablity from audio frequencies to 50 MH 2

Batw coaxal swithes are designed for use with 52 to 75. ahm non-reactive loads, and ace power rated at 1000 warts ohm non-reactive logds, and are power rated at 1000 watts lass is negligitbe, and VSurfi is less than 1.2 i up to 150 MHz.

Crossialk imeasured ar 30 MH 2 $15-45 \mathrm{~dB}$ betwen adiacen Outlets and -60 de betmeen allernate outlats.
Mabeis are avallable for desk, wall, or panel mounfing, and with os without protectwe grounding of inactive outouts. Hadial (side-maunied) connector niodels conb be either wall or panel mountad, axial (backpsate-mounted) cannector models are for panel mounting only, save panel spare Use the selector chart below 10 choose the madels you

COAXIAL SWITCH SELECTOR CHART

Moctet	PRICE	Outputs	Connector Placement	Mounting			Automathe Grounding	$\begin{aligned} & \text { Dial } \\ & \text { Plate } \end{aligned}$	Remarks
				Panel	Wall	Desk			
375	18.95	6	Axias	\times			\times	Supplied	PROTAX swith. Grounds all except selected output circuir.
376	18.95	5	Radial	\times	*		*	Supplied	PROTAX switch. Grounds all except setected output circuit. Sixih switch position grounds all outpuls.
550A	14,00	5	Padial	x	x			DF-5	
5504.2	12.50	2	Facilal	\times	\times			DP. 2	
551 A	17.50	2	Raclial	\times	x			DP-2	Special 2-pole, 2-position swith used to switch any RF device in or out of series connection in a coaxial line See figure lover?
556	. 95	-	-		*			\sim	Bracket onety, for wall mounting of radral connector shutches.
590	17.95	5	Axial	\times				DP. 5	
590 G	17.95	5	Axial	\times			\times	Supplied	Grounds athexcept setected out put circuit.
592	16.50	2	Axial	K				DP-2	
595	18.50	6	fn-line		x	*	*		Grounds all except selected autput circuit.

Tufts Radio Electronics•209 Mystic Avenue • Medford MA 02155 - (617) 395-8280

There is no substitute for quality, performance. or the satisfaction of owning the very best.

Hence, the incomparable Hy-Gain 3750 Amateur transceiver. The 3750 covers all amateur bands $1.8-30 \mathrm{MHz}$ ($160-10$ meters). It utilizes advanced Phase-Lock-Loop circuitry with dual gate MOS FET's at all critical RF amplifier and mixer stages. There's a rotating dial for easy band-scanning and an eiectronic frequency counter with digital readout and a memory display that remembers frequencies at the flip of a switch. And that's just the beginning.

Matching speaker unit (3854) and complete external VFO (3855) also available.

See the incomparable Hy-Gain 3750 at your radio dealer or write Department MM. There is no substitute.

$3854-\$ 59.95$

$3655-\$ 495.00$

There is no substitute. 4hy yain Amateur Radio Systems.

HY-GAIN'S INCOMPARABLE
 HY-TOWER
 FOR 80 THRU 10 METERS

Model 18 HT
Outstanding Omni-Directional Performance

- Antomatic Band Switching
- Completely Self-Supporting

By any standard of measurement, the Hy-Tower is unquestionably the finest multi-band vertical antenna system on the tionably the finest multi-band vertical antenna system ond 18 mHT features automatic band selection on 80 thru 10 meters through the use of a unique stub decoupling system which effectively isolates various sections of the antenna so that an electrical $1 / 4$ wavelength (or odd multiple of a $1 / 4$ wavelength) exists on all bands. Fed with 52 ohma coax, it takes maximum legal power ... delivers outstanding performance on all bands. With the addition of a base loading coil, it also delivers outstanding performance on 160 meters. Structurally, the Model 18 HT is built to last a lifetime. Rugged hot-dipped galvanized 24 ft . tower requires no guyed supports. Top mast, which extends to a height of 50 Ft., is $6061 S 16$ tapers aluminum. All hardware is iridite treated to MIL specs. If you re looking for the epitome in vertical antenna systems, you'll want HIy-Tower, Shpg. Wt., 96.7 lbs, Order No. 182 , Price: $\$ 279.95$
NEW Special hinged base assembly on Model 18 HT ailows complete assembly of antenna at ground level... permits easy raising and lowering of the antenna.

BROAD BAND DOUBLET BALUN

for 10 thru 80 meters
Model BN-86
$\$ 15.95$
The model BN- 86 balun provides optimum balance of power to both sides of any doublet and vastly of power to both sides of any doublet and vastly improves the transfer of energy from feedline to
antenna. Power capacity is 1 KW DC. Features weatherproof construction and built-in mounting brackets. $\$ 15.95 \mathrm{Shpg}$. Wt. 1 lb . Order No. 242

Dealer Programs
NOW A vallable

Super
3-Element Thunderbird
for 10,15 and 20 Meters
Model TH3Mk 3 - $\$ 199.95$
Hy-Gain's Super 3 -element
Thunderbird delivers outstanding perform ance on 10, 15 and 20 meters. The TH3Mk3 feathres separate and matched Hy-Quraps lor each band, and feeds with 52 otrm coax. Hy-Gair Beta Match present
tapered impedance for most efficient tapered impedance for most efficient 3 band matching and provides DC ground to eliminate precipitation static. The TH3Mk 3 delivers maximurn F/B ratio. and SWR less than $1.5: 1$ at resonance on all bands. tts mechanically superior construction leatures taper swaged slotted tubing for easy adjustment and larger diameter. Comes equipped with heaty tiltable boom-to-mast clamp. Hy-Gain ferrite balun BN-80 is recommended fo use with the TH3Mk3

Electrical

Gain-average
Fror:-to back ratio SWR (at resorance
impedance
Power rating

Mechanical Longes: element
Bocm tength
Turning radius
Wind load at 80 MPH Maximum wind slirvival Net weight
Mast diameter arcepted
Surface area

6-Element Super Thunderbird DX for 10,15 and 20 Meters Model TH6 DXX $\$ 249.95$ Separate $\mathrm{HX}-\mathrm{Q}$ traps. featuring laxge diameter coils that develop an exceptionally favorable L / C ratio and very high Q. provide peak performance on each band whether working phone or CW. Exclusive Hy-Gain beta match, factory pretuned, insures maximum gain and F/B ratio without compromise. The TH6DXX feeds with 52 ohm coaxial cable and delivers less than 1.5:1 SWR on all bands. Mechanically superior construction features taper swaged, slotted tubing for easy adjustment and readjustment, and for larger diameter and less wind loading. Full circumference compression clamps replace self-tapping sheat metal screws. Includes large diameter, heavy gauge aluminum boom. heavy casi aluminum boom-tomast clamp. and heavy gauge machine formed ele-ment-to-boom brackets. Hy-Gain's ferrite balun BN-86 is recommended for use with the TH6DXX

WIDE BAND VERTICAL

for 80-10 Meters

 Hy-Gain's 18 AVT/WBTake the wide band, omni-directional performance of Hy-Gain's famous 14AVQ/WB, add 80 meter capability plus extra-heavy duty construction - and you have the unrivalled new 18AVT7WB. In other words, you have quite an antenna.

Automatic switching, five band capability is accomplished through the use of three beefed-up $\mathrm{Hy}-\mathrm{Q}$ traps (featuring large diameter coils that develop an exceptionally favorable L/C ratio).

- Top loading coil
- Across-the-band performance with just one fur nished setting for each band (10 through 40).
- True $1 / 4$ wave resonance on all bands.
- SWR of $2: 1$ or less at band edges
- Radiation pattern has an outstandingly low angle whether roof top or ground mounted.

CONSTRUCTION . . of extra-heavy duty tapered swaged seamless aluminum tubing with full circumference, corrosion resistant compression clamps at slotted tubing joints... is so rugged and rigid that, although the antenna is 25° in height, it can be mounted without guy wires, using a $12^{\prime \prime}$ double grip mast bracket, with recessed coax connecter
Order No. 386 Price: $\$ 97.00$

The Versatile Madel 18 V for 80 thru 10 Meters

ALL NEW 3-BAND, 2 ELEMENT HY-QUAD

For 10, 15, and 20 Meters New Hy-Gain Model 12 AVO

Completely self-supporting, the Model 12AVQ features Hy-Q traps... $12^{\prime \prime}$ double grip mast bracket...taper swaged seamless aluminum construction with full circumference compression clamps at tubing joints. It delivers outstanding low angle radiation. SWR is $2: 1$ or less on all bands. Overall height is $13^{\prime} 6^{\prime \prime}$. Shipping weight 7.2 lbs. Price: $\$ 47.00$

Order No. 384
New, improved successor to the world's most popular vertical!
Hy-Gain Model 14 AVQ/WB for 40-10 Meters.

- Wide band performance with one setting (optimum settings for top performance furnished)
- New Hy-Q Traps - New 12" Double-Grip Mast Bracket - Taper Swagged Seamless Aluminum Construction

The Model 14AVQ/WB, new improved successor to the world famous Model 14AVQ, is a self-supporting, automatic band switching vertical that delivers omni-directional performance on 40 through 10 meters. Three separate Hy-Q traps featuring large diameter coils that develop an exceptionally favorable L/C ratio and a very high Q, provide peak performance by effectively isolating sections of the antenna so that a true $1 / 4$ wave resonance exists on all bands. Outstandingly low angle radiation pattern makes DX and other long haul contacts casy, Superior mechanical features include solid aluminum housing for traps using air dielectric capacitor... heavy gauge taper swaged seamless aluminum radiator...full circumference compression clamps at tubing joints that are resistant to corrosion and wear...and a $12^{\prime \prime}$ double-grip mast bracket that insures maximum rigidity whether roof-top or ground mounted. The Model 14AVQ/WB also delivers excellent performance on 80 meters using Hy-Gain Model LC-80Q Loading Coil. Owerall height is 18 feet. Shipping weight 9.2 lbs. Unsurpassed portability ...outstanding for permanent installations. Prica: $\$ 67.00$

Order No. 385
TYPICAL 14AVG/WB VSWR CURVES

ROOF MOUNTING KIT - Model 14RMQ provides rugged support for Model 14AVQ/WB. Order No. 184. Price: $\$ 28.95$

Hy-Gain REEL TAPE PORTABLE DIPOLE

for 10 thru 80 Meters Model 18TD
The most portable high performance dipole ever.
The Model 18TD is unquestionably the most foolproof high performance portable doublet antema system ever developed It has proven invaluable in providing reliable communications in vital military and commercial-applications throughout the world. Two stainless steel tapes, caltirated in meters, extend from either
side of the main fousing up to a total distance of 132 feet for 3.5 me operation. 25 ft . lengths of polypropylene rope attached to each tape permits installation 25 ft lengths of polypropylene rope atached to each tape permits installation Integrated in the high impact housing is a freguency to length conversion chart calibrated to meter measurements on the tapes...makes instailation foolproef. Feeds-with 52 ohm coan. Delivers outstanding performance as a portable or permanent instalation. Measures $10 \times 51 / 2 \times 2$ inches retracted. Wt., 4.1 lbs.
Order No. 228 Price: $\$ 94.95$

Denfror MLA-2500 $\$ 799.50$
DenTron Radio has packed all the features a linear amplifier should
have into their new MiLA- 2500 Any Ham who works it cantelly you the MLA-2500 really was buil to make amateur radio more fun.

Pipo \mathcal{O}_{0} ommunications TROUBLE FREE TOUCH-TONE ENCODER
POSITIVE TOUCH \{KEYS DEPRESS) MOBILE HANDHELD DESK MOUNT NOPOTTEDPARTS (SERVICEABLE) MIL. SPEC. COMPONENTS - NO RFI E SELF CONTAINED XTAL EONTROLLED LEVEL ADJUSTABLE FROM FRONT Pat. Pend.
\qquad $\begin{array}{llll}\text { PP- } 2 & \text { SES } & \text { if Keys } \\ \text { PF-2 } \\ \text { SE9 }\end{array}$

- ALC circuit to prevent overloading
- 160 thru 10 meters
- 1000 watts DC input on CW, RTTY or SSTV Continuous Duty
- Variable forced air cooling system
- Self-contaired continuous duty power supply
- Two ElMAC 8875 external anode ceramic/
metal triodes operating in grounded grid
- Covers MARS frequencies without modifications
- 50 ohm input and output impedance

Built-in RF wattmeter

- 117V or 234 AC 50-60 nz
- Third order distortion down at least 30 db 1.8 MHz range.
$1.8 \mathrm{MHz}(1.8-2.5) 3.5 \mathrm{MHz}(3.4-4.6$
$7 \mathrm{MHz}(6.0-9.0\} 14 \mathrm{MHz}\{11.0-16.0$
40 watts drive for 1 KW 28 MHz (28.0-30.0)
- Rack mounting kit KW DC input
- Size: $5 \Downarrow 2^{\prime \prime} \mathrm{H} \times 14^{\prime \prime} \mathrm{W} \times 14^{\prime \prime} \mathrm{D}$ Wt. 47 Ibs.

PP. 1

Tufts Radio Electronics•209 Mystic Avenue •Medford MA 02155 (617) 395-8280

Drake R-4C
Solid State Linear permeability-tuned VFO with 1 kHz dial divisions. Gear driven dual circular dials. High mechanical, electrical and temperature stability.

Covers ham bands with crystals furnished. Covers all of 80.40 .20 and 15 meters, and 28.529.0 MHz of 10 meters.

Covers 160 meters with accessory crystal. in addition to the ham bands, tunes any fifteen 500 kHz ranges between 1.5 and $30 \mathrm{MHz}, 5.0$ to 6.0 MHz not recommended. Can be used for MARS, WWV, CB, Marine and Shortwave broadcasts.

Superior selectivity: 2.4 kHz 8 -pole filter provided in ssb positions. $8.0 \mathrm{kHz}, 6$ pole selectivity for $\mathrm{a}-\mathrm{m}$. Optional \&-pole filters of .25, .5, 1.5 and 6.0 kHz bandwidths available.

Tunable notch filter attenuates carriers within passband.

Smooth and precise passband tuning.
Transceive capability; may be used to transceive with the T-4X, T-4XB or T-4XC Transmitters. Illuminated dial shows which PTO is in use.

Usb, Isb, a-m and cw on all bands.
Agc with fast attack and two release times for ssb and a-m or fast release for break-in cw. Agc also may be switched off.

New high efficiency accessory noise blanker that operates in all modes.

Crystal lattice filter in first i-f prevents crossmodulation and desensitization due to strong adjacent channel signals.

Excellent overioad and intermodulation characteristics.

25 kHz Calibrator permits working closer to band edges and segments.

Scratch resistant epoxy paint finish.
Price: \$599.00

Power Supplies
Power Supplies for T-4, T-4X, T-4XE or T-4XC (The AC-4 can be housed in an MS-4 speaker cabinet).
Model No. 1501 Drake AC-4 \$120.00
Model No. 1505 Drake DC 4 \$135.00

Drake MS-4
Drake MS-4 Matehing Speaker for use with R-4. R-4A, $\mathrm{A}-4 \mathrm{~B}$ and $9-4 \mathrm{C}$ Receivers. Has space to house AC-3 and AC-4 Power Supplies)
Price: $\$ 30.00$

Drake T-4XC
Solid State Linear permeability-funed VFO with 1 kHz dial divisions. Gear driven dual circular dials. High mechanical, electrical and temperature stability.

Covers ham bands with crystals furnished. Covers all of $80,40,20$ and 15 meters, and 28.529.0 MHz of 10 meters.

Covers 160 meters with accessory crystal. Four 500 kHz ranges in addition to the ham bands plus one fixed-frequency range can be switchselected from the front panel.

Two B-pole crystal lattice filters for sideband selection.

Transceives with the R-4, R-4A, R-4B, R-4C and SPR-4 Receivers. Switch on the T-4XC selects frequency control by receiver or transmitter PTO or independently. Illuminated dial shows which PTO is in use.

Usb. Isb, a-m and cw on all bands.
Controlled-carrier modulation for a-m is compatible with ssb linear amplifiers.

Automatic transmit-receive swithhing. Separate VOX time-delay adjustments for phone and cw . VOX gain is independent of microphone gain.

Choice of VOX or PTT. VOX can be disabled by front panel switch.

Adjustable pi network output.
Transmitting agc prevents flat-topping.
Meter reads relative output or plate current with switch on load control.

Built-in cw sidetone.
Spotting function for easy zero-beating.
Easily adaptable to RTTY, either fsk or afsk.
Compact size; rugged construction. Scratch resistant epoxy paint finish.
Price: $\$ 599.00$

Accessories
DRAKE MICROPHONES
Wired for use with Drake transmitters and transceivers, for either push-to-talk or VOX. Type of operation is dotermined by the VOX control setting of the transmitter.

Model No. 7075
Type: Heavy Duty Ceramic Desk Top * Cable: Four Foor. 3Conductor, One Snield. $*$ Output
Level: Minus 54 dB $10 \mathrm{~dB}=1$ voltimicrobar) - Frequency Roponne: $80-7000 \mathrm{~Hz}$. Switching: vox. Price: $\$ 39.00$

- Typo: Ceramic, nand held - Cable: 11° Retracted, 5 extended, PVC 3 Cord, I shielded, Coil Cord - Case: Cycolac • Fininh: Grey. Output
Lowet: Minus 65 dB ($0 \mathrm{~dB}=1$ polt microbar). Frequency Rosponse:
$300-3000 \mathrm{~Hz}$ - Switching Adapts to aither push-to-talk or VOX.
Price: $\$ 19.00$

Drake SPR-4 - \$629.00

- Programmable to meet specific requirements: SWL, Amateur, Laboratory, Broadcast, Marine Radio, etc.
- Direct frequency dialing: $150-500 \mathrm{kHz}$ plus any 23500 kHz ranges, 0.5 to 30 MHz
- FET circuitry, all solid state
- Linear dial, 1 kHz readout
- Band-widths for $\mathrm{cw}, \mathbf{s s b}$, a-m with bullt-in LC tilter
- Crystals supplied for LW, seven SW, and bc bands
- Notch filter
- Built-in speaker

- Drake DSR-2 - \$2950.00
- Continuous Coverage 10 kHz to 30 MHz
- Digital Synthesizer-Frequency Control
\because Frequency Displayed to 100 Hz
- All Solid State
- A-m, Ssb, Cw, RTTY, Isb
- Series Balanced Gate Noise Blanker
- Front End Protection
- Optional Features Available on Special Order

Drake FS-4
Digital Synthesizer - \$250.00
The new solid state Drake FS-4 Synthesizer opens the door to a new world of continuous-tuning short wave! Combines synthesized general coverage fiexibility with
the selectivity, stability, frequency readout and reliability of the Drake R-4C or SPR-4 Receivers.

- Interfaces with ali R-4 series recerivers and T-4X series transmitters: (R-4, R-4A, R-4B, R-4C, SPR-4, T-4, T-4X, T-4XB and $\mathrm{T}-4 \times \mathrm{C}$). without modification. - MHz range is set on FS-4, with
kHz readout taken from receiver dial. Complete genera coverage-no range crystals to buy. T-4,T-4x saries transmit-
ters trensceive on any FS-4 frequency. when used with A-4 series recolvers. - Readout 1 kHz with Drake PFO. Price: $\$ \mathbf{2 5 0 . 0 0}$

Tufts Radio Electronics 209 Mystic Avenue • Medford MA 02155 © (617) 395-8280

6 METER BEAMS

3-5-6-10 ELEMENTS

roven performance front rugged, full size, fimeter beams. Element spacings and tengths have been carefully enginecred to five best pattern, high forwari gain, good front to back matio and brual fruqueney response.
Boon:s ure vearmess chrome finish aluminam whity. The a atal o element

 ormed anmaza. Bright finish cac plated thells areacjastable
 etcment huams. Al mociets wa; be mouned tor horizontal or erteal polariaticn
Scu icatares inctuic atijustable length clemonts, bilowat Reddi Mash ani buili-a coax fiting for itreet si ohm feed. These ceams are futary marked and sucpiled with irstruetions for بich asscmity.

Dostim:	3n-tio:	Eeterem:	6 elatem:	10.0 emen:
Sixtul	A65			
Eominctlil	17	[1]	117	${ }_{11}{ }^{24}{ }^{\text {a }}$
Tumi katics	${ }^{\text {a }}$	$7{ }^{\text {c }}$	11	${ }^{13}$
Fwh coirl	75 dB	9565	115 ds	13 dB
	20 us	${ }^{24} \mathrm{~dB}$	20.0	28.88
Weigh	71 lx	11 lts	18 Hm	25 lbs

new RINEO RANEEA for FM

$4.5 \mathrm{~dB}^{*}-6 \mathrm{~dB}$ Omnidirectional GAIN

BASE STATION ANTENNAS

MAXIMUM
 PERFORMANCE and

value

Cush Craft has created another first by making the world's most popular 2 meter antenna twice as good. The new Ringo Ranger is developed from the basic AR-2 with three half waves in phase and a one eighth wave matching stub. Ringo Ranger gives an extremely fow argie of radiation for better signal coverage. It is tunabe orer a moad trequency range and perfectly matefed to 52 ohim coss

AAX-2, $137-160 \mathrm{MHz}$. 4 lbs., $112^{\prime \prime}$
ARX-220. 220-225 MHz, 3 lbs.. 75° AAX-459, 435-450 MHz, 3 lbs., $39^{\prime \prime}$
Reference - wave dipole
Refeence : ware whip used as gath standard by many Work iull quet
radius of your Ranger.
You can up date your present $A R-2$ Ringo with the simple andition of this extende. kit. The kit includes the phasing net work and necessary element extensions. The only modifications required are easy to make saw slits in the top section of your antenna.

ARX-2K CONVERSION KIT

$\underset{\text { antennas }}{2 \text { METER }}$

 in use than ati part: FM anternas cembivei
 Frequency MR: Fower-Halk
Wind area mq
ft . $\mathrm{AR}-2$
$\mathrm{5R5-375}$
100
31^{1} $175 \quad 50$ $220-22$
100 AR 45
$\mathbf{4} 10.40$
250

 complete dipole asembibes or mountimg boams, marness and ith mardware. tical support mask roc suppled

 teme PL-25E athing:

 harenire Man

```
A14.WPK
A1f.5K
MA40.5FK
```


F-FM TWIST 121 dE Gom: Ten clenents horizortal folatization for low end coverige :and tel elemicuts vartwal polarization for FM civerage. For-
 lement 49,62 olan Rudia Math drven elements tuke PL 259 connectors. 107

HIGH PERFORMANCE VHF YAG/S

3/4, 1-1/4, 2 METER BEAMS

The standard of comparison in amateur VHF, ther communications Cush Cralt yagis combine all out pertomance anci reliability with optimum sire for terse of assembly and mounting ax your sile.

Lightweight yet russec, the apommas have :/as D. W. solic
 suty forrie braukcts. Booms are and i/s O.D, alumisue. cuhing. Mast mounts of $1 / \mathbf{E}^{\prime \prime}$ fermec aluminam have adjustable u-bolts to: up to $1-1 / 2$ O.D. masts. They cun lie fon-aten or harizontal or vertical polarization. complete instruthons include data on 2 meter FA repeater cperation.

Nen features inchese a hiowatt Redd Match for firect be ntm coaxial feed with a stambard PL-zes bitting, alt elements are spaced at . 2 watrelength and tapered for improved bandwidth.

Model No	A144 \%	Ai44:1	4220 11	A430 11
Description	2 m	2 m	7 mm	\%m
Elements	?	11	11	11
Soom Lingih.	$9{ }^{\circ}$	144*	302"	57.
Weighs	4	6	4	3
Fwd. Gain	$\mathrm{if}_{1} \mathrm{de}$	13 dB	13 dB	$13 \mathrm{d8}$
F/B Ratio	26 dB	28 dB	28 UB	28.818
Fwd Lube fog 1/pur, pt.	46	42	42	42
SWR [Fret.	1.101	1 to 1	1 to 1	1 10 1

VHF/UHF BEAMS

A50-3	$\$ 32.95$	A144-7	21.95
A50-5	49.95	A144-11	32.95
A50-6	69.95	A430-11	24.95
A50-10	99.95		
AMATEUR FM ANTENNAS			
A147-4	$\$ 19.95$	AFM-44D	54.95
A147-11	29.95	AR-2	21.95
A147-20T	54.95	AR-6	32.95
A147-22	84.95	AR-25	29.95
A220-7	21.95	AR-220	21.95
A220-11	27.95	AR-450	21.95
A449-6	21.95	ARX-2	32.95
A449-11	27.95	ARX-2K	13.95
AFM-4D	59.95	ARX-220	32.95
AFM-24D	57.95	ARX-450	32.95

ARX-450
32.95
why waste watts?
(SWR-1A \$25.95)

SWR-1 guards against power Ioss
If you're not pumping out all the power you're paying for, our little SWR-1 combination power meter and SWR bridge will tell you so. You read forward and reflected power simultaneously, up to 1000 watts Rr^{r} and $1: 1$ to infinity VSWR at 3.5 to 150 MHz .

Got it all tuned up? Keep it that way with SWR-1. You can leave it right in your antenna circuit.

EXCLUSEVE
 DELUXE

S-BAND MOBILE
45 ANTENNA

- All bend manual switching antenna for $10,15,20,40$ and 75 meters.
- Power ratud at 1000 Watts
PEP P.E.P.
- Includes base section with mobilecoil and six foot whip top section. 45 Antenna Price: $\$ 119.95$

SWAN METERS HELP YOU GET IT ALLTOGETHER

These wattmeters tell you what's going on.
With one of these in-line wattmeters you'll know if you're getting it all together all the time. Need high accuracy? High power handling? Peak

power readings? For whatever purpose we ve got the wattmeter for you. Use your swan credit card. Applications at vour dealer or write to us.

WM2000 in-uine Watt merer Wisn Muscle. Scales to 2000 watts wew flat response directicnar coup ler for maximumacourecy $\$ 59.95$	WM3000 Peak-roading Wattmeter Redos ens power then with the filkx of a switen true peak Dower of your single sibeknd signal Thats what counts on SSl.

Whe 1500 H igh Acciracy in-
$\begin{aligned} & \text { Line watmeter } 10 \% \mathrm{ft} \\ & \text { scale accuracy on } 5.50 .\end{aligned}$
$\begin{aligned} & \text { scate accuracy on } 5,50 \text {. } \\ & 500 \text { and } 1500 \text { watt scalci. }\end{aligned}$
$\begin{aligned} & 500 \text { and } 1500 \text { watt scalge } \\ & 2 \mathrm{to} 3 \mathrm{M} \text { M2 Forwart and }\end{aligned}$
$\begin{aligned} & 2 \text { to } 30 \text { Man Forward and } \\ & \text { teflecteg powst. Ure is }\end{aligned}$
for troubleshooting, too.
S74.95
S Burthontes

NEW Swan MMBX
Mobile Impedance Matcher
It keeps your transmitter and your
speaking terms for a song. Price: $\$ 23.9$
CYGNET 1200X PORTABLE LINEAR AMPLIFIER To quadruple the output of the 300 B Cygnet de novo, simply add this matching unit for more than power supply and provision for external ALC, this Cygnet offers exceptionally high efficiency and linearity. $\$ 349.95$

Additional Swan products include: fixed and mobile antennas, VFO's telephone patch, VOX, wattmeter, microphones and mounting hits. As another extra service, only Swan authortzed Swan Electronics dealer for complete details

ELECTRONICS

JMR MOBIL-EAR

Two-way-radio headset with superior fidesity Electret-Capacitor boom microphone and palm-held talk switch.

FOR BROADCAST-QUALITY TRANSMISSION AND RECEPTION FOR BOTH MOBILE UNITS AND BASE STATIONS.

- Boom-mounted electret-capacitor microphone delivers studio-quality, undistorted voice reproduction. Variable gain control lets you adjust for optimum modulation.
- Cushioned earcup lets you monitor in privacy -. no speaker blare to disturb others. Blocks out environmental noises, too. Made of unbreakable ABS plastic.
- Headband self-adjusts for comfortable wear over long hours. Spring-flex hinge lets you slip headset on and off with fust one hand. Reversible for right or left ear.
- Headset can be hung on standard microphone clip.
- Compact palm-held talk swïtch lets you keep both hands on the wheel for safer driving. Made of unbreakable ABS plastic.
- Built-in FET transistor amplifier adapts microphone output to any transceiver impedance.
- Compatible with most two-way radios including 40 -chammel CB units.
- Built-in Velcro pad for easy mounting of the talk switch.
- Made in U.S.A.

SPECIFICATIONS

Earphone impedance
and type: 8 ohms, dynamic
Microphone type: Electret capacitor
Microphone frequency
response: $200-6000 \mathrm{~Hz}$
Amplifier type: FET transistor, variable gain
Amplifier battery 7 -volt Mallory power: TR-175
Switching: Relay or electronic

IDEAL FOR EVERY TWO-WAY RADIO COMMUNICATIONS NEED

CB operators * Amateur radio operators Police and tire vehicles - Ambulances and emergency vehicles. Taxis and truckers Marine pleasure and work boats - Construction and demolition crews - Industrial communications * Security patrols Airport tower and ground crews - Remote broadcast and TV-camera crews . Foresters and fire-watch units *

A new precision clock which tells time anywhere in the world at a glance, has been announced by Yaesu Electronics Corporation. The time in any principal city or time zone can be simultaneously coordinated with local time on a 24 hour basis. After the initial setting, as the clock runs, a Time Zone Hour Disc advances automatically, showing correct time all over the world without further adjustment. The clock is especially designed to withstand shock and may be hung on a wall or placed on its desk mount. The clock will run an entire year on a single 1.5 volt flashlight battery and the mechanism starts as soon as the battery is inserted. It measures six inches in diameter by two and one half inches deep. An excellent item for the business office, ham radio operator, short wave listener, boat owner, and others who want an accurate dependable clock. Price: $\$ 30.00$ Amateur net.

SAVE YOUR RADIO!

DESIGNED FOR COMMERCIAL USE UP TO 1000 MHZ .
The TUFTS SAVE-YOUR-RADIO bracket can save you a bundle . . . and a lot of hassle. Why worry about rig ripoff? The TUFTS SYR bracket mounts quickiy and easily in your car and makes it possible to snap your rig out of its bracket when you park and put it out of sight.

The connector system has a special coaxial cable connector which will provide you with a lossless connection right up to 1000 MHz ! No loss! In addition to the quick coax connector there are also four power and accessory connections which are made automatically when the rig is slid into its bracket . . . just what you need for feeding power and loudspeaker connections to the set.

This is a rugged bracket and connector system . . . it'll take a beating. There is a hole on each side of the 16 gauge steel plate for a padlock in case you want to leave the rig for short periods in its bracket. They'll have to rip out the dash to get it'. . . and it won't be the first time for that.

With two of these brackets you can bring the mobile rig into the house and use it in seconds. On trips you can take an AC supply for the rig and use it in your hotel room. Price: $\$ 29.95$

NYE VIKING SQUEEZE KEY
Extra-long, finger-fitting molded paddles with adjustable spring tension, adjustable contact spacing. Knife-edge bearings and extra large, gold plated silver contacts! Nickel plated brass hardware and heavy, die cast base with non-skid feet. Base and dust cover black crackle finished. SSK-1-\$23.45.
SSK-1CP has heavily chrome-plated base and

No. 114.322 .2003 - Brass - 510.30

NYE VIKING SPEED-X KEYS
NYE VIKING Standard Speed-X keys feature smooth, adjustable bearings, heavy-duty silver contacts, and are mounted on a heavy oval die cast base with black wrinkle finish. Available with standard, or Navy knob, with, or without switch, and with nickel or brass plated key arm and hardware.
Pamper yourself with a Gold-Plated NYE VIKYNG KEY!
Model No. $114-31 \mathrm{C}-004 \mathrm{GP}$ has all the smooth action features of NYE Speed-X keys in a special "presentation" model. All hardware is heavily gold plated and it is mounted on ony x-like jet black plastic sub-base. List price is $\$ 50.00$.

CODE PRACTICE SET

 dust cover. List price, $\$ 29.95$.You get a sure, smooth, Speed-X model 310-001 transmitting key, linear circuit oscillator and amplifier, with a built-in $2^{\text {"3 }}$ speakex, all mounted on a heavy duty aluminum base with non-skid feet. Operates on standard 9 V transistor type battery (not included). List price, \$18.50.
PHONE PATCH Model No. 250-46-1 measures 6-1/2" wide, 2-1/4" high and 2-7/8" deep. List price, $\$ 36.50$. Model 250-46-3, designed for use with transceivers having a built-in speaker, has its own built-in 2" x $6^{\prime \prime} 2$ watt speaker. Measures 6-1/2" wide, 2-1/4" high and $2-7 / 8^{\prime \prime}$ deep. List price, $\$ 44.50$.
 TA-40KR conversion. Complete with hardware. $\$ 206.50$

MULTI-BAND BEAMS

TRAP MASTER $33 . \ldots 10,15 \& 20$ Meters

- Model TA-33Jr.
- 3 Elements
- 10.1 db Forward Gain (over isotropic source)
- 20 dm Front-to-Back Ratio

The TA-33Jr ... incorporates Mosley TrapMaster Junior traps. This is the low power brother of the TA-33. Power Rating - 1 kW P.E.P. SSB. $\$ 151.85$

TA-33JR. POWER CONVERSION KIT TA-33,
MODEL MPK-3
Owners of the Mosley Trap-Master TA-33Jr. may obtain higher power without buying an entirely new antenna. The addition of the MPK 3 (powex conversion kit) converts the TA-33Jr. into essentially a new antenna with 750 watts AM/CW and 2000 watts P.E.P.

TRAPMASTER $36 \ldots 10,15 \& 20$ Meters

- Model TA-36
- 6 Elements
- Forward Gain (over isotropic source) $=10.1$ db on 15 \& 20 meters, 11.1 db on 10 meters.
Front-to-Back Ratio on all bands. 20 db .
This wide-spaced, six element configuration employs 4 operating elements on 10 meters, 3 operating elements on 15 meters, and 3 operating elements on 20 meters. Automatic bandswitching is accomplished through Mosley exclusively designed high impedance parallel resonant "Trap Circuit." The TA-36 is parallel resonant
designed for 1000 watts AM/CW or 2000 designed for 1000 watts AM/CW or 2000
watts P.E.P. SSB. Traps are weather and dirt proof, offering frequency stability under all weather conditions. $\$ 335.25$

MOSLEY AK-60 MAST PLATE ADAPTER Mast Plate Adapter for adapting your Mosley $11 / 2^{\prime \prime}$ mounted beam to fit 2 ,' OD mast. Complete with angle and hardware. $\$ 11.15$

CLASSIC-33 \ldots 10, $15 \& 20$ Meters
Model CL-33

- 3 Elements
- 10.1 db Forward Gain (over isotropic source) on all bands.
- souree 20 db Front-to-Back Ratio on $15 \& 20$ meters, 15 db on 10 meters.
BRIDGING THE GAP ... The Classic 33, combines the best of two Mosley systems. Incorporating Mosley Classic Feed System for a "Balanced Capacitive Matching" system with a feed point impedance of 52 ohms at resonance, and the Famous Mosley TrapMaster Traps for "weather-proof" traps with resonant frequency stability. This extra sturdy multi-band beam. Model CL-33, for operation on $10,15 \& 20$ meters features improved boom to element clamping, stainless steel hardware, balanced radiation and a longer boam for even wider element spacing. Power Rating - 2 KW P.E.P. SSB. Recommended mast size - $2^{\prime \prime}$ OD. Wind Load - 120 lbs. at 80 MPH. Approx. shipping weight -45 lbs. $\$ 232.50$

CLASSIC-203
 . 20 Meters

Model CL-203
3 Elements

- 10.1 db Forward Gain (over isotropic source)
- 20 db Front-to-Back Ratio

Incorporating the Mosley patented Classic Feed System, this full size 20 meter singleband beam has $1^{1 / 2 "}$ to $3 / 8$ " dia. "swaged" elements wide spaced on a $2^{\prime \prime}$ dia. 24' boom Maximum element length-37, 81/2'. The high standards in quality construction established by Mosley in over a quarter-century of manufacturing is reflected in this mono-band . Model CL-203. Boom-to-mast ekamping assures stability with a time-tested arrangement of mast plate, cast aluminum clamping blocks and stainless steel U-bolts. The exclusive "Balanced Capacitive Matching" System sive "Balanced Capacitive Matching" System has a nominal feed point impedance of 52
Ohms at 2 KW P.E.P. SSB. Recommended mast size ${ }^{2}$ " O.D. Approx. shipping wt; 42 lbs. via truck. $\$ 227.65$
meter and 10 meter antennas.

- Built-in VFO (continuous coverage, $144-148 \mathrm{MHz}$ in 1.3 MHz segments. I kHz readout).
- g pole SSB filter plus two FM filters.
filters. 100 kiz crystal calibrator.
- voice operated relay (vox) or p-t-t.
* Audio speech compression.

Naise blanker.

- RIT, plus or minus 5 kHz .
- Power out/" S " meter
- FM center deviation meter.
- 10W minimum output power. No TUNING!
- Hi-Lo power provision.
- Built-in AC/DC power supply.
- Double conversion receiver. 16.9 MHz and 455 kHz 1-Fs.
- Receiver sensitivity:

FM: $0.5 \mu \mathrm{~V}$ for $28 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$.
SSB/CW: $0.25 \mu \mathrm{~N}$ for $14 \mathrm{~dB} \mathrm{S/N}$.
AM: $2 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$.

- Size: Inches: $5 \mathrm{H}, 14.88 \mathrm{~W}, 12 \mathrm{D}$.

MM: $128 \mathrm{H}, 378 \mathrm{~W}, 305 \mathrm{D}$.

- Weight: 28 lbs. (13 KG).

- Control unit works on 110/220 VAC, $50 / 60 \mathrm{~Hz}$, and supplies necessary DC to motor.
- Excellent for single coax feed to multiband quads or arrays of monobanders. The tive positions allow a single caax feed to three beams and two dipoles, or other similar combinations.
- Control cable (not supplied) same as for HAM-M rotator.
- Selects antennas remotely grounds all unused antennas GND position grounds all an tennas when leaving station "Rain-Hat" construction shields motor and switches
- Motor: 24 VAC, 2 amp. Lubrication goad to $-40^{\circ} \mathrm{F}$.
- Switch RF Capability: Maximum legal limit. Price: $\$ 120.00$

MN-4
200 watts
Price: $\$ 120.00$

 MN-2000 MN-2000 000 watts PEP

 General: - Integ watts and liected power Matches 50 ohm transmitter output to coax antema teedline with VSWR of at teast $5: 1$ - Covers ham bands go thrt 10 meters . Switches in or out with front panel switch Size: $51_{2}^{\prime \prime} \mathrm{H}_{1} 10 \%^{\prime \prime} \mathrm{W}, 8^{\prime \prime D}$ (14.0×27.3 $20.3 \mathrm{~cm})$, $\mathrm{N}-2000$, $1 \mathrm{~A}, \mathrm{E} / \mathrm{D}(36.5 \mathrm{~cm})$- Continuous Duly Output: MN-4. 200 watts; MN-2000, 000 watts (2000 watis PEP) MN-2000 only: Up to 3 anenna connecters selected by front panel swith.

SSR-1
 COMMUNICATIONS RECEIVER

GENERAL: All amateur bands 10 thru 80 meters in seve 600 kHz ranges e Solid Staie VFO with y kHz dial divisions - Modes SSB Upoer and Lower, CW and AM © Buit-in Sidetone and automatic T/A switching on CW 30 tubes and semb-canductors Dimensions: $1 / \mathrm{I}^{2} \mathrm{H}$, D , $\left.14.0 \times 27.3 \times 36.5 \mathrm{~cm}\right\}$, Wt: $16 \mathrm{lbs} .(7.3 \mathrm{~kg})$. $\mathrm{D}\{14.0 \times 27.3 \times 36.5 \mathrm{~cm}\}$, Wt. $16 \mathrm{lbs}(7.3 \mathrm{~kg}$)
TRANSMIT:
TRANSMIT: - VOX or PTT or SSB or AM \&nput Power SSB, 300 watts P.E.P.; AM, 260 watts P.E.P, controlled carrier compatible with SSB linears; CW. 260 watts Adjustable pi-retwork
RECEIVE: - Sensitivity better than $1 / 3$ av lor $10 \mathrm{~dB} \mathrm{S/N}$ I.F. Selectivity 2.1 kHz @ $6 \mathrm{~dB} .3 .6 \mathrm{kHz} @ 60 \mathrm{~dB}$. AGC fuil on receive mades, varlable with RF gain control, fas Dion moise pulse suppression Price: $\$ 699.00$
34-PNB Plug-in Noise Blanker
FF-1 Crystal Control Unit
MMK-3 Mobile Mount
RV-4C Remote VFO
2 METER FM
PORTABLE TRANSCEIVER Model TR-33C

Amateur Net $\$ 229.95$

- SCPC* Frequency Control
- 12 Channels with Selectable Xmtr Offsets.
- All FET Front-end and Crystal Filter for Superb Receiver Intermod Rejection
- Expanded Antenna Choice.
- Low Receiver Battery Drain
- Traditional R. L. Drake Service Backup.
- Single Crystal Per Channel.
46.95
7.00
$\$ 150.00$
- Synthesized - General Coverage
- Low Cost - All Solid State - Built-in AC Power Supply * Selectable Sidebands
- Excellent Performance

Prieliminary specifications: - coverage: 500 kHz to 30 MHz . Frequency can be read accurately to better than kHz • Sensitivily iypically 5 microvolts for $10 \mathrm{dBS} \mathrm{S}+\mathrm{N} / \mathrm{N}$ SSB and better than 2 microvolls for 10 dB S +N/N AM - Selectable sidebands - Built-in power supply: 117/234 VAC $\pm 20 \%$, If the AC power source taiss the unit switches automatically to an internal battery pack which uses eight D-cells (not supplied) - for reduced current drain on DC operation the dials do not light uo unless a red pushbutton on the front panel is depressed.
The performance, versatility, size and low cost of the SSR-1 make it ideal for use as a stand-by amateur or novice-amateur receiver, short wave receiver, ©B monitor receiver, or general purpose taboratory receiver

Price: $\$ 350.00$

TR-4CW SIDEBAND TRANSCEIVER

POWER SUPPLIES

AC-4 Power Supply
Ac-4 Power Supply
$\$ 120.00$
DC-4 Power Supply
135.00

LINEAR AMPLIFIER Model L-4B

L-4B Linear Amplifier
895.00 - 2000 Watts PEP-SSB © Class B Grounded Grid - two 3-500Z Tubes - Broad Band Tuned-Input RF Negative Feedback Transmitting AGC © Directional Wattmeter - Two Tautband Suspension Meters - L-4B 13-15/16" W, 7-7/8' H, 14-5/16" D. Wt.: 32 lbs. Power Supply 6-3/4" W, 7-7/8 ${ }^{\prime \prime}$ H, $11^{\prime \prime}$ D, Wt.: 43 lbs. POWER SUPPLIES
AC 4 Power Supply
$\$ 120.00$
DC 4 Power Supply
135.00

Touch-n-go with

DRAKE 1525EM

Push Button Encoding Mike

Drake $1525 E M$, microphone with tone encoder and connector for TR-33C. TR-22, TR-22C, ML-2

- Microphone and auto-patch encoder in single convenient package with coil cord and connector. Fully wired and ready far use.
- High accuracy IC tone generator, no frequency adjustments.
- High reliability Digitran(B) keyboard.
- Power for tone encoder obtained from transceiver through microphone cable. No battery required. Low current drain.
- Low output impedance allows use with almost all transceivers
- Four pin microphone plug: directly connects to Drake TR-33C without any modification in transceiver. Compatible with all previous Drake and other 2 meter units with minor modifications.
- Tone level adjustable.
- Hang-up hook supplied.

Tufts Radio Electronics•209 Mystic Avenue • Medford MA 02155 © (617) 395-8280

For all you hams with little cars ...
We've got the perfect mobile rig for you.

The Atlas $210 x$ or $215 x$ measuras only $91 /{ }^{\prime}$ wide $\times 9 y_{1}^{\prime \prime}$ deep \times only $31 / x^{*}$ high, yet Allas Iransceiver fits into a compact car. And theres plenty of room to spare for WHF gear and other accessory equipment. With the exclusive Atlas plug-in design. you can slip your Atlas in and cot of your are made automatically.
BUT DONT LET THE SMALS SIZE FOOL Even though the Atlas $210 x$ and $215 x$ trans. ceivers are less than half the size and
weisht of other HF transceivers. The Atas is truly a giant in performance.
200 watts POWER RATEVG!
This power level in a seven pound transceiver is ineredible bu: true. Atlas transceivers give you all the talk power you need
onstantly reflect great surprise at thes sigal strength in relation to the power rating. ULL 5 hand COVERAGE
The 210x covers $10-80$ meters, while the 15x oovers $15-160$ meters. Adding the reatly itucreased freguency coverage for MARS and network operation
NO TRANSMITTER TLNNEG OR LOADENG GONTROLS
with Allas' total broadbavding. With yous la yau get instent QSE and band chenge gost advanced state of the art OLID STATE DESIG.
no: only accounts iot its laght weight, but assures you years of top periormarce and rouble free operating pleasure
PLUG-EN CTRGUTT BOARDS
and modular design provides for ease of servicing.

PHENOMENAL SELECTIVITY
The exclasive 9 pole crystal ladter filte: major brakktlorough in tilter cosign with urgrecedantect skirt selectivity and al. timate rejpction. As the abote graph thevs this Silier prowdes a 6 do bandwidith of 2700 Hertz 60 th dowe of only 4300 Hertx, and a basdwidth of eriy gavo herta al 120 130 db ; greater than the measurkg bimits of mosit tesl equipment.
exceptional mmuntty to strong SIGNAL OVERLOAD AND CROSS MODULATION. The exclusive front end dasign. in the receiver allows you to operate closer
in frequency to strong neighboring signels than you have ever experienced before. If you have not yet aperated an Allas transceiver in a crowded band and compared it with any other receiver or transceives. you ave a real thrill coming

A WORLD WIDE DEALER NETWORK TO SERVE YOU.
Whether you're driving a Honda in Kanses City or a Mercedes Benz in West Germany, here's an Allas dealer near you.

Atlas 210x or 21.5x	
ACGESSORI	
AC Console $110 /$	
Portabie AC supply $110 / 2$	
Plue-in Mntale Kit	
10x ose fese crystals ${ }^{\text {ge.00 }}$	

For complete cietails see your Alfas dealer. or drop us a card and well mail you a
orochure with degler list.

GAE ATLAS

43 F
 AMATEUR ANTENNAS

等

OOEL TM
Trunk 保 mount tor mo


```
iecters atracen
Prige: \(\$ 14.85\)
Nectur atmen
```

SUPER AMP
from Dentron

If the amplifier you're thinking of buying doesn't deliver at deast 1000 to 1200 watts outpur, to the antenna, you're buying the wrong amplifier.
Our New Super. Amp is sweeping the country because hams have realized that the DenTron Amplifier will deliver to the antenna, ioutput power), what other manufacturers rate as input power.
The Super Amp runs a full 2000 watts P.E.P. input on SSB, and 1000 watts DC on CW, RTTY or SSTV $160-10$ meters, the maximum legal power.
The Super Amp is compact, low profile, has a solid one-piece cabinet assuring maximum TVI sheilding.
The heart of our amplifier, the power supply, is a continuous duty, self-contained supply built for contest performance.
We mounted the $4-572 \mathrm{E}$'s, industriar workhorse zubes. in a coocling chamber featuring the on-demand variable cooling system.
The hams at DenTron pride themselves on quality work, and we fight to keep prites down. That's why the dynamic DenTron Linear Amplifier beats them all
$\$ 574.50$

The 80-10 Skymatcher

Here's an antenas tunes for 80 through 10 meters, handles 500 w P.E.P. and matches your 52 ohm transceiver to a random wire antenna.

Continuous tuning $3.2 \cdot 30 \mathrm{mc}$ "L" network
Ceramic 12 position rotary switch SO-239 receptionsl to transmitte Randion wire turer
3000 volt capacitor spacing Tapped inductor
Ceramic antenta fed thrul
$7^{\prime \prime} \mathrm{W} .5^{\prime \prime} \mathrm{H} .8^{\prime \prime} \mathrm{D}$. Weight: 5 lbs ,
$\$ 59.50$

Read forward and reflected watts at the same time

rired of constant switching and guesswork?
Every serious ham knows he must read both forward and reverse wattage simmultaneousiy for that perfect match. So upgrade with the DenTron W. 2 Dual in Ine Wattmeter.
$\$ 99.50$

Match everything from 160 to 10 with the new 160-10 MAT

NEW: The Monitor Tuner was designed because of overwhelming demard. Hams told us they wanted a 3 kilowatt tuner with a built-in wattmeter, a front panel antenna selector for coak, balanced line and random wire. So we engineered the $160-10 \mathrm{~m}$ Monitor Tuner. It's a lifetime investment at $\$ 299.50$.
$\$ 299.50$

Meet the SuperTuner

The DenTron Super Tuner tunes everything fram 160-10 meters. Whether you have balanced line, coax cable, random or long wife, the Super Tuner will match the antenna impedance to your transmitter. All DenTron tuners give you maximum power transfer from your transmitter to your antenna, and isn't that where it really counts?
1 kw MODEL $\$ 129.50$ к $\mathbf{~ k w}$ MODEL $\$ 2 \mathbf{2 9 . 5 0}$

The Sky Openers

SKYMASTER
A fully developed and rested 27 foor Vertical antenna covers entire 10. 15: 20, and 40 mater bands using onfy one eleverly spplied wave rrap. A tult 1,4 wave antenna on 20 mators. Gonstructad of heavy saam. less aluminum with a factory tuned and
seated Ho Trap. SKYMASTER is westher. proof and withstrands winds up to 80 mph . Hendles 2 kw power level and is for ground, roof or tower mounting. Radials $\$ \mathbf{\$ 4 . 5 0}$ Also 80 m reso
SKYMMSTER.
$\$ 84.50$
$\$ 29.50$

SKYCLAW
A turable monoband high performance vertical antenna, dasigned for $40,80,160$ - metere oberation sKYCLAW gives you the tolowing spectrum cover rege:

band	BANDWIDTH
(Metars)	(kHz)
160	50
80	200

entire band
rel iable. Rugged Tuning is asys and reliable. Ruggod conStrutstion assurss that this ssif-supporting
unit is wasthepreot and survies nitely in 100 mph winds., Handies tull legal powor linit.
$\$ 79.50$

The Dentron EX- 1 Vertical Antenta is destigned for the performance minded antenna experimenter. The EX- 1 is a full 40 meter ${ }^{4 / 2}$ wave, 33 , self. s.spporting
vertical. The EX $X-1$ is the ideal wertinal vertical. The $\mathrm{EX}-1$ is the ideal wertimal
for phasing.
$\$ 59.50$

TRIMTENNA
The anenne your neightors will love. The new DanTron Trim. Tenna with 20 meter beamt is designed for the discriminating
amateu
who wants fantstic performance in an environment tany appealing teammers its really loaded! Up front there's a 13 foot 6 inch director with prostipg Hy- a coils. And. 7 feet behind is a 16 loose driven tement fed dievetly with 52 ohm coax. The Trim-Tenna mounts ezsily and what adiference in on-the:sir performance bo.
tween the Jrim- Tenna and that tipipole. long wire or inverted Vee you ve been wsing. $4 \& 6$ Forward Giin Over Dipole.
$\$ 129.50$

ALL BAND DOUBLET
This All Band Coublat or itverted Type Antenna covers 160 thru 10 meters. Has total length of 130 feee 114 ga, stranded copper) although is may be made shoter it necessary. This tuned Dosubigt is center fod uroush 100 feet of 450 ahm PVC
coverad bulanced transmission lims. The assembly is complefe. Ads rope to the ends and pull wp into position Tune
 one antennmi Naw just for the DenTron
All Bond Doublet.
\$24.50

Deniron

LOW PASS FILTERS FOR TRANSMITTERS
have four pi sections for sharp cut of below channel 2, and to attenuate transmitter harmonics falling in any TV channel and fm band. 52 ohm . SO-239 connectors built in.

DRAKE TV-5200-EP
200 watts to 52 MHz . Ideal for six meters. For operation below six meters, use TV-3300-LP or TV-42-LP. Model No. 1609 Price: $\$ 26.60$
DRAKE TV-42-LP Model No. 1605
is a four section filter designed with 43.2 MHz cut-off and extremely high attenuation in all TV channels for transmitters operating at 30 MHz and lower. Rated 100 watts input. Price: $\$ 14.60$

Drake TV-75-HP Model No. 1610 For 75 ohm TV coaxial cable; TV type connectors installed Price: $\$ 13.25$

DRAKE TV-3300-LP 1000 watts max. below 30 MHz . Attenuation better than 80 dB above 41 MHz . Helps TV i-f interference, as well as $\$ 26.60$ Model No. 1608

Tufts Radio Electronics - 209 Mystic Avenue * Medford MA 02155 - (617) 395-8280

WORK ALL REPEATERS WITH OUR NEW SYNTHESIZER II

K $\times 286$	28-35 MHz 1 . Mreveiver with pale 10.7 MHz ervestal fiher	59.95
C' 1	same us above-wired \& tested	04.05
RX500 K	$30.60 \mathrm{MHz} \mathrm{reve} \mathrm{w/2} \mathrm{pule} 10.7$	
	fhz crysul file	
Kxsoc w/T	same as above-wired \& lest	
	140170 MH / civiv/2	
	10.7 MHz crystar	
KXIA40 w T K×220CKit.	same as ahowe-wired 5	
	$210-240 \mathrm{MH} / \mathrm{ccur}$ wiz pole	
	10.7 Mitz erys	
$\begin{aligned} & \mathrm{K} \times 220 \mathrm{CW} \mathrm{~T} \\ & \mathrm{RX} \times 32 \mathrm{~K} \text { Kit. } \end{aligned}$	same us above-wired S test	
	$432 \mathrm{MH} /$ peve wiz pole	
	Hz_{2}	
32		
TX50 TX50 W/T TXI44BKit TXI44BW/T TX220BKit.	硣	
	me as above -wired \& tester	9.95
	transmitter exciter-1 watt - 2 m	29.95
	same as above-wired \& test	
	nsmitter exciter-1watt-22	
PA2503HKit .	2 mir power amp. - kit 1 w in - 25 w out with solid state switching.	
PA2S01HW/T. PA4010H Kit	same as above-wised \& iested	
	2 mq power amp-10w in-40w	
	out-relay	
$\begin{aligned} & \text { PA } 4010 \mathrm{H} \text { WiT. } \\ & \text { WAS0/25 Kit } . \end{aligned}$	same as above-wised \& tested	
	6 mtr power amp, 1 w in. 25 w cut	
	less case, connectors \& switching	49.95
$\begin{aligned} & \text { PA } 50 / 25 \text { W/T } \\ & \text { PA144/15 Kit. } \end{aligned}$	same as above, wired \& tested	69.95
	2 mir power amp-1w in-15w out-less case, connectors and	
	switchin	39.95
PA: 44/25 Kit PA220/15 Kit PA432/10 Kit	same as PA144/15 kic but 25 w	49.95
	similat co PA $144 / 15$ for 220 MHz	39.95
	power amp-similas to PA144/15	
	except low and 432 MH	49.95
PA140/10 W/T	10 w in -140 w out -2 mtramp	179.95
PAi $40 / 30 \mathrm{~W} / \mathrm{T}$	30 w in -140w out -2 mtr	150.95

RECEIVERS

RXCF accessory filter for above receiver kits gives 70 dB adjacent channel | rejection |
| :--- |
| 10 mt |

RF28 Kit RF 50 Kit RF144D Kit: RF432 kit
If 10.7 Fkit
F. 4455 Kil .
T×220BW/T TX432BKit. TX432B W/T TX150 kit. TX150 K/I.
rx150 $/ \mathrm{T}$ sameas above-wired \& tested 300 milliwatt, 2 mit transmitter same as above wired \& tested

POWER AMPLIFIERS

Blae Line RF power amp,
CW-FM-SSB/MM

Model	Frequency	Fower Input	Power Output	
BLB 3/5 50	$45-55 \mathrm{MHz}$	36	50w	TBA
BLC 10/70	$140-160 \mathrm{MHz}$	10W	70W	139.95
BLC 2/70	$140-160 \mathrm{MHz}$	2W	20w	159.95
BLC $10 / 150$	${ }^{1} 40-160 \mathrm{MH} 2$	30W	150 W	259.95
BLC 30/150	$140-160 \mathrm{MHz}$	30 W	1 Sow	239.95
BLD $2 / 60$	$220-230 \mathrm{MHz}$	2W	60 W	159.95
BLD 10/60	220-230M ${ }^{\text {2 }}$	10 W	60w	139.95
BLD 10/20	$220-230 \mathrm{MHz}$	10 W	120 W	259.95
BLE 10/40	420.470 MHz	10W	40W	139.95
BLE $2 / 40$	$420-470 \mathrm{MHz}$	2W	40 W	159.95
BLE 30/80	420.470 MHz	30W	80 W	259.95
BLE $10 / 80$. 420.470 MHz	10 W	80 W	289.95

POWER SUPPLIES

The Synthesizex II is a two meter frequency synthesizer. Frequency is adjustable in 5 kHz steps from 140.00 MHz to 149.995 MHz with its digital readout thumb wheel switching. Transmit offsets are digitally programmed on a diode matrix, and can range from 10 kHz to 10 MHz . No additional components are necessary!
Kit
$\$ 169.95$ Wired and tested $\$ 239.95$
Also available for 220 MHz .

PSI5C Kit

PSI 5C W/T PS2SC Kit

PS2SCWT PS25M Kit PS25M WV/T

RPTso Kit. RPTi44 Kít RPT220 Kit RPT 432 Kit
RPT144 W/T RPT220 W/T RPT432W/T DPLASO
TRX50 Kit

TRX144 Kit TRX220 Kit TRX432 Kit

TRC. 1

SYN [I Kit.

SYN II W/T
 MO-1 Kit. .

 TO-1 Kit.HT 144 B Kit
N1CAD...
BCI2
Rubber Duck

5 amp. 12 volt regulated power supply whease, w/fold-back currenf limif ing and overvoltage protection .. 79.95 same as above-wred $\&$ tested.
25 amp- 12 volt regulated power supply w/case, w/fold-back current limit ing and owp
same as above-urired \& tested .. 149.95 same as PS2SC with meters.... 149.95 same as above-wired \& tested . 169.95
repeater 6 meter
465.95
repeater -6 meter. wired \& tested
repeater 6 meter.
repeater -2 mtr- $15 \mathrm{w} \rightarrow$ complete (less crystals) \qquad 465.9 repeater-220 MHz-15w-complete less crystals)
epeater -10 watt -432 MHz (less crystals)
repeater-15 wati-2 mtr. epeater - 15 watt -220 MHz .
epeater -10 watt -432 MHz . 465.95 515.95 repeater - 10 watt -432 MHz . .. 695.95 6 mtr elose spaced duplexer 575.00

Complete 5 mitr FM transceiver kit. 20w out, 10 channel scan with case 249.95 same as above. but 2 mtr \& 1 sw out 219.95 same as above except for 220 MHz 219.95 same as above except 10 watt and 432 MHz
transceiver case only 254.95 transceiver case and accessories.. 39.95

2 mtr synthesizer, transmitt offsets Mrogrammable from $100 \mathrm{KHz}-10 \mathrm{MHz}$ Mars offsets with optional adapters)
ame as above-wired \& tested
169.95
239.95

Mars/cap offset optional 23.50
18 MHz optional tripler

2 mer. $2 \mathrm{w}, 4$ channel, hand held receiver with crystals for 146.52 simplex . 129.95 battery pack. 12 VDC, kamp. 2 ntry with ger for above

- A simple, add-on-immediately RF amplifier.
- Merely coax-connect amplifier between antenna and transceiver.
- No tuning! Efficient strip-line broad band design.
- Automatic! Internal RF-sensorcontrolled relay connects amplifier whenever transmitter is switched on. Highes! quality, American-made "brand" transistors are fully protected for VSWR. short and overload, reverse polarity. Highly effective heat sinking assures long

Manual, remote-position switching is optional.

- Models for 6,2,11/4 meters, 70CM amateur bands plus MARS coverage
- Two types: Class C for FM/CW. Linear for SSB/AM/FM/CW.
- Negligible insertion loss on receive
- American made by KLM. ife, reliable performance. Black anodized containers...exclusive KLM extrusions. have seven, full length fins on both sides?

$\begin{aligned} & \text { EAED } \\ & \text { SAHZ } \end{aligned}$	MODEL PWR INP. NUMBER (wa:15)	NOM. PWR OUT. mexts	NOM.CUA. iamps it		Paice
50-54	Ph4.80RL 4	80	10 F	C^{*}	. 64.85
124-149	PA2-123 1.4	12	2	4	5995
	PA2-702 1.4	30	10	C.	15975
-	Far-roblo 1.4	70	10	C^{*}	16995
-	PA2-1405 1.4	130	¿0	-	22995
\cdots	P/1c-408 5-15	40	5	B	8395
-	PA10-408L - 5.75	40	5	8^{-}	9495
-	PA16-705 5-15	:0	8	c-	13935
*	PAIC-TEEL S 5.15	30	5	C	14995

, FRED :밴ㄹㄹ	MODEL NUMBER	PWRINP walts	NOM. PWR OUT: $\mathbf{\text { Hans: }}$	MOM. CUR. tamps it	SIIF	PRICE
144-148	PR.10-209t	5.15	85	10	$¢^{-}$	15935
	P 210.1400	$5 \cdot 15$	140	18	D-	19395
	PR10.1406L	5-15	140	18	5	21595
,	Pato.160 L	5.15	160	22	0	229.95
	Pa30. 408	15.45	140	15	0°	179.95
	P430.408L -	$\therefore 15.45$	140	15	pr	19995
219-2立6	PA\%-708C	1.4	70	10	c	15995
-	PAPOCCBC	3-15	60	8	C	14995
*	PA30.12986	13-45	120	15	0^{-}	189.55

Dealer Programs NOW Available

- Phase lech-1ap \&PLLs obei lator
- Mu:h-Ficde USB, LSB. OW and AM operation Hybric Digital Froquency Presantavia - Abvanced Soli Frovency presantasion - Bunlt-1- AC and 12 VDC powe suppiles. - CW bilte stantars equinmen: not an accessor. - Rugged siaf-e .as amplites : ines, - Migr. jerto mance neise barker is stancard embipmer - no! a accessich: - Brati- - Caximas sam brak $=\mathrm{CW}$ neyimg - Mircophene prowidea.
- Dual fit convol ailowis carn aro sion - al tand
- Al tand so through :0 reter cowerage
 ONEPLUS - Extraordinary receiver sensitivity : Ju $S / \mathrm{N} 10 \mathrm{eb}$ - Fixed thannel cristal contrai on two avalable - Fixed zhannel crystal controi en two available - posillons. Amenat
- Ajustable NiC action.
- phone paro in ass on: aves

- The ren: $=0$ 2020 5759.00 - Moce or 20 exterra soeaker 529.95 . Mece 6210
A) sand so through :0 reter cowerage

The TempolONE PLUS offers full 25 watt output or a selectable 3 to 15 watt low power output, remote tuning on the microphone, sideband operation with the SSB/ONE adapter, MARS operation capability, 5 KHz numerical LED, and all at a lower price than its time tested predecessor... the Tempo VHF ONE

The Tempo VHF/One Plus is a VHF/FM transceiver for dependable communication on the 2 meter amateur band Full 2 meter coverage, 144 to 148 MHz for both transmit and receive - Full phase lock synthesized (PLL) - Automatic repeater split - selectable up or down Two built-in programmable channels - All solid state 800 selectable receive frequencies with simplex and +600 kHz transmit frequencies for each receive channel. Price: $\$ 399.00$

ATLAS 350-XL

- ALL SOLID STATE 350 WATTSP.E.P. OR CWINPUT - SSB TRANSCEIVER - 10 THROUGH 160 METER COVERAGE

| FREO. (MHz) | $\begin{aligned} & \text { MODEL } \\ & \text { NUMBER } \end{aligned}$ | PWH IMP
 \|watls| | HOM. PWR OUT (watts) | NOM. CUA. (amps ji | | PRICE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 400-470 | PA2-40C | -4 | 4 | T | C^{+} | 14995 |
| . | Pate.350 | $5 \cdot 15$ | 35 | $\underline{5}$ | 8 | 11995 |
| | Pat0-35CL | 5-15 | 35 | E | 3. | 139.95 |
| - | P610-TOC | $5 \cdot 15$ | T0 | 13 | $0 \cdot$ | 22995 |
| | Pator-70C | 5. 35 | 70 | 18 | $0 \cdot$ | 249.95 |

This NEW MFJ Super Abtanna Tuner .. matchos every thinge from 160 thris io matchoss everythind from 160 thris randerr wires, verticals, mobile whips, beams, halance lines, coax fines. Up to 200 Wame RF OUIPGT, Euilt in balun roo!

mput (1). and ground (1)

state rigs (ike the Atlas) and with all tube sype rigs.

It travels well, too. Its ultra compact size $5 \times 2 \times 6$ inches lits easily in a small come of your suitcase.

The secret of this tiny, powerful funter is a wide range 12 position variable inductor made from two stacked toroid cores and high quality capacitors manufactured especially for MF.J. For balanced lines a $1: 4$ (unbalanced to balanced) balun is built-in. (unbalanced to balanced) baiun is

This beautitul liftle lumer is housed in a deluxe eggshell white Ten-Tec enclosure with walnut grain sides.
s0-239 coax conneclors are provided for transmitter input and coax fed antennas Price: $\$ 69.95$

This Digital Alarm Clock is also an ID Timer. Assembled, too!

 hour) Simply set the alam time to the heginning of your 050 Then tas the iDisore button.
remind ycu of a SKEO or simply io wake you in in to moctung automatically every 24 hours (so need to remember every nigh! to set the alam!. Four targe 63 inch tigits provide precise tway to twiont. hold the seconos to zero for precise seting to WWV until the tast set buttion is released.
The separate AM or PW LED indicalors blink at a 1 Hz rate it the power gees off momentarily. For longer ower outs it resets to 12:00 AM and the AM LED Slinks.
Seting the time and alam is simple and fast win Even the XYL will lind 110 vac. $68 \mathrm{H}+3.1 / 5 \times 33.4 \times 33 / 8$ inches ore ea warmis
Price: $\$ 19.95$

THE HAM-KEY
 NOW 5 MODELS
 NEW MODEL HK-5
 ELECTRONICKEYER
 $\$ 69.95$

tambic circuil for squeeze keylng.

- Self completing dots \& dashes.
- Dot memory.
- Battery operated with provisions for external power
- Built-in slde-tone monitor.

Speed, Volume, tone \& weight contrals
Grid-block or direct keying.

Use with external paddle such as HK-1

Model HK-1 \$29.95
Dual lever squeeze paddle.
Use with HK-5 or any electronickeyer
Heavy base with non-slip rubber feet.

- Paddles reversible for wide or clase finger spacing.

Model HK-2 \$19.95
Same as HK.I, less base for those who wish to incorporate in their own Keyer.

Model HK-3 \$16.95

Deluxe straight key

- Heavy base, no need to attach to desk.
- Velvet smcoth action.

Model HK-4 \$44.95
Combination on HK-1 \& HK-3 on same base.

400\% MORE RF POWER

PLUGS BETWEEN YOUR MICROPHONE AND TRANSMITTER

LSP-520BX. 37 db dynamic range IC ICS amp and 3 active lifiers give clean audto. RF protectes. 97 battey 3 sonductor, "/a" phone jacks tor trpu

CWF-2BX Super CW Filter By lor the lesder. Ovor 50c0 in use. Razor sharp selectivity. 80 Hz bandwidth, exiremely steep skirls. No ninging Plugs between rectiver and
phones or connest botween audio stage for spoaker or coneration.
 - Selec:able BW: $80,110.180 \mathrm{~Hz} \cdot 60 \mathrm{cB}$ dow one oclave fram center trea. of 750 Hz lor 80 Hz - $2 \cdot 3 \cdot 116 \times 3-1 / 4 \times 4 \mathrm{in}$

SBF-2BX SSB Filter
Dramailcally improves readizbility

- Opimizes your zudio to reduce sideband splalter, sermove low and migh pitched ORM, hiss slatie crasnes, Dackground nolse, 60 and 120 Hz hum. Reduces latiqued during contest, $D X$, and ragchewing. Plugs belween phones and re-
celver or conneat betwaen audio stage lor $\$ p$ peaker celver or connect between audia stage or speaki audis filter - Uses y volt battery - $2 \cdot 3116 \times$ $3-1 / 4 \times 4$ inches

LSP-520BX II. Same as LSF-S20BX DL: beacithe 2 -sis $\times 3.518 \times 5-9 / 6$ inch Ten-Tec enclosure with uncommated a pir Mic :acik

CMOS-8043 Electronic Keyer
Stale of the art design uses Curtis-8043 Keyer-on-a-chip.

- Builtin key - Dot memory - lambic ceera ties s.in extergal squeete key * 8 to 50 HPM - Sidelone and spenker Speed, yo urse, :ons, weighi coniras, utra relatie selint state keying -300 wolls max 4 posilion
swith for TUNE. OFF. ON. SIOETONE OFF Swhec for TUNE. OFF. ON SIOETONE OFF

MFJ-200BX Frequency Standard Prowices streng, precise markers every 100. 50. or 25 KHz well thto VHF region.

- Exclusive carcuily suppresses all unwanten markers - Markers are geted for positive identi ficalien CMOS IC's with transistor output. No
direct connection necessary Uses 9 volt ballery. Adjustable trimmer for zero beaing to WWV Swich selecis $100.50,25 \mathrm{KHz}$ or OFF - 2-3/15 $\times 3-1 / 4 \times 4$ inches
 до Би！

ONINWVYSOHd ONV
פNIO甘JUヨLNI 甘ヨINdWOOO甘OIW ：Y્રOOGツก8 $\forall 0808$ ヨH

G6＇

toble ON
 －ard ио рәрп！

yヨwIyd yヨlldwoooyoiw

56.65

tSEIZ ON

 SUヨ IndWOOOUOIW $\%$ SyヨlndwOOINIW ヨSी \％Ang Oi MOH

96．8s

SEOLZ ON

> YOOBYOOO

56＇6 ${ }^{\circ}$

צоов уооэ पヨWIL эI

56215

$6960 \mathrm{C}^{\circ} \mathrm{ON}$

 yoOgyoO dWV－dO Э1

56．6\＄
968にく ON

หо0日ソ000 SOWכ

G6．95
ESERて ON

（

9625
HいしてON punoquos

（L이！pg 419）

（4о1！！pg 47t）
yOO日aNVH ヨSNヨコI7 ヨNOHdヨาヨLOIQvy SSV70－1Syly 0s．ss

LCOtZ ${ }^{\circ} \mathrm{ON}$

0595
90002 on
－punoqyos

180 cz an
punaquos ： $2 / 8 \times 2 \times 5$ ！sebed 0ze

 sL゙zs
czotz on punogyos： 6×9 ：sebed

SLYロHO NOISNヨWII VNNヨIN甘 gכ ONV WVH

09615

zeotz on
punogpiey ： $8 / 6 \times 2 / 9$ ：so6ed 0801 solpeweuteu

（uo！！ipg 4ioz）yooganvh oiavy

$\frac{1}{4}$
SNOIIVOITGO SWVS Y甘רกdOd －

New Products

from page 22

meterl, and a laminated vswr chart. The price for this equipment is $\$ 298$.
The test set is cushion-fit assembled in a durable, Mil-spec polyethyiene case with space for seven plug-in elements, which determine power and frequency ranges. The carrying case and vswr chart are complimentary with the kit.

A customized Iuggage-style transit case has also been announced. Model $4300-070$ has space for a Model 43 wattmeter, 15 plug-in elements, and additional accessories. Cushion inserts for other configurations can be designed for quantity requirements.

Price: $4300-064$ test set $\$ 298$. plug-in elements $\$ 36-75$. Delivery: 4 weeks ARO from Bird Electronic Corporation, 30303 Aurora Road, Cleveland (Solon) OH 44139.

GARY MODEL 120
 DMM CALIBRATOR IMPRESSIONS

"What good is my new, super accurate digital multimeter if 1 can't calibrate it?" you might ask, after purchasing such a device. Not a bad question, and considering the popularity of digital meters these days, it is
a question that should be addressed. DMMs are capable of extreme accuracy, which is of not much use when no method of initially calibrating the device is available. The Gary MaClellan Company, a manufacturer of DMM kits, has provided the solution to the problem with their Model 120 DMM calibrator.

You may recall that last month I reviewed the Gary McClellan 103 DMM kit, the $\$ 29$ special. I needed to calibrate that device, as well as my trusty analog meter. MicCiellan responded by providing the 120 calibrator to review.

The 120 calibrator uses an internal IC to provide voltage references of .9 volt at $.2 \%, 1.0$ volt at $.2 \%$, and 10.0 volts at $.1 \%$. Additionalif, resistance references from 100 Ohms to 1 megohm are provided with similar accuracy. The calibrator is housed in a small plastic case with "banana" jacks for output connectors. A push-button enabies the device when required, thus saving the internal 18 -volt battery, consisting of two 9 -volt transistor batteries.

As expected, operating the 120 calibrator is as easy as pushing the enable button. The meter or DMM to be calibrated is set to the appropriate range and adjusted while firing the calibrator. For the first time, I was
really confident of the accuracy of my meter. The calibrator is so compact and easy to use that it can be used at a moment's notice - 1 keep mine directly behind my old VTVM for periodic checks. The decade voltage references also allow meters to be checked for linearizy.

All things considered, the McClellan 120 DMM calibrator is a useful piece of test gear - usable by anyone with a DMM or VTVM, which includes just about everyone!
The Model 120 calibrator is priced at $\$ 34.95$ factory built. Gary McClellan and Company, Box 2085, 1001 W. Imperial Hiway, La Habra CA 90631.

John Molnar WA3ETD Executive Editor

THE SNOOP LOOP

Sencore, manufacturers of high quality test equipment, has made available a closed loop for signal pick. up and frequency measurements, without connecting to the circuit. The Snoop loop is simple in construction, as it connects directly to a 50 Ohm input cable for direct application to the new Sencore FC45 frequency counter or the PR47 UHF prescaler. The Snoop Loop works equally well on other 50 Ohm input frequency counters, as it enables the user to "hold back" from any of the high power sources, without actuatly connecting to the source, as it protects
the frequency counter and the operator. Then, too, the PL207 Snoop Loop can be used to "snoop back" all along the signa! path all the way back to low level circuits and be placed directly over oscillator coils, for example, without upsetting the operating frequency of the oscillator. The Snoop Laop model PL207, at S9.95, can be purchased from any Sencore distributor, or directly from the Sencore service department in Sioux Falls. Sencore, 3200 Sencore Drive, Sioux Falls SD 57107, (605) 339-0100.

POLICE RADAR DETECTOR

 IN KIT FORMNow, for the first time, the proven "Bird Dog" police radar detector is offered in kit form. The Bird Dog has been proven by thousands of truckers and motorists over millions of miles. The Bird Dog was designed for long range, troublef́ree, hands off, reliable operation. Actual iests and reports from truckers and professional motorists show the Bird Dog to detect moving police radar as far away as 2% to 3 miles. A unit with this type of sensitivity alerts the motorist of police radar long before the police radar has the motorist in sight. In actual comparative tests, the Bird Dog is equal in sensitivity to the top three radar detectors now on the market.

The Bird Dog is usually located on
Continued on page 189

MEET THE

 FAMILY!

Since our first ad in 73 a year ago, we have grown quite a bit! Now we can offer you more products with pioneering design and features.

MODEL 120 DC VOLTS/OHMS CALIBRATOR (far left)
One of our best sellers! This $\$ 34.95$ calibrator will
allow you to calibrate all your Ohm ranges and the
three critical dc volts ranges on your multimeters.
MODEL. 101 DVOM KIT: (center top)
This quality VOM kit allows you to accurately measure de volts, ac volts, and Ohms with $0.1 \%, 0.3 \%$, and 0.2% accuracy. Only $\$ 70.00 \mathrm{kit} / 90.00$ wired.

MODEL 401 DIGITAL READOUT FUNCTION GENERATOR
Generate precision sine, triangle, and square wave signals. True 50 Ohm output, 4 digit counter. Counter detaches for reading external audio signals. Only $\$ 99.95$.

MODEL 303200 MHZ POCKET COUNTER
Imagine measuring signals up to 200 MHz in 3 ranges with a 7 digit frequency counter that fits in your pocket! Also has $\pm 0.001 \%$ accuracy and low battery indicator. $\$ 129.95$

Please write for more information, or order today!
P.O. Box 2085 1001 W. Imperial Hiway

LaHabra CA 90631

500 Ledyard St., Hartford CT 06114 203-527-1881
(1 block east of Wethersfield Ave. off Airport Rd. Rte. 6)

See Ward W1WRQ - John W1JJR
or
Dave WA1HFE

HEADOUARTERS for 2M FM

Tempo VHF/ONE, SSB/ONE adaptor, Tempo VHF amplifiers, FMH-2, FMH-5; Drake TR 33C, AA 10, AC 10; Regency HR 2B, HR 312, AR 2. P 110 \& crystals for all lines listed above.

FM GAIN ANTENNAS
For mobile, fixed or portable operation by CushCraft, Hy-Gain, Antenna Specialists \& NewTronics.

ANTENNA STUFF

Open wire feedline - \#18, \#14, \#12 ga. bäre copperweld wire - $\# 14$; $\# 12$ enamel copper insulators - W2AU baluns 1-1 or 4-1 - lowloss coax cable - Rohn 25G towers \& accessories Blitzbug lightning arrestors - glassline guy - B\&W antenna switches - Belden 72 \& 300 ohm KW twinlead - Amphenol UHF \& BNL connectors.

AMATEUR GEAR

Drake, Swan, Tempo, Ten-Tec, Dentron, Regency, Mosley, Hy-Gain, CushEraft.

Remote Speaker Mike for Your HT

Ireceived my Wilson 1402 SM HT a few weeks ago and immediately started having a ball mobiling, both on foot and in the car. In using it while in the car, I connected it to the rooftop $5 / 8$ wave antenna. It was a bit awkward to use however, holding it up to my face and using it "a la a great big microphone." The microphone, located close to the bottom on the Wilson instead

Fig. 7. Using mike as speaker.
of the customary position about $3 / 4$ of the way up, didn't help any. In using it while I was walking, I found it embarrassing seeing people driving by and turning to stare as I either held it to my ear in order to hear adequately, or positioning it next to my mouth for transmitting. I'm no youngster so I can't qualify as a kid playing Dick Tracy. I decided that a remote speaker/microphone was an absolute must. A quick check with the ads revealed that l'd have had to come up with $\$ 24.00$ for a new one. It might as well have been $\$ 240.00$ as far as my pocketbook was concerned. That left me no choice but to try to home brew one. With my huge junk
box I didn't anticipate any parts problem. I live alone in a big house trailer. My friends say that I live in a huge junk box. My junk box served me well, as I had all of the necessary "junk." In my local area, you can duplicate my unit for about $\$ 1.50$ if you have an old mike to start with. We have a fantastic electronics surplus outlet here for the necessary "junk." It is most unfortunate that he does not handle mail orders.

At first I tried a dynamic microphone itself as both a speaker and as a microphone. See Fig. 1 for details. Actually, the element was a Shure Brothers controlledmagnetic transducer. It worked, but the "speaker" output was quite low. The output compared to a transistor radio earpiece. I next tried various true dynamic microphone elements of different shapes and sizes. 1 found one that had usable output, at least while in the trailer, but left much to be desired as a microphone. It made me sound as if I was talking with my head in a barrel. I added a high pass filter between the element and the speech amplifier input, to pre-emphasize the highs. See

Fig. 2. Using mike with filter.

Fig. 2. The tone quality improved significantly, but the output suffered to the point of requiring my yelling into the mike. I changed the filter configuration to that as shown in Fig. 3, and it sounded normal. I did, however, vary the resistance value so that the deviation level was normal as well. This worked out reasonably well except that, needless to say, in a noisy environment, the "speaker" output was somewhat low and the unit had to be held up to one's'ear as with an earphone. Another drawback was that the internal speaker would still "squawk," and consequently I could not operate in quiet environments, i.e., restaurants, libraries, hospitals, etc. Operating mobile on foot didn't work out too well either. I had the unit snapped to my belt and under my. jacket, as it was cold out. This necessitated using the "mike" as an earphone continuously as I could not hear the internal speaker at all. Boy, does your arm ever get tired after awhile. Using it in the car wasn't acceptable either. The audio (from the internal speaker) was not loud enough to overcome the din of a noisy truck passing by and I couldn't continually hold the "mike" to my ear and still perform prerequisite driving functions. Oh well, back to the drafting board.

1 then attempted using a small ($11 / 2^{\prime \prime}$) speaker both as a mike and speaker - the inverse of what I had tried previously. This worked out very satisfactorily as a
speaker but not as a mike. Once again it sounded as if I was talking while I had my head in a barrel. The circuit was the same as that of Fig. 1, except that the element was a speaker. Since the deviation was low as well, I added a micro-miniature transistor output transformer to the mike input circuit for proper impedance matching. See Fig. 4. This increased the output to the point of overdeviating. The quality remained bassy. I added a high pass filter as with the dynamic element and got it sounding "hi-fi." The final circuit is shown in Fig. 5.

I can now drape the "mike" over my shoulder, either while using it in the car or while walking with it and it works fine. The audio level is more than adequate to

Fig. 3. A better filter for transmitting. . .
override extraneous noises. The audio level control is now set so low that the raucous racket previously emanating from the internal speaker is now the equivalent of a stout whisper. I used a standard communication hand mike case for my unit. I held the speaker in place using silicone rubber (bathtub caulk). I replaced the push to

Fig. 4. This one hears well. . .
talk switch (it was only dpst) with a miniature push-button panel mount switch. My speaker/microphone works
like a charm, and l've had nothing but compliments regarding how nice it sounds.

If you're wondering why I didn't try a separate miniature microphone, the answer is simply that my junk box did not produce one. I'm glad now that it did not. I did entertain the thought of a separate standard size microphone but could not squeeze one into the mike case along with the speaker.

This means of
accentuating the highs (pre-emphasis) to make the microphone sound "human" applies to any microphone element. I even tried it with a carbon mike and now its quality can't be told from a communications type crystal, ceramic or dynamic microphone. Try it with a cheap (home tape recorder type) dynamic and make it sound "hi-fi." The values have to be altered to satisfy the characteristics of your speech

Fig. 5. Eureka!
The finished unit.
amplifier and to compensate for the particular microphone element that you're using. -

NOT FOR EVERYONE . . .

The Antenna For The Purist

MIDLAND - CUSHCRAFT NYE - STANDARD - TEMPO HUSTLER • TRI-EX TOWER CDE Rotors. Shure - Astatic Antenna Inc. - BW • Hy-Gain Monthly Specials!

 prepaid MIDLAND shipping 13-510 2 M 25 w Synthesizer 339^{22} 13-509 $220 \mathrm{Mhz} 10 \mathrm{w} 12 \mathrm{ch} 138^{97}$ $13-5052 \mathrm{M} 30 \mathrm{w} 12 \mathrm{ch} 189^{17}$
SEND: FREE CATALOG

ADVANCE A41 SOUND
COMPANY, INC.
(516) 667-0973 781 DEER PARK 20 DIX HILIS NY 11746

Split Your IC-22S

- adding splinter frequencies

The IC-22S has brought the versatility of a synthesized 2 meter transceiver finally within the reach of those without unlimited funding, apparently by avoiding thumbwheel switches, digital displays, and the circuitry that these devices require. However, it has a limitation shared by most of the new synthesized rigs - it. is restricted to operating on a 600 kHz split. In most localities this is no problem, but here in Los Angeles one of the most popular repeaters uses an odd split, receiving on 147.435 MHz and trans-
mitting on 146.40 MHz . Numerous other communities also have this problem.

The IC-22S uses a diode matrix to program its frequency synthesizer for the lower of the two frequencies to be used. The selector switch selects a particular set of diodes. The output of the diode matrix goes to a digital adder circuit which adds 600 kHz (a binary 101000 , where the least significant bit represents 15 kHz) when the higher frequency is called for. To modify this circuit would be a tedious job and, in all
likelihood, would make it difficult to restore the circuit to its original state should in-warranty service be required. What must be done, then, is to use a different set of diodes for the second frequency.

When I first studied the. circuit, I was disappointed to see that the voltage levels used were 0 and 9 volts, which eliminated the use of TTL devices. I was just about to settle for using a relay, but the thought of using a relay in a solid state device left me. cold because of the threat of

IC-22S modification. Note pigtalled connection to existing wire to switch in center and new IC socket with sleeve removed at left.
damage caused by transients from the coil. Nine volt relays aren't too easy to find, either. Then I noticed that the logic following the diode matrix was all CMOS, which operates on a supply voltage of anywhere from 3 to 15 volts. My problems were over.

In this circuit (Fig. 1), a CD4001 CMOS quad NOR gate chip provides all the gating necessary. The two inputs are the line from the selector switch and the "dp" line. The "dp," or duplex line, enables the adder circuit and here is used to enable the second set of diodes and disable the first. Both sets are disabled when the channel selector switch is not in the special position. The two outputs go to what I call the "normal" and the "abnormal" diodes. The normal diodes select the frequency to be used when the " $d p$ " line is false (0 V), and the abnormal diodes select the frequency to be used when the "dp" line is true (9 V). In my particular case, because it is desirable to be able to receive on the repeater input for T-hunts or when there is interference on the output, I use the duplex A position. This position enables the adder logic ("dp" line true) in the receive mode. Therefore the -diodes for receive (146.40 here) must be programmed for 600 kHz lower, or 145.80. Although this frequency is supposedly out of the range of the synthesizer, it doesn't really matter because the adder circuit intervenes before the 145.80 information ever reaches the synthesizer. There is plenty of range in the diode arrangement to program 600 kHz below even 146.01 MHz . Switching the function switch to the simplex position allows both receive and transmit on the normal frequency.

Construction is fairly simple. I wired everything on the back of a 14 pin IC socket, which fits very nicely between the volume control and the synthesizer board. I didn't fasten the IC socket to anything but just let it float
on its wires. This allows removing the diode board and new circuitry as one unit for programming. To insulate the IC socket, I slipped over it a paper tube made from package sealing tape - that's the stuff you have to lick. It tasted dreadful but did the job. The normal diodes occupy the position corresponding to the switch position to be used. At the end of the diode board, adjacent to diode position 22, is an unused position just made to
order for the abnormal diodes. To get to the lead coming from the selector switch, unsolder it from the diode board and replace it with the "normal" lead. The positions of the 9 volt and " dp " lines are marked on the board. The only thing missing on the diode board is a ground, and this is available on the meter.

The only problem encountered was rf occasionally getting into the new circuitry and causing loss of lock.

Fig. 7.

Presumably some bypassing radio. would have prevented this, but it was found that there was no trouble whenever the antenna was not actually mounted directly on the

It's great that repeater splits are as standardized as they are, but for those which aren't, this is an easy, inexpensive solution.
$77 / 78$ AMATEUR RADIO EQUIPMENT DIRECTORY

A one stop buying and reference guide to all your amateur needs. The new 77178 supplement (32 pages) updates the 1977 Edition and brings the total number of pages to 168 (2 volumes). Almost 100 manufacturers/distributors are included.
$\$ 3.50$ plus 25 t postage and handing - U.S only Ganadian orders. $\$ 4.00$. Foreign orders $\$ 5.00$ tair:

KENGORE CORP — Dept. C K11 9 James Ave. Kendall Park, NJ 08824

KAUFMAN BALUN
water tight BALUN

1-1 impedance match For dipoles, beams, inverted "V", and quads

- Center insulator with BALUN $\$ 13.50$ - Center insulator without BALUN $\$ 8.50$
- Dragon Fly antemna construction sheet and drawing $\$ 2.00$
postpaid USA
Patent No.
3 KWPEP
D219106
4 Ounces

KAUFMAN JNDUSTRIES
603-424-2358
3 SHORT ST
REEDS FERRY NH 03054

71 Priest St.
Hudson MA 01749

Remote Monitor

 for Your Scanner

 for Your Scanner}

- complete with lights

This article covers a circuit modification made to a Regency model TMR-8H/LM scanner monitor which replaces the channel indicator bulbs with light emitting diodes and includes the construction of a remote active channel indicator. Material cost for this project is quite reasonable and, depending upon the condition of the shack junk box, should amount to less than $\$ 5.00$. Light emitting diodes are type MV5026, red, priced
at $5 / \$ 1.00$ just about everywhere. Other than the LEDs, the only parts needed are nine 390 Ohm 2 Watt resistors and a junk box speaker. The technique described should work equally well with other brands of scanners as the circuitry is simple and straightforward.

The scanner in question is (rather permanently) installed in the basement workshop shared by me and my retired fireman father. Most of the fireman's workshop

Fig. 2.
Fig. 7.
time is spent in pursuit of his hobby at a power jigsaw. Obviously, when the scanner locks on a channel, far too much energy must be expended to turn around and look fifteen feet to see which channel is active. To eliminate this problem, an assembly containing a remote speaker and eight light emitting diode indicators was constructed and mounted on the wall in front of the saw. A labelmaker was used to affix the channel assignments adjacent to the proper LED indicators.

The remote indicators are wired in parallel with the indicators in the receiver. Fig. 1 shows the circuit diagram of the existing control circuitry for one channel.

IC301 is a power NAND gate which when activated by the scan decode circuitry functions such that its appropriate output (such as pin 4 in the figure) becomes-a current sink effectively grounding pin 4. As well as activating the channel crystal Y201, the programming circuitry diode CR301 selects the appropriate high or low band mixer and at the same time must sink 120 mA just to light the channel indicator bulb. Not wishing to see if the additional 35 mA drawn by the remote LED in paralle! with the No. 53 bulb would be the straw that broke the camel's back, it was decided to replace the bulbs with LEDs.

It is claimed by some scanner-owning visitors that with the LED indicators on the receiver, the locked channel is easier to determine at a quick glance because of
the more point source light characteristics of the device.

To install the LEDs is as simple as replacing each light assembly. After removing the bulb assembly, it is necessary to use some method of supporting the diodes. This turned out to be mechanically simple though electrically redundant. As shown in Fig. 2, one end of a 390 Ohm 2 Watt resistor was connected to the $+13 \vee B+$ line on the circuit board.

The body of the resistor was positioned facing the opening in the front panel. The anode of the LED was then carefully soldered to the panel end of the resistor while the "cathode was soldered to the appropriate contact on the channel lockout switch (same point as the removed bulb). The LED was aligned in the panel opening and that's all there is to it.

The remote installation is quite simple. A cable or wire bundle or whatever you choose to call it is required, and contains a pair of wires for the remote speaker. These may be connected directly to the remote speaker terminals on the rear of the receiver chassis. The cable which can be routed through an existing opening in the rear of the case must also contain an extension of the $+13 \vee \mathrm{~B}+$ line and a control wire for each channel indicator. These control wires are connected to the respective channel lockout switch previously described. Rather than be restricted by a hard-wired cable, I mounted a jack on the back of the chassis and a plug on the cable. (This would be up to individual

Fig. 3. Al/ LEDs MV5026.
preference.) A circuit diagram of the remote unit is shown in Fig. 3.

Construction of the remote unit can take just about any form which is consistent with your abilities as a carpenter, cabinetmaker, sheetmetal worker or tin knocker. Mine is quite simple, being made out of some kind of fibrous pressboard material which makes friction fitting of the LEDs possible as a method of securing. A

Dymo-maker was used to label the appropriate cities and towns beside each indicator using the "clever" scheme of red tape for fire departments and blue tape for police departments.

Having an installation such as this in the same area as the receiver might seem like overkill; however, it could be located upstairs in the kitchen, den or headboard of the bed. Mounted at the end of a hall, it could give one the
feeling of being on final approach to an airport runway at night.

In conclusion, the intent here was to start the reader thinking of ideas for custom scanner installations. Putting the receiver on a good outside antenna usually pretty much dictates where the radio must be mounted and left. This restriction, however, should not dictate where you must be to listen to the local activity. $=$

Digital Thermameter $\$ 48.50$ Batt oper. generalal furpose or medical $32-20 \mathrm{~F}$. Dispasabe prove cover $\pm .2$

Not a Cheap Clock Kit $\$ 17.45$ Includes everathing except case. 2. PC boards. G. G. 50 LeD Displays. 5314 click chip. rranstormer. all components and full instrucliens. Same clock kit wlth $8.80^{\prime \prime}$ displays.
$\$ 22.75$

Digital Temperature Meter Kit

 indoor and outdoor. Automatically Switehes back and forth. Beautiful. 50° LED readouts. Nothing like it available. Needs ne additional parts for complete, tull operation. Will measure -100° to $+200^{\circ} \mathrm{F}$, air or liquid. Wery accurate.Complete instructions. Complete instructions. $\$ 19.95$

Clock Calendar Kit \$19.95

 CT7015 direct dive chip oisplays date and time on 6^{-}LEDS with $A M$-PM indicalof. Alsmidoze feature includes buzzet. Complete with all parts. power supply ano instructions, less case.
1977 IC Update Master

Manual Complete integrated circuit data sefector from all manulacturers. 1,234 page master reference guide to the latest IC's including microprocessurs and consumer circuits. 17,003 cross references for easier sourcing of hard to get parts. Special pricing: $\mathbf{\$ 2 4 . 9 5}$, with free update service thru 1977 . Domestic ree update service inru 197 .
postage $\$ 2.00$. Foreign $\$ 6.00$ 3.2768 MHz crystal accuracy Imos to 59 min . $59 \mathrm{sec} .991 / 100 \mathrm{sec}$. Vimes sid split and Taylor. 7205 chip all components minus case Full instruc white or black piexiglass case. $\$ 5.00$

New Cosmac Super "ELF"

 RCA CMOS expandable micrecomputer w/HEX keyoad input and video output for wimex keyoad input and vies. Just turn on and start loading graphics. Just turn on and stant loading your program using the essident monitor on ROM. Pushbutton selection of all four CPU modes. LeD in cators al current CPU mode and four CPU states. Single step op. for program debug. Buitit in pwr. supply, 256 Bytes of RAM, audio amp. \& sokr. Detailed assy. man. wiPC board \& ail parts. Comp. Kit $\$ 106.95$ Custom hartwood cab: drilled lrom panel 18.75 Nicad Batery Backup Kit wiall parts 4.95 Fully wired and tested in cabinet 139.95 Ass announcing the formation of an 1802 soltware exchange club, write for cetails.
Home Alarm Kit \$18:75

Designed for use with electronic siren modute. AC power, battery backup, entry: exit delay. fristant alarm for night use. NO/NC circuits. Test and arm indicators 2 amp swithing capability, All parts with complete instructions minus power sup-

60 Hz Crystal Time Base
Kit \$4.75 Converts dightal clocks trome AC line frequency to crystal time base Outstanding accuracy. Klt includes: PC board, MM5369, crystal, resistors, capacitors and trimmer
30 MHz Frequency Counter Kit Same basic CMOS counter as above plus level controls and dual FET inputs. Prescalable to 200 MHz with $P C$ board and full instructions
Fully wired and tested
567.75

Power supply kit (incl. PC beard) 98.50
2.5 MHz Frequency Counter Kit As low as 10 Hz 6- 50^{\prime} digits expandable w/PC coard, parts \& full instrue $\$ 37.50$ Fully wired and tested Power supply kit (incl. PC board) $\$ 9.50$

Auto Clock Kit

515.95

DC slack with 4-.50" displays. Uses National MA-1012 modute with alams option, inctudes light ofmmer, crystal timebase PG boards. Fully regulated. complets instructeons. Add 33.95 for a beautiful dark gray case ready to install This is the best value available anywhere!

Electronics Study Guide

- remember when...?

There's no doubt about it. Some of the most delightful observations about electronic communication have been scrawled on tablet paper by grade school youngsters. Having taught in public schools for nineteen years, I'm sure of it. Take these historical explanations, for example.

Question: "When was the radio invented?" Answer: "On page 24."
"The radio was invented in the pre-me times."
"The Romans did not have radios. They used smoke signals in both the A.C. and D.C. times."

Kids have a knack for discarding everything but what they consider to be the most essential information. One boy brusquely wrapped up all of man's yearnings, struggles and triumphs in this eight word package: "Progress was from electricity to radios to now."

Here's a remark as charming as childhood itself: "I was thinking the radio was invented before the telegraph. When I learned different, all the thoughts I was going to say went in a swallow down my throat."

Another tiny historian concluded: "The Dark Ages lasted until the invention of electricity."

Through the years, the grade schooler's fund of knowledge has proved to be a glittering gold mine of wit
and unconscious wisdom, often unhampered by hard facts. Each new subject seems to be a fertile new field for off-base interpretation and lopsided logic. Digging into facts about Marconi produced such notable nuggets as these:
"Marconj was born in 1874, supposably on his birthday."
"lt took much hard work for Marconi to think out how to invent the radio. He had to keep thinking around the clock, twelve days a week."
"In just a few short years he became a sensation overnight.'
"He expired in 1937 and later died from this."

Last year a bright-eyed little radio enthusiast came up with this endorsement: "Every time I think how the radio gives us so much fun, I have joy feels all over."

A skeptical classmate of hers absorbed all the statistics regarding the number of ham radio operators in America, but got his skepticism across in one crushing statement: "The total amount of ham operators in America today is more for saying than believing."

It must run in the family. Two years later his younger sister reported: "The number of ham operators we have today is an adsurbly large fact of a number."

The subject of hams has stumped many eager young scholars. Here are three more
futile but imaginative explanations:
"Ham operators look something like people."
"They are one of the chief by-products of electricity."
"The meaning of them has a very short memory in my mind."

The elementary school youngster's mind seems to be a vast storehouse of miscellaneous misinformation half true, half false and wholly delightful. His fund of knowledge about electricity includes such fascinating items as these:
"Electricity has been with us forever and maybe even longer."
"Would the average person be able to keep up with the news if it was not for electricity? The chances are 999 out of a hundred.'
"In electricity, opposites attract and vice versa."
"If you see lightning, no you don't. You see electricity."
"From now on, I will put both gladness and wonder in my same thought about electricity."

Here's one l've been trying to figure out for five years: "You should always capitalize the word electricity unless it is not the first word in the sentence."

This next little girl seemed to be giving it all she had when she wrote: "Correct my being wrung, but tell me true or false. Do negative charges
go through electrons or through protons? I wrecked my brain trying to think which."

But I'm afraid others are more nonchalant in their pursuit of knowledge: "Protons are bigger than electrons in case I ever want to know."

Psychologists tell us that half learning a fact incorrectly is often the first step to learning it right. So let's be philosophical as we buzz through these fractured facts about electrons and protons:
"100 electrons equal 1 radio program."
"When the switch is on, electrons are constantiy bumping into each other inside the wire. There is really quite an overpopulation of electrons."
"Once I saw in an educational cartoon about how electrons move. Electrons are very interesting folks. All their ways are hurry ways."
"Electrons carry the negative charge while protons take the affirmative."
"Electrons are the same as protons only just the opposite."
"I think I admire the electron more than anything else about electricity because it weighs only about one over 2000th as much as a proton but can still hold its own."

Obviously, one of the fringe benefits of being an elementary school teacher is the possibility that the next paper I read will contain a wrong answer that is twice as witty or thought-provoking as the expected one. Sometimes they don't know and they know they don't know, but that doesn't keep their answers from being charming:
"Ideas about how radios work have advanced to the point where they are no longer understandable."
"Did I pass the test about how to get a ham radio operator's license and why not?"'
"I have found radios to be easier to listen to than to tell how they work."

Take three sinall boys, mix
them up thoroughly with several pounds of strange facts, then shake them up with an examination and you have the perfect formula for instant confusion. Here's what I mean:
"The way vacuum tubes work, as I understand it, is not very well understood."
"Many questions have been aroused in my mind about vacuum tubes. As a mattery fact, the main trouble with vacuum tubes is that they give more questions than answers."
"In electricity, positives are attracted by negatives for the reason of search me."

Judging from the size of the handwriting, this next tyke was under the influence of John Hancock when he took time out to report (with the aid of a bright purple Crayola): "When they asked my brother if he would like to watch a ham operator, he rolled his eyes and flashed his teeth and said sure."

Often a grownup can only envy the simplicity of a child's way of expression, as is the case of the lass who remarked: "When I learned we were going to see a movie about ham operators all over the world, I told my feet to quiet down but they felt too Saturday to listen."

In their world of uncertainty, once they know a fact for certain, they hang on to it tenaciously, e.g.: "Another name for the radio is radiotelephony, but I think I will just stick with the first name and learn it good."

Children, like mountain climbers, must always make sure that their grasp on a fact is firm, even though they want to leap far beyond. Otherwise, they may find themselves trapped on a mental ledge called a boner. There is usually at least an element of truth in the most absurd answer. Sometimes they aren't wrong at all. It's just the way they put it that's so funny:

[^5]figured out how to change river currents into electric currents."
"The best thing live wires are good for is running away from."
"Quite a bit of the warld's supply of electricity goes into the making of ham radios."
"Many things about electronic communication that were once thought to be science fiction now actually are."

Members of the grade school set certainly have their own opinions, and few are hesitant to express them:
"All the stuff inside a ham radio is so twisted and complicated it is really not good for anything but being the stuff inside a ham radio."
"Electronics is the study of how to get electricity without lightning."

Then I don't suppose I'il ever forget this remark by another boy: "Last month I found out how a radio works by taking it apart. I both found out and got in trouble."

And you can't argue with the young fellow who reported: "When currents at 110 to 120 volts go through, them radios start making sounds. So would anybody."

When members of the grade school set turn their attention to the subject of vacuum tubes, youngsterisms come as thick as chalk dust. Just what is a vacuum? Here are five answers, fresh from the minds of nine-year-olds:
"Vacuums are made up mostly of nothings."
"A vacuum is an empty place with nothing in it."
"Vacuums are not anythings. We only mention them to let them know we know they're there."
"There is no air in vacuums. That means there is nothing. Try to think of it. It is easier to think of anything than nothing."
"A vacuum tube contains nothing. All of its parts are outside of itself."

Another lad wrote of this frustrating experience: "l figured out how a vacuum
tube works twice but I forgot it three times."

One of his classmates reported: "When I learned how empty vacuum tubes are, I would have fainted if I knew how."

If you're at all hazy about other parts in a radio, hang on. These next thoughts will leave you only slightly worse off than before:
"An electron tube can be heated two different ways. Either Fahrenheit or Centipede."
"When you turn a radio on, the tubes get hot. The hotter anything gets, the faster the molecules in it move. Like if a person sits on something hot, his molecules tell him to get up quick."
"In finding out that radio tubes get hot, the fun is not in the fingers."
"Transistors are what cause many radios to play. Transistors are a small but important occupation."
"We now have radios that can run on either standard or daylight time."

One of my students last year had many tussles with his spelling book. When he finished writing one particular sentence, the battleground looked like this: "Termanuls do not agree with themselves spelingly and pruncingly."

With apologies to Mr . Webster, I would like to present a pocket-size dictionary of pint-size definitions, compiled from school children's reports. Should any of them prompt Webster to turn over in his grave, he would have to do so with a smile:
"Axually, a choke coil is not as dangerous as its name sounds."
"Electromagnets are what you get from mixing electricity and magnets together."
"Think of a volt. Then yippee, because now you have had the same thought as Voltaire, after who this thought was named."

Another lad had the right information, but the wrong
answer: "There are some things about electricity we are still not sure of. These things are called whats."

If the kids don't know all the answers, they can always do what their parents once did - try to slide by on a guess or two:
"A radio telescope is a thing you can hear programs by looking through it."
"Current electricity is electricity that is currently in use."

Kids are so full of questions, they can't possibly wait for someone to tell them all the answers. That's why they plunge recklessly ahead on their own, like so:
"Sound travels better in water than in air because in water the molecules are much closer apart."
"I have noticed that if a portable radio is turned in different directions, the station talks loudest behind its back."
"Although air is hollow it is not just for looking through. It is also for having radio waves rünning through it and trying to answer questions about."
"Radio waves would not be all that important to study if it were not for ears."
"Someone in here said that FM has shorter waves -than shortwave radios. Is this so? I think it is because I think I was the one that said it." (If you can't believe yourself these days, who can you believe?)

An obviously more confident young man proclaimed: "Much has been said about how radio waves travel. Radio waves are both hearable and talkable."

Another moppet was going great, until the last word: "I believe the radio is one of the most important inventions of all time. Of course my father works at a radio station, so I may be a little pregnant."

That"'s one young writer who would have done fine if she had just stopped while she was ahead (which is good advice for grownup writers, too).

Low Cost Tone Decoder

-- for repeater control

Chris Winter WBOUSZ 2040 Glass Road NE Cedar Rapids IA 52402

The usefulness of the Bell touchtone ${ }^{T M}$ system For remote control, and
especially for remote control of repeaters, is well known. The cost of touchtone
decoders is quite low now, chiefly because of the Signetics 567 tone decoder

Fig. 1. Decoder circuit.

Fig. 2. Basic clock circuit.
IC. However, you still need eight of these ICs for a full 16 button system, if you use the standard method as described in Signetics Databook. ${ }^{4}$

A scanning decoder can get by with only two tone decoder ICs. It can become so complex, though, that any cost saving is wiped out. I decided that a scanning decoder would be simple enough to be worthwhile. My version is similar to the one described in reference 3 . It uses a pair of 567s, a 555 timer, 2 CMOS quad switches, and 6 TTL ICs. All of these ICs are readily available from suppliers who advertise in 73. The total cost of the ICs should be under 10 dollars. In addition, the decoder uses a handful of resistors and capacitors.

Circuit Operation

Fig. 1 shows a schematic diagram of the decoder. The eight tones used in the Bell system are divided into two groups. The low group tones - 697, 770,852 , and 941 Hz - are referred to as L1, L2, L3, and L4. $\mathrm{H} 1, \mathrm{H}_{2}, \mathrm{H} 3$, and H 4 are the bigh group tones, respectively - 1209, 1336, 1477 , and 1633 Hz .

U1 decodes tones in the low group. Its frequency of operation is determined by C4 and one of the resistors R3-R6. The resistors are connected in succession by U2, a CMOS quad switch. The state of U6, a dual flipflop, is decoded by 47 into four control lines. One of the lines is always high, closing one of the individual switches in U2. The frequency of U3, the high group decoder, is switched the same way.

With no tone present, U8
is held reset while U6 is continuously clocked. When a pair of tones appears, as soon as UT is switched to the proper frequency, U1-8 goes low. U6 is held in its current state, and U8 is allowed to clock. Then when U3 has decoded the high tone of the pair, its output goes low. U8 stops clocking and the valid signal line goes high. This indicates that the detection process is complete.

The flip-flop outputs are combined into a four-bit binary representation of the tone code. This four-bit word also goes to a 74154, which gives a low on the selected one-of-sixteen output. When the valid signal line is low, U10 is disabled - all outputs high.

Construction

There are no special probiems in constructing the unit. Layout is not critical, and the wiring is not extremely complex, so a PC board is not essential. Follow the normal precautions in handling the CMOS $\mathrm{ICs}_{\mathrm{s}}$, and do not omit the cight pullup resistors (labeled RPU in Fig. 1). They protect the CMOS gates if the 7408s are removed for any reason. IC sockets make troubleshooting a lot easier, but are not necessary.

Some Notes on Design

The basic timer circuit (Fig. 2) is derived from reference 4 . The values of R1 and C 1 give a frequency in the neighborhood of 4 Hz . R2 is chosen for a duty cycle of 50%.

Fig. 3 shows some changes to the clock circuit, which make troubleshooting and alignment a lot less of a hassle. First, in order to set the frequency control resistors, it's best to defeat the cycling action and leave the proper CMOS switch permanently on. This is the purpose of ST. It converts the 555 from astable to monostable operation. Then, each time S 2 is pressed, the 555

Fig. 3. Modified clock circuit.
produces a single pulse, and the state of the flip-flop advances by 1. To complete this revision, add a switch to ground pin 8 of U1. Some LED indicators driven from the four output lines are also handy. S3 simply lets the timer run fast enough so that the waveforms are easily viewed on a scope.

If, unlike me, you don't like to add a lot of extra hardware just to ease setup, you can get the same results with a couple of jumpers. The method is explained in the section on alignment.

The eight pullup resistors can be any convenient value between 10 kilohms and 1 megohm.

I used multi-turn pots to set the frequencies of U1 and U3. Assuming C4 and C7 are exactly 0.22 and 0.1 uF , you can calculate the resistance values from an equation in reference 4. These values are shown in Table 1. I used 5 kilohm pots in series with fixed 10% resistors. If you choose to set the frequencies with combinations of fixed resistors (more work but less strain on the budget), Table 1 gives you starting points. Note that the values given don't take into account the series resistance of the CMOS switches. There are two types of switches you can use: The CD4016 costs less, but I recommend the CD4066 because of its lower "on" resistance. You might also want to use more accurate capacitors for C4 and C7.

In a standard decoder as shown in reference 4 , the ICs will lock up very quickly. Lockup times less than 0.1
second are easily achieved. With a scamning decoder, however, you cannot count on decoding a pair of tones in less than 8 clock periods. It takes this long for both counters to cycle through their four possible states. Each clock period must be long enough for the vco to settle down, then lock onto the tone. Because of this, there is litile need to optimize the lockup time, and the design is simpler. You only need to be sure that the detection bands for the various tones do not overlap. Bandwidth is reduced by increasing the watues of C 2 and C5, and C3 and C6. I found that the values shown in Fig. 1 gave a narrow enough bandwidth. You may find that the high group bands overlap, especially H3 and H 4 . If so, change resistor values to move the bands apart. A high input level will increase bandwidth. Keep it as low as possible.

Alignment

A good audio generator one with an output level control and an accurate frequency dial - is needed to align the decoder. You'll find that a scope and a frequency counter will be very useful.

I'm going to assume that you've built the circuit on "anyboard" without using IC sockets or any of the frills described in the section on design notes. I'll also assume that you used fixed resistors for R3-R10. If you use pots, the procedure is almost the same.

After checking for wiring errors, apply power and

Fig. 4. Block diagram of input conditioning scheme.
measure the current. The decoder should draw about 250 mA . Be sure that U11 is producing a square wave at about 4 Hz . Then check that U6 is clocking normaliy and that pins $13,5,6$, and 12 of U2 go high in succession. Now connect a jumper to U:-8, and touch the other end to ground. This will stop U6, leaving one switch of U2 closed. The trick is to get U2-13 high, closing the switch for the L 1 resistor. This will take a few tries.

Once you have U2-13 high, leave U1-8 grounded and connect a decade box from UT-5 to U2-1. Set it to the value given in Table 1 for the L1 resistor. Connect an audio generator to the tone input. Set the frequency to 700 Hz and the level to 0.2 V rms. Remove the jumper. U1-8 should remain low. If it does not, adjust the decade box as necessary until it goes
low. Remember to wait 1 second (four clock periods) between resistance changes. To fine tune the value, approach it from above and below and note the values where U1-8 just goes low. Set the decade box halfway between them. Now lower the audio level to about 50 mV rms. It's best to use the lowest level that will activate the decoder. Repeat the fine tuning process. This gives you the final value for R3. Select R4, R5, and R6 the same way, connecting the decade box in series with the proper switch each time. Now ground U1-8 permanently with the jumper. U4 should start switching. Use another jumper from U3-8 to ground to set the proper switch of U4 on, and select R7-R10. Wire the resistors into the circuit and remove the jumpers.

Check decader operation
by setting the generator to various low group frequencies. The circuit should hold in the proper state each time. Ground U1-8 and check the high group decoder.

If you have access to a frequency counter with a high input impedance, you can use an alternate method to set up the decoder. Connect the counter to pin 6 of U1 or U3. Select resistors so that the vco runs at the tone frequency in each case. This method saves some time and makes it easier to set single-turn pots.

This completes the alignment. Use a touchtone pad to check that the binary and one-of-sixteen outputs are corrrect as shown in Table 2. The decoder is now ready for operation. There are some pitfalls to avoid in making it work in your system, however.

Interfacing the Decoder

The ideal input signal is a pair of sine waves. Most touchtone pads use digital techniques to generate the tones and do not produce sine waves. With these signals, the decoder needs a higher level than it would with sinewaves and does not respond
Tone frequency
697 Hz
770 Hz
852 Hz
941 Hz
1209 Hz
1336 Hz
1477 Hz
1633 Hz
Capacitance (chosen)
0.22 uF
0.22 uF
0.22 uF
0.22 uF
0.1 uF
0.1 uF
0.1 uF
0.1 uF

Resistance (calculated)
7.174 k Ohms
6.494k Ohms
5.869 k Ohms
5.313 k Ohrns 9.098 k Ohms 8.234 k Ohms 7.448k Ohms
6.736 k Ohms

Table 1. Calculated values for resistors R3 to R10.

Touchtone Key	Tones Used	BCD Codes	Decoder Outputs Binary Hexadecimal	
1	L1. H1	0001	0000	0
2	L.1. H2	0010	0001	1
3	L1, H3	0011	0010	2
4	L2, H1	0100	0100	4
5	L2. H2	0101	0101	5
6	L2. H3	0110	0110	6
7	L3, H1	0111	1000	8
8	13, H2	1000	1001	9
9	L3, H3	1001	1010	A
0	L4, H2	0000	1101	D
*	L4, H1	none	1100	C
\#	L4, H3	none	1110	E
A	L1, H4	nome	0011	3
B	L.2, H4	none	0111	7
C	1.3, H4	none	1011	B
D	L4, H4	none	1111	F

Table 2. Comparison of BCD code and decoder output code.

Foronge invoirine.odive.

A sleek graceful sailing vessel glides across the sometimes green, sometimes blue Caribbean. The cargo: you. And an intimate group of lively, fun-loving shipmates.

Uniform of the day: Shorts and tee shirts. Or your bikini
if you want. And bare feet.
Mission: A leisurely cruise to remote islands with names like Martinique, Grenada, Antigua-those are the ones you've heard of. Before the cruise ends, you'll

know the names of many more. You'll know intimitely the enchanting different mood of each ...and its own beauty and charm.

Life aboard your big sailing yacht is informal Relaxed. Romantic.

There's good food. And 'grog'. And a few pleasant comforts... but any resemblance to a plush pretentious resort hotel is accidental.

Spend 6 days exploring paradise. Spend six nights watching the moon rise and getting to know interesting people. It could be the most meaningful experience of your lifeand it's easily the best vacation you've had.

A cruise is forming now. Your share from \$290. Write Cap'n Mike for your free adventure booklet in full color.

Come on and live.

Fundamentally, basically, and first of ali, I'm cheap. If there is a cheaper or

Hufco

Counter Kit

- report from a happy user

less expensive way of doing something, l'll try it. Perhaps that's why the Hufco "Easy $\$ 25$ Counter Kit"' caught my eye (my eyes are located in my wallet).

After painfully shelling out the coin and placing my order in the mail, I settled down for a long wait. Wonder of all wonders, within a week 1 received an acknowledgment of my order and a note that it would be six weeks for delivery (who ever acknowledges orders nowadays?). Included with the note was a list of the parts required for the kit so I could start "acquiring" the parts.

Perhaps this is the time to explain that this is a rather unique "kit" in that it does not include any parts . . . just the PC boards, a precut cabinet for the counter, and an instruction manual.

Through the abundance of an overstuffed junk box and the cultivation of friends, most of the parts were gradually collected. One traumatic experience was having to order the XAN362 readouts. The only readouts suitable were installed in a friend's clock, and he adamantly refused to part with them (cheap!).

After six weeks of waiting, the counter didn't come, but 1 did receive a nice letter explaining about the delay UPS strikes, delayed shipments from suppliers, etc. I also received a complimentary_copy of their new publication Channel 51. This rather well done magazine is obviously aimed at CBers who wish to convert to ham radio. This gesture made the following weeks of waiting more palatable, just knowing that someone somewhere knew that I had an order coming.

Sure enough, one day a package arrived, and I was able to inspect my new TWS-006 counter kit. The cabinet was extremely well built with a nice silk screened front panel reminiscent in color of the old Heathkit
brown and beige.
The PC boards were the biggest surprise. I had expected rather rough boards at that price. Not 50.

These were double-sided boards with plated-through holes. Clear sharp traces gave plenty of room for even the klutziest soldering iron mechanic. The component placement is clearly screened on the boards, and the one small mistake (a reversed index mark for one of the 7447 s) is clearly called to your attention in the manual.

While the manual itself is not quite what I'd call Heathkit quality, it is adequate to insure correct assembly. It not only gives a step-by-step procedure for assembly and interconnections, it also gives a good presentation of the theory of operation and a method of troubleshooting in case of any malfunction. Various options are discussed, including adding a prescaler for VHF or UHF operation. I ended up purchasing their prescaler board ($\$ 4.00$) for
future addition.
The only drawbacks I ran into during construction are quite minor. The resistors used for the layout must have been $1 / 8$ Watt units since my 1/4 Watt resistors were somewhat oversized. This resulted in a less than picture perfect board when finished, with leads wrapped back under components. Also, I'd like to know where they found $3 / 8^{\prime \prime}$ diameter 1000 uF capacitors on their silk screen layout. Mine are larger, but by extending leads, I was able to fit them in. These are all cosmetic complaints and don't affect the assembly of the unit.

The actual smoke testing of the unit was very disappointing ... it worked. I couldn't believe it . . . I just plugged it in, and it worked ... very anticlimactic. Other than adjusting the trimmer for exact frequency, there were no other adjustments or tuning required. Unless you've built a lot of kits before, you can't realize just
how frustrating this can be. Half of the fun of kits is in troubleshooting the darn things after you've built them. I remember one clock kit that was over six months of fun . . . but that's another story.

The unit isn't the most sensitive I've ever seen, but it's not that bad either. I was able to trip it at less than full output from my Measurements Model 80 signal generator all the way up to 57 MHz . By picking and selecting 74L590 ICs for the first three decades, I was able to bring the sensitivity down somewhat, but even as-is it is quite usable. I was able to read my 25 Watt CW transmitter on 21 MHz from across the room with just a clip lead as a probe.

Accuracy seems to be as good as six digits will allow. It counts the crystal output from my BC-221 as 2.00001 with the last digit varying from 1 to 2 to 0 on alternate counts. Warmup does not seem to affect it at all.

Options that I plan to add to my counter are nicads for portable operation and the prescaler as soon as 1 can scrounge up a 95 H 90 chip for it. The company also offers an optional input which features the ability to "withstand the full unloaded output from a transceiver on 28 MHz for 20 minutes." Since 1 already have a dummy load, and rarely load my transmitter into my counter, I don't plan on adding this option. Oh yes, it also increases the sensitivity to some extent or something like that.

In conclusion, 1 would recommend this counter to anyone who has a need for a cheap counter, or to anyone who is cheap and needs a counter. Seriously, it performs as well or better than commercial counters costing several times as much. If you have a well stocked junk box (or a friend who has one), you can bring the cost of this counter kit to well under $\$ 40$ and still have the convenience of a well designed kit.
of Tufts Electronics, will conduct a workshop on things store managers should know, such as how to sell ham equipment, how to develop a comprehensive line of equipment to sell, and how to drum up a lot of local business using catalogs, newspaper advertising. radio, and television.

There will also be a workshop on how to write ads, catalogs, and other sales literature. This witl also include a comprehensive workshop on media selection and planning: how to plan your advertising budget, how to select an ad agency, and how to save substantially on your advertising. This workshop could well pay for the entire conference.

Each of the workshops will probably take two evenings due to the comprehensiveness of the material. Even the old-timers will find a lot of value in these workshops.

There will be a forum devoted to crystal ball-gazing - second-guessing the future so you can take maximum advantage of what is going to happen next year.

The conference will be convening at the Continental in Aspen - it's a little tacky. but it does have a nice heated pool and a sauna, and it is right in the heart of town. Accommodations go early, so if you want to take advantage of this third annual ham industry workshop, better make vour reservations with the hotel. There may even be snow this year.

SOME OPENINGS
 AT 73

It should be no news that 73 is growing - and so is Kilobaud. This means that we need more people to work on the magazines and the other plans afoot. We do have a need for some hams with experience in writing and construction to help test new equipment and write it up . . . to work on books . . . help with articles . . . etc. This is something that really has to be done right here in New Hampshire, which is one of the nicest places in the country to live.

We also need help in working on microcomputers . . . testing programs and selling them . . . checking out the newest equipment . . . things like that. A ham with a lot of experience in FORTRAN IV would find some interesting work. We also need help in support jobs such as management, marketing, sales, etc.

We're looking for people with intelligence, with some background, who don't smoke, and who are willing to go all out to become tops in their jobs. The pay is reasonable, and can be most rewarding if an outstanding job is done. Working for a small firm such as this gives you an excellent opportunity to grow and learn ... something you just can't get in a larger business.
All you have to do is look at some of the 73 graduates ... one is editor of a well-known magazine . . . another

Continued on page 185

A Single Tone

Can Dolt

- - simple tone control system

In the process of putting together a repeater of my own, I found that I wanted to perform a simple ON/OFF auxiliary function via the

repeater input. In my case, it happened to be turning an aural frequency indicator on or off, but the function could be almost anything. From previous experience with such a used control in another location, I decided on the use of two single tones - one to turn the function on and one to turn it back off. Armed with this idea, I dug into my data books, experimented a little, and arrived at the circuit described in this article.

Circuit Operation

The basic 567 decoder circuit is shown in Fig. 1(a). By feeding the output back to the last stage at pin 1 (output

Fig. 1. (a) Basic 567 decoder circuit. Resistor RT and capacitor C3 set the basic operating frequency or detection frequency. C1 and C2 are loop filters and their values affect response time and detection bandwidth. (b) Latching circuit, feeding the output (pin 8) back to the input of the final stage (pin 1). The latch can be released by pulling pin 1 to Vcc momentarily.
signal. The output of this decoder turns on the PNP transistor just mentioned, thus unlatching the circuit.

The complete circuit is shown in Fig. 2. With the values shown, the decoders should tune over most of the normal single tone range. Depending on the length of tone burst available, the values of $C 3,4,6$, and 7 might have to be adjusted slightly if the decoder does not respond fast enough.

Adjustment

When wiring is complete and checked, then power can be applied and the circuit checked out. A frequency counter or accurately calibrated scope is necessary to adjust the center frequency of the 567 decoders. Attach the counter or scope to pin 5 of U1 and then adjust R1 for the desired "ON" frequency. In my case, 1 used 1800 Hz . Now put the counter (scope) on pin 5 of U2 and adjust R4 for the desired "OFF" tone. Again, in my case, I used 1950 Hz .

Now connect whatever load you intend to use to pin 8. I have shown a relay since that is the most common usage. Connect an audio generator to the input and apply about 100 mV of 1800 Hz audio. The relay (load) should activate and should remain activated when the tone is removed. Now set the audio generator to the
filter), the output can be latched on. The circuit can then be unlatched simply by pulling pin 1 high momentarily. A general purpose PNP transistor can be hooked upto do that task.

1 then added another 567 decoder to get the unlatch

Fig. 2. Complete schematic of the two tone latching decoder.

A

"OFF" frequency (1950) and apply that to the input. If all goes well, the load should de-activate.

Operation

I have my decoder operating from a 12 volt line and I am using a 24 volt relay as the load. The repeater receiver audio is fed to the audio input and I use the relay contacts to turn my tone frequency indicator on/off. The only thing you
have to watch pretty closely is the input level to the 5675 . The best operating point is about 150 mV . More will cause falsing and less won't operate too reliably.

Conclusion

A layout for a printed circuit board and the parts arrangement are shown in Fig. 3. The board is available from CONTACT, 35 W . Faitmont Dr., Tempe AZ 85281, for $\$ 5.00 \mathrm{ppd}$.

Fig. 3. (a) Parts layout for the prototype printed circuit board. This is the parts side of the board; the copper is on the other side. (b) Full size PC pattern for the prototype circuit board. Production boards, available from CONTACT, inc., 35 W . Fairmont Dr., Tempe AZ 85281, will probably be slightly larger to make parts placement easier.

With cross-banding now approved, 1 may put one of these circuits on one of our local repeaters to provide a user accessible cross-link between 450 and 2 meters. Good luck and write if you have questions, but with today's postal rates, please enclose an SASE if you want a reply.

Parts List
C1 -0.5 uF
C2, C5-0.33 uF
C3, C6-10 uF/15 V
C4, C7-22 uF/15V
D1, D2 - 1 N4001
R1, R4 - 15 k PC trimmer
R2-20k $\%$ W, 10%
R3 - 10 k \% W, W, 10%
Q1-2N3905/3906/
MPS6521/2N2222, etc.
U1, U2-567 decoder
RY1 - Relay to suit Vcc used

EDITORIAL BY WAYNE GREEN

from page 183

is the ad manager of a new magazine and is reportedly pulling down over $\$ 100,000$ a vear ... another has his own magazine now, which is worth over $\$ 1$ million . . . etc. The line forms to the left.

NEW IDEAS NEEDED

Despite the sudden growth of amateur radio as a result of the club programs to get in new licensees, attendance at hamfests seems to have been dropping off. How come, with more hams than ever before, we have fewer going to hamfests?

There are probably several reasons such as the high cost of getting into hamfests ... a lack of any real promotion of many of the events, with more dependence on prizes than anything else to draw attendance. The recent ARRL event at Hartiord, home base for the League, is a case in point. The show was well-organized, and promoted in QST . . yet the turnout was disappointing. The $\$ 6.50$ entrance fee was cited by many as prohibitive for the youngsters . . . and, indeed,
there were very few kids running around the show. Most of the fellows I saw were chaps I have known for thirty or forty years.

You really can't expect to get $\$ 6.50$ from kids to see a dozen or so exhibits (mostly by dealers trying hard to seil gear) plus a talk by Dannals. Oh, add $\$ 20$ if you want to take in the dinner.

We need ideas. If you have some ideas that have worked with a hamfest in your area, why not put them down on paper and send them along so the rest of us can benefit? We'll try to get all the good schemes published in 73.

CB TO TEN

Owners of Standard Horizon 29 CB rigs can rejoice, for Standard has a dandy ten meter conversion for the set. If you have the 23 -channel set, as I have, you can get a 40 -channel switch from your local Standard dealer and get 40 channels on ten meters.
Standard has a conversion sheet available, "Procedure for 10 Meter Conversion of Horizon 29." This gives the details of where to cut the foil on
the board and what parts to add and change. The changes are minimal.

The result is a rig which works on ten meters, starting at 28,965 and going up in the same increments as the CB channel spacing to $29,405 \mathrm{MHz}$. That's just two MHz above the 11 meter channel frequencies ... and that change makes a lot of sense. If you start much lower, you run into the higher powered sideband stations in the lower 350 kHz of the phone band.

Give a call on 28,965 on Sundays at 1000 PDT and you'll probably get an answer from the bunch out in L.A. on the channel . . . if the band is open.

MORE ARTICLES

Perhaps you'd like to see more microcomputer articles in $73 \ldots$ well, write 'em, In Kilobaud, 1 am exploring the advantages of getting into this new field and how to do it in my editorials
. but you can't do much in microcomputing if you don't know anything about microcomputers. Let's see a lot more articles on microcomputing for $73 \ldots$ and it doesn't hurt to bring ham applications into the act.

MARY PLEADS WITH YOU!

A few readers, despite every effort to make reader service simple, have been screwing things up. The worst complaint from Mary, the lovely gal who handles our reader service, is that there are dozens of readers who are not sending in their cards. Yes, I know
this is difficult to believe, since you all know how much store advertisers put, in getting requests for literature. They put even more store in your buying, of course, so don't let reading literature stop you from buying.

The other gripe is that a few readers are making a mess of the card with crosses and blotches. Mary says to circle the number, not obliterate it . . . puleeze! Mary also requests that you sign your name and address clearly... and if you're not sure, please ask someone.

THAT AUGUST OST!

If you are in the Maryland, D.C., Northern Virginia, Western Pennsylvania, or Western New York areas, be sure you don't miss getting your August subscription copy of QST. That's your August subscription copy, not one from a store . . . don't miss it.

> What do you give the man who has everything?

See page 223

-- following weather satellites

Interest in the geosynchronous weather satellites is increasing rapidly. Many fine articles have appeared on the construction of receivers, converters and displays. Plotting charts are available for the low orbit satellites. But very little information is available on locating the geosynchronous satellites. This article presents a method of calculating the azimuth and elevation angles needed to point your antenna and, also, an alternate graphical technique.

To aim your antenna, you need the following information:

1. Your latitude and longitude.
2. The longitude of the satellite subpoint.
The result of the computations will be the desired eleva-
tion and azimuth. Elevation is the number of degrees the antenna must be tilted above the horizon. Azimuth is the bearing angle the antenna should be turned from true north.

Let us first calculate the azimuth angle. To do this, construct a great circle route which passes through your location and the satellite subpoint. The latitude of all geosynchronous satellites is zero degrees. This great circle is used to determine, first, the distance from the satellite subpoint to your location and, then, the desired azimuth angle. Fig. 1 shows the navigation triangle from which the distance to the subpoint, D, and the azimuth angle, A, is determined. From Bowditch ${ }^{1}$ we find that: Hav D =

Fig. 7. Navigation triangle formed by your location, the North Pole, and the satellite subpoint.
plified for geosynchronous satellites to:
$\cos (A)=1 \cdot \frac{\sin (L 1+D)}{\cos (L)] \sin (D))}$
If the subpoint longitude is less than your longitude, the azimuth angle is A. If the subpoint longitude is greater than your longitude, subtract A from 360° to obtain the azimuth angle.

If you are still with me, the elevation angle is calculated next. A drawing of the great circle path is laid out in Fig. 2. The desired elevation angle is labeled B. Here we have a triangle with two known sides, and the angle between them is known. One side is equal to the Earth's radius, 3,440 miles. The other side is equal to the sum of the Earth's radius and the satellite's altitude, 22,300 miles. Using the law of cosines:
$\mathrm{B}=90^{\circ} \cdot \mathrm{D}$
$\arctan \left(\frac{3440 \sin (\mathrm{D})}{25740 \cdot 3440 \cos (\mathrm{D})}\right)$
Let's examine some hypothetical cases of a station at $37^{\circ} \mathrm{N}$. latitude and $76^{\circ} \mathrm{W}$. longitude, desining to receive ATS-1 at $149^{\circ} \mathrm{W}$. longitude and ATS-3 at $70^{\circ} \mathrm{W}$. longitude.
ATS-1:
$\cos (\mathrm{D})=$
$\cos \left(37^{\circ}\right) \cos \left(-73^{\circ}\right)=$
$.798 \times .292=$
. 233
D $=76.5^{\circ}$
$\cos (\mathrm{A})=1 \cdot \frac{\sin \left(113.5^{\circ}\right)}{\cos \left(37^{\circ}\right) \sin (\mathrm{D})}=$
$1-\frac{.917}{.798 \times .972}=.182$
$A=100.5^{\circ}$
Bet ATS-1's longitude is larger than the station's longitude, so:

$\cos (\mathrm{D})=\cos ($ L1 $) \cos ($ LO1 - LO2 $)$
From this, it is easy to find D. D is expressed in degrees. Having found D we can now determine A, the azimuth angle, by: $\operatorname{Hav} \mathrm{A}=$ $\sec (\mathrm{L} 1) \quad \csc (\mathrm{D}) \quad \mid \operatorname{Hav}\left(90^{\circ}\right.$ -L2) - $\left.\operatorname{Hav}\left(I D-90^{\circ}+\mathrm{L} 1\right)\right]$

This equation can be sim-

Hav(LO1-LO2) $\cos (\mathrm{L} 1) \cos (\mathrm{L} 2)$;
Hav((L1-L2)]
Where:
Hav D is $1 / 2[1-\cos (\mathrm{D})]$; L. 1 is your latitude;

L2 is the subpoint latitude (zero);
LO1 is your longitude, degrees west; and
LO2 is the subpoint longitude, degrees west.

This equation was developed for navigation using Napier's Laws for spherical triangles and, hence, is strange in appearance. However, making the necessary substitutions we find:

Fig. 2. Geometry used for calculating the elevation angle.

Fig. 3. Simplified d'Ocagne chart. All scales are expressed in degrees. $L_{S}=$ satellite subpoint longitude; $L_{y}=$ your longitude; $A=$ azimuth angle; $Z=$ zenith angle; $L=y$ your latitude; and H $=90^{\circ}-Z$.
$\arctan \left(\frac{3440 \times .972}{25740-3440 \times .233}\right)=$
$90^{\circ}-76.5^{\circ}-7.6^{\circ}$
Elevation angle $=5.9^{\circ}$
ATS-3:
$\cos (\mathrm{D})=$
$\cos \left(37^{\circ}\right) \cos \left(6^{\circ}\right)=$
$.798 \times .994=$
.793

$\mathrm{D}=37.5^{\circ}$

$\cos (A)=$
$1-\frac{\sin \left(74.5^{\circ}\right)}{\cos \left(37^{\circ}\right) \sin \left(37.5^{\circ}\right)}=$
$1-\frac{.963}{.798 \times .609}=-.982$
Azimuth angle $=168^{\circ}$
$8=90^{\circ}-37.5^{\circ}$.
$\arctan \left(\frac{3440 \sin \left(37.5^{\circ}\right)}{25740-3440 \cos \left(37.5^{\circ}\right)}\right)$ $B=90^{\circ}-37.5^{\circ}$
$\arctan \left(\frac{3440 \times .609}{25740-3440 \times .793}\right)=$ $90^{\circ}-37.5^{\circ}-5.2^{\circ}$
Elevation angle $=47.3^{\circ}$
While the mathematical approach is precise and accurate, a much simpler graphical technique can be used with little loss in accuracy. Fig. 3 is a simplified d'Ocagne diagram from Bowditch, which can be used to solve spherical triangle problems by drawing straight lines and doing simple subtraction and addition. Each axis has been divided according to the haversine of the angles. The scales in Fig. 3 are simplified to reduce confusion. The graph applies only to stations in the Northern Hemisphere.

The use of the graph is best explained with examples. Taking the same examples as before, ATS-1 and ATS-3, let us proceed.

Step 1: Mark your latitude on both the left and right vertical scales. Connect the two marks with a straight line.

Step 2: Subtract your longitude from the satellite subpoint longitude, $L_{s}-L_{y}$. If the result is positive, proceed to step 3. If the resuit is negative, add 360° to the result to get a positive angle between 0° and 360°. If LL_{s} $\mathrm{L}_{y} l$ is greater than 90°, the satellite is below your horizon and cannot be received.

Step 3: Take the result of step 2 and make a mark on the top axis. Drop a vertical line from this point to the line drawn in step 1. From where the two lines cross, draw a horizontal line to the left scale and note the reading, Z. This value of Z can be converted to the elevation angle B by Table 1. If Z is greater than 80°, the satellite is below your horizon and cannot be received.

Step 4: Subtract the value Z from 90°. The result is labeled H for convenience.

Step 5: Subtract H from your latitude. Ignore the sign of the result. Mark the result
on the left vertical scale. Similarly, add H to your latitude, and mark the right scale accordingly. Connect the two marks with a straight line.

Step 6: Where the line from step 5 crosses the 90° horizontal line, extend a line vertically to the top scale. If the satellite subpoint longitude is greater than your longitude, use the upper scale. If not, read the lower scale. The reading is the desired azimuth angle. The elevation angle was obtained from Table 1 in step 3.

The worksheets for ATS-1 and ATS-3 (see Figs. 4 and 5) demonstrate that the errors are typically less than one degree. I find this graphical method to be much faster and easier on the brain than the exact mathematical method, and the errors are much less than the beamwidth of practical antennas.

Aligning the actual antenna mount, in order to use this data, can be difficult. There are two methods I find useful to calibrate the azimuth scale. The elevation scale is easily aligned using a spirit level.

The first, and simplest, method is to use the North ${ }^{\text {a }}$ Star, Polaris. Rigging a sight: on the mount and bore sighting the mount with Polaris at night will bring the mount to an azimuth angle of $0^{\circ} \pm 12^{\circ}$. However, every time I have attempted to use this method I have found a tree, house, or even a mountain between me and Polaris.

The alternate technique requires a copy of the Nautical Almanac and the ability to see the noon position of the sun. A Nautical Almanac can be purchased at most marine outlets, or a copy is usually available at a local library. When you open the almanac, it appears to be a vast array of tables. Each page pair covers three days. The column we are interested in is labeled "Sun." Under this heading are two subheadings, "Dec." and "GHA". "Dec." is an abbreviation for declination, which

Table 1. Antenna elevation angles for Z values from 0° to 80°.
is not of importance for our work. GHA is an abbreviation for Greenwich Hour Angle. GHA is the longitude of the solar subpoint. "Dec." is the latitude of the solar subpoint.

Assuming you are in the continental United States, when the sun's GHA is equal to your latitude, the sun is directly south, or at your 180° azimuth position. To the right of the GHA column is a GMT column. To use the almanac, look down the GHA column for the date of interest until you find a GHA near or equal to your longitude. If the GHA matches your longitude, the corresponding GMT is the time when the sun is directly south of your location. If not, you must interpolate. Note that a difference of one hour in GMT corresponds to a change

Fig. 4. ATS-1 worksheet. QTH is 37° N., $76^{\circ} \mathrm{W}$. Satellite is 0° N., 149° W. $L=37^{\circ} ; L_{S}-L_{y}=149^{\circ}-76^{\circ}=73^{\circ} ; Z \approx 76.5^{\circ} ; H$ $=90^{\circ} \cdot Z=13.5^{\circ} ;|L-H|=24^{\circ} ; L+H=57^{\circ} ; A \approx 259^{\circ}$ (259.5° calculated); B (from table) $=5.9^{\circ}\left(5.9^{\circ}\right.$ calculated) .
of 15° in GHA. Taking the largest GHA less than your longitude, nate the GMT. Subtract the GHA from your longitude. Divide this difference by 15°, and multiply the result by 60 minutes (time, not angle). This product is
the number of minutes which must be added to the noted GMT to obtain the exact time when the sun will be due south. Fasten a stick on your antenna mount parallel to the antenna axis. When the calculated time arrives, point the

Fig. 5. ATS-3 worksheet. QTH is $37^{\circ} \mathrm{N}$., $76^{\circ} \mathrm{W}$. Satellite is 0° N., $70^{\circ} \mathrm{W} . L=37^{\circ} ; L_{S}-L_{y}=70^{\circ}-76^{\circ}=-6^{\circ}=354^{\circ} ; Z \approx$ $37.5^{\circ} ; H=90^{\circ}-Z=52.5^{\circ} ; L-H \mid=15.5^{\circ} ; L+H=89.5^{\circ} ; A \approx$ 167° (168° calculated); B (from table) $=47.5^{\circ}\left(47.4^{\circ}\right.$ calculated).
stick at the sun by watching the stick's shadow (never look directly at the sun). Your azimuth scale can now be set to 180°. By the way, an error of one minute in time is an error of only $1 / 4^{\circ}$ in

azimuth.

Reference

${ }^{1}$ Bowditch, Nathaniel, American Practical Navigator, H.O. Publication Number 9, US Government Printing Office, Washington, 1966.
 Service Card in the back of this magazine, or send your order indicating size (S, M, L, XL) \& quantity and complete credit card information to:

Social Events

CLEARWATER BEACH FL NOV 19-20

The Florida Gulf Coast Amateur Radio Council is holding its 2nd arinual convention on November 19 and 20, 1977 at the Sheraton Sand Key Hotel on Clearwater Beach FL. Official attendence at our last affair was placed in excess of 2200 , and this year we expect to double that number as we increase the number of activities and size of the convention. For more information contact: Florida Gulf Coast Amateur Radio Council Inc. PO Box 157. Clearwater FL 33517.

MASSILLON OH

 NOV 20The Massillon ARC 16th Annual Hamfest and Auction will be held Sunday, November 20, 1977, at a new location: Towne Plaza Shopping Center in downtown Massillon, Ohio. Unlimited parking. Major prizes given away. Starts 9 am - admission $\$ 1.50$ at door. Mobile check-in 146.52 simplex. For brochure and map write to MARC, PO Box 73, Massillon OH 44646.

ELLICOTT CITY MD
 NOV 27

The Columbia Amateur Radio Association (CARA) will hold its

CARA Hamfest on November 27, 1977, at the Ellicott City Armory in Ellicott City, Marylatid. Program includes exhibits, flea market, prizes, and refreshments. All indoors. No tailgating. Talk-in on 147.99/39, $146.16 / 76,146.52 / 52$. For more info contact CARA, PO Box 850, Colum bia MD 21044

- OAK PARK MI NOV 27

The Oak Park High School Electronics Club is presenting a Swap and Shop on Thanksgiving Sunday, November 27, 1977, at Oak Park High Schooi, Oak Park, Michigan 48237. Refreshments and door prizes. Donation, \$1.00. Table, \$1,00.

FORT WAYNE IN JAN 22

The annual Fort Wayne Winter Hamfest will be held on January 22 at Shiloh Hall, north of Fort Wayne, from 8 am until 4 pm local time. Early parking is available and $28 / 88$ and $52 / 52$ will be monitored. This yearly event is sponsored by the Allen County Amateur Radio Technical Society (AC/ARTS). Admission is $\$ 2.00$ at the door. Table space is available at $\$ 1.50$ per hall table (about 4 feet).

New Products

from page 168

the vehicle dash panel with the microwave horn "peeping" through the windshield. The power plug simply plugs into the cigarette lighter. It is designed to operate from the 12 volt, battery with either positive or negative ground with low power consumption. The electronics is housed in a handsome $5-1 / 4^{\prime \prime} \times 4^{\prime \prime} \times 3-1 / 8^{\prime \prime}$ high steel cabinet with a black textured finish.

The operator controls are intentionally limited to a single threeposition switch with the following functions: 1) system test; 2) radar detection, vistal indication only; 3) radar detection, simultaneous audio and visual atarm. The Bird Dog has thus been designed to eliminate the troublesome, and usually unsatisfactory, gain adjustment control knob found on competitive units. The elimination of this gain adjustment also enhances the unit for out-of-sight mounting if the user so desires, such as under the hood with the microwave hom "peeping" through the grille opening.

The unit features a high gain, diecast, aluminum microwave horn and rf cavity tuned to 10.525 GHz . A pair of microwave diodes are located in the cavity, one for modulation of the continuous rf carrier and the ather for detection of the low-level radar signal.

The detector diode drives a low noise, low level, metal package, linear integrated circuit amplifier. The low noise and metal package along with other appropriate filtering and shielding virtually eliminate false triggering from spurious sources. The output circuit consists of a phase locked loop integrated circuit package whose bandwidth is controlled to $\pm 5 \%$ of the local oscillator to virtually eliminate any unwanted frequencies beyond the range of the phase locked loop's local oscillator. The output driver drives both an audible buzzer and a red jeweled indicator light.

The kit assembly is simple and no special training is required. The kit can be completely assembled in one
evening.
The Bird Dog kit, including a set of detailed plans for construction, sells for $\$ 49.95$, or, if you prefer, $\$ 74.95$ for a preassembled and fully tested unit, plus $\$ 2.00$ for postage and handiling. A set of detailed construction plans can be purchased separately for $\$ 5.95$ and is discounted from your purchase price when you purchase a Bird Dog kit.

The Bird Dog is available through Micro Electronics, 1921 1-85 South, Charlotte NC 28208, telephone (704) 392-1705.

NEW AND IMPROVED

ELECTRONIC KEYER FROM

HAM RADIO CENTER

Years of experience in the manufacturing of amateur radio equipment (the famous Ham Keys) are what is behind Ham Radio Center's new and improved electronic keyer . . . Model HK-5A.

Outside ${ }_{r}$ it features a trimmer cabinet color-keyed to match most modern amateur radio equipment, with all front-mounted controls (speed, weight, tone, and volume) and jacks for external paddle and/or keyer, plus external power. Inside, this battery-operated unit has an iambic circuit for squeeze keying, self-completing dots and dashes, a dot memory, built-in tone monitor and grid block, and direct keying, Batteries not included. Also, it can be used as a code practice oscillator with a straight key.

For more information about Model HK-5A, write Ham Radio Center, Inc., 8340.42 Olive Boulevard, P.O. Box 28271, St. Louis MO 63132, or call (toll free) 1-800-325-3636.

CW SPEAKER SYSTEM USES ACOUSTIC FILTER
Skytec of Ukiah, California, is offering a loudspeaker unit designed expressly for CW. Employing a unique acoustic chamber resonator, the Skytec CW-1 combines good "single frequency" selectivity with a nice

The Bird Dog.

The Skytech CW-1.
tone shaping characteristic.
By filtering right at the audio output to the room, the unit suppresses hum, hiss, ringing, and miscellaneous noises left in the audio by most receivers. The $\mathrm{CW}-1$ adds a remarkable degree of selectivity to receivers without a sharp electronic filter, and it gives the best of receivers the most pleasant, "just right" tone
output and bandpass for long QSOs,
net operating, and band scanning, Skytec says.

Priced at $\$ 19.95$, the $31 / 2^{\prime \prime}$ by $612^{\prime \prime}$, 2 -pound unit is shipped with a connecting cable. A front switch provides for bypassing the audio to the regular station speaker for other than CW reception. Skytec, Box 53.5, Talmage CA 95487.

80BOA
SUPPORT DEVICE

8212
8214
8216
8224
8228
8238
8251
8253
8255
8257
8259
6800 SUPPORT

6810 P	6.00
6820 P	8.00
6828 P	
6834 P	21.95
6850 P	12.00
6852 P	17.00
6860 P	15.00
6862 P	18.00
6880 P	2.70
780	

280

SUPPORT DEVICES

3881	15.95
3882	15.95
F-8 SUPPORT DEVICES	
3851	14.95
3852	14.95

FLOPPY

DISC CONTROLLER

PD372D	65.00
1771	69.95

9.25 9.25 8.20
12.00 28.00
12.00 22.00 22.00 6.00
8.00
9.60
21.95
12.00
17.00
15.00
18.00
2.70 70

DYNAMIC RAMS

2112A-4

2501B $3107 \quad 2.95$
*4200A (250NS) 13.75 410D (200NS) $\quad 11.95$

4804	20.00
5101	20.00

$74 \mathrm{C89} \quad 3.00$
$745201 \quad 4.75$

$91 L 02 A$	2.00
7489	

7489	2.25
8225	1.50

8225	1.50
8599	1.50

$82509 \quad 9.00$
*Limited supply.
$\frac{\text { MISC OTHER }}{\text { COMPONENTS }}$
1.75
NH0026CN
3.00

N8T20
N826
N8T97
74367
DM8098
1488
1489
3205
-3207A
C-3404
P-3408A 3.95
$\begin{array}{lr}\mathrm{P}-4201 \quad 6.75 \\ & 495\end{array}$
MM-5320 $\quad 7.50$
$\begin{array}{ll}\text { MM-5369 } & 2.00 \\ \text { DM-8130 } & 3.00\end{array}$ $\begin{array}{ll}\text { DM-8131 } & 2.50 \\ \text { D } & 2.831\end{array}$

DM-8831	2.50
DM-8833	2.50

2.50
2.50
1.00

SN74LS367	1.00
SN74LS368	1.00

MICROPROCESSOR'S

F-8	19.95
$Z-80$	36.95

36.95 Z.80A 49.95 CDP18020C 29.50 AM2901 22.95 $6502 \quad 24.95$ $6800 \quad 24.95$ $\begin{array}{lr}8008.1 & 8.75\end{array}$ $8080 \mathrm{~A} \quad 15.95$

SHIFT REGISTERS	
DYNAMIC	
I404AN	3.00
2405	4.95
$2505 K$	3.00
SHIFT REGISTERS	
STATIC	
MM506	1.89
$2509 K$	3.95
$2518 B$	2.00
$2533 V$	1.00
TMS3002	3.95
TMS3112	2.00
MM5058	
FIFO	6.75
$3341 A$	11.95
$2812-D$	14.95
KEYBOARD CHIPS	
AY5-2376	
AY5-3600	14.95
TV GAME CHIPS	
TMS 1955 (6 Games)	
AYSS-8500 (6 Games)	

U S R T	weicome
S-2350	13.50
IM-6403	10.80
TMS-6011 (TI)	6.25
TR-1602A (WD)	6.25

UARTS

AY5.1013	6.75
AY5-1014A	9.95

AY5-1014A 9.95

CHARACTER

GENERATORS

2513	6.75
2513	6.75
3257	18.00
MCM6571	10.80
MCM6571A	10.80
MCM6572	10.80
MCM6581	8.75

WAVEFORM

GENERATOR

8038 4.50 $\mathrm{MC4024}$ 2.75 566	2.00

PROM'S

1702 A	-	-5.00	$5204 A 0$
1702 AL	7.00	6834	10.00
2704	20.00	$6834-1$	21.95
2708	24.00	828238	16.95
2716	75.00	828129 B	4.00
3601	4.50	$8223 B$	4.25
$5203 A Q$	7.00		4.00

Assembled \& 1eteded

 8K STATIC RAM BOARD250ns. 350ns. 450ns. $\$ 209.95$
$\$ 199.95$
$\$ 189.95$

* WILL WORK WITH NO FRONT PANEL
* FUll documentation
* FULLY BUFFERED
* S100 DESIGN
* adequately bypassed
* LOW POWER SCHOTTKY SUPPORT IC'S

250ns.
\$169.95
\$149.95
\$139.95

Model 250-30A

CH ORGAN KIT

Fantastic new design uses CMIOS I.C. and a to tal of 39 semi-conductors to give a touch control kevboard, all the electronic parts in one PC
Board. This organ is easy to build, yet has feaBoard. This organ is easy to build, yet has fea
tures like a fulf two-octave range touch key board, variable tremolo; two voices, tuilt-in I.C. amplifier with volume control. complete with speaker and a specially designed plexi-glass
\qquad case.

30 MHZ FREQUENCY COUNTER KIT

LSI circuitry. This new technelogy approach to instrumentation yields enhanced parfor mance, smailer physical size, drastically reduced power consumption fportable battery operation is now practical), dependabisty, easy assembly and revolutionary fower pricing Only $\$=50 \quad$ O.5' red LED 6 digits display
Resolution: 1 Hz at 1 sec. 10 Hz
Sensitivitv: 10 MV RMS to 30 Hz internal powver supply: 5.2 V at $1 / 10 \mathrm{sec}$ Oniy $\$ 0,50$

> CALCULATOR with STOPWATCH
> 6 Functions with \% and memo
> 8 Digits big green display watch count to $1 / 10$ of a second $\$ 1650$ Onis $\$ 16.50 \mathrm{Ea}$

1Watk AUDIO AMP
parts are pre assembled on a mini PC Eoard SPECIAL PRICE $\$ 1.95$ ea.
$2 W+2 W$ STEREO AMP

ptal normonic caistortio

is shart circuit prote

W
 ${ }_{2}^{2} 1 .{ }^{2}$

only $\$ 5.00$ eo
TIMER KIT
ime
lue
uri
ser
Ma servicie ano other burposes haz landing

ELECTRONIC ALARM SIREN

heat to whe as an A arm Un
of haok ie te vour ear back un
 $\left\{\begin{array}{l}x^{6} 19 \\ x^{2}\end{array}\right.$ 19 KEY HEXADECIMAL KEY PAD -1-0
ABCDEF SPECIAL $\$ 10.50$ ea

为

All kev rops blank with suger
DIGITAL ELECTRONIC LOCK KIT

$\$ 6.50$ ea.

cmosicc.
in ciscuis
t
 Anv Combination

POWER SUPPLYKIY
OWER SUPPRYKIT
ises lay in . REGULATED
TR output can be adjusted from o-30v, $?$ AMP. Complete with PC board and all elactronic parts. -2e power suppar $\$ 9.50$ each 7 ransformer tof Power Supply, 2 AMF 24.
30 V DC Panel Miter $\$ 4.20$ $\times 2 \$ 4.50 \mathrm{ea}$
MA1003, 12 V DC CLOCK MODULE

:......

LCD DIGITAL THERMOMETER

 CTRONIC SWITCH KIT CONDENSER TYPE rouch on Touch Qif use 7473 I.C and 12 V relay $\$ 5.50$ each
 internal power supply: 5.2 V at 1 gmp regulated Inout power required: 117 V AC $50 / 60$

500 MIC tor CB Unit
Talk Switch with
Connector and Cord
$\$ 2.50$ each $/ 3$ for $\$ 5.00$
CLOSE OUT SALE

4 Games-TEmis. Hockev.
Racquer Hajdball ana sin.
Ble Hendibal.

- Auta counter display an
ihe szreen

ONLY \$4.50 T1 1955 $\frac{\text { Swith Bor tatween GEme }}{\text { SH }}$

Same one as in July Radio Electronics. Kit includes PC
Board MM5318 and MM584? chip. All other electronic parts
ONLY $\$ 21,00$

BIPOLARLED

Jumbo Size redigreen change colo when reverse polarity of voltage Ideai for gainogo indicator.
Two for $\$ 1.00$
L.E. TEST ELIPS
\qquad
Stack ard fee Coles

MINI-SIzED I.C. AM RADIO

Size smaller than a box of matche Receives all $A M$ stathans

 Receives all $A M$ stathonsBatteries and ear phone included
Only $\$ 8.50$

ONLY\$1.20ea	

30 MHZ LOW COST FREQUENCY COUNTER KIT

Features:

* Frequency Range -100 Hz to 30 Hz min., resolution 100 Hz
* All TTL Circuitry-No tears in the eyes when replacing ICs
* FET Input Stage-Offers high input impedance
* High Sensitivity- 15 mV typical
- Xytal Time Base-10MHz for better accuracy
- On Board Regulator-No external power supply needed
- All ICs Socketed-Easy to service

COMPARE
and
SAVE:
354^{95}

- Easy to Operate-No switches to flip
- Tin Plated \& Screened Board-For easy assembly KIT INCLUDES: Detailed Instructions (22 pages). All parts including transformer (case not available).

PUT YOUR HAM GEAR OR CB IN YOUR HOUSE WITH THIS SPECIALLY DESIGNED POWER SUPPLY KIT! A lot of companies offered you this kind of power supply with very poor quality. Either the ripple is too high or the output voltage is not stable. Some of thern even made their power supply with a zener diode and a resistor! Nobody has ever considered the safety of your equipment. With our kit, you can be sure of high quality and your equipment is protected against any faidure of your power supply by a built in OVP circuit.

KIT INCLUDES: Transformer, PC Board, Large heat sink, Large filtering capacitor and all the parts with detailed instruction.

ONLY $\$ 16.95$
кit $\#$ T-700

WOW! LOOK AT THIS:
5V 10A Power Supply Kit for your TTL Circuits!
Kit Includes: Extra Large Heat Sink, Power Tr., IC Pegulator, P.C. Board, with OVP Circuitry. With Optional Rectifiers and Filtering Capacitor. $\$ 14.95$

(X'former not available)

HERE'S A MUST FOR THE EXPERIMENTER!
2-20V@1.3A Continuously Variable Pow er Supply Kit. Kit Includes: P.C. Board, Transformer, Power Transistor, Heat Sink, Transformer, Power Transistor, Heat Sink, instruction.
0.8" 4 Digit Jumbo Display Alarm Clock Kit Features:
A. Fairchild $0.8^{\prime \prime}$ FSC8000 Display Array IS
B. Fairchild Super-Chip - F-3817PC
C. P.C. Board, Transformer, Speaker and all parts included (less case)
D. Detailed Instructions
$\$ 19.50$
 $\$ 12.95$

Features:
A. Fairchild 0.5" FND 500 Series Display
D. P.C. time base
8. Display Board may be and all parts. $\$ \mathbf{1 9 . 9 5}$ remote E. Detailed instructions kir \# т-1302

EVER WISH YOUR RECEIVER COULD HEAR THE WEAK ONES? Almost every amateur and commercial
VHF/UHF receiver cam be more sensitive with these popular preamps. Over 7000 in use throughout the world.

P8 KIT $\$ 7.95$
P1G W/T 16.95
Recommended for mounting inside tronsceivers - only $1 / 2 \times 2-3 / 8$ inches

MODEL	RANGE
P8-30	$20-83 \mathrm{MHz}$
P8-150	$83-190 \mathrm{MHz}$
P8-220	$220-230 \mathrm{MHz}$
R16 $(\mathrm{W} / \mathrm{T})$	Give exact freq.

P9 KIT $\$ 9.95$
P14 W/T $\$ 19.95$
Premium model where spoce permits -$1-1 / 2 \times 3$ inches. Ideal for OSCAR!

NODEL RANGE Pq-30 $\quad 26-88 \mathrm{MHz}$ P9-150 $\quad 88-172 \mathrm{MHz}$ P9-220 P14 (W/T) $172-230 \mathrm{MHz}$ Give exact freq.

P15 KIT $\$ 15.95$

P35 W/T \$34.95

Available for ony bond
$380-520 \mathrm{MHz}$

- 20 dB goin

VHF AND UHF CONVERTERS

- Law noise FET front end
- All common i-f's
- Gredt for OSCAR
- Low power drcín
- Crystals available
for any desired freq scheme
MODEL C25 VHF CONVERTER KIT (shown)
- Models for $2 \mathrm{M}, 6 \mathrm{M}, 10 \mathrm{M}, 220 \mathrm{MHz}$ ($\$ 25.95$
- Models for $2 \mathrm{M}, 6 \mathrm{M}, 10 \mathrm{M}, 220 \mathrm{MHz}$, gir ${ }^{-}$ craft, com'l, etc. Stable cascode if stage $-0.3-0.5 \mathrm{uV}$ sensitivity $\cdot 10-20 \mathrm{~dB}$ gain - Compact 2-1/2 $\times 4-1 / 2^{n}$ pcb - Any if $10-50 \mathrm{MHz}$ - Featured in $H R$ mag article

MODEL U20-450 UHF CONVERTER $\$ 19.95$

- For $432-435 \mathrm{MHz}$ ssb, olv, OSCAR, 450 MHz fm , aircraft, cam'l, etc. Economy converter Use with P15 Preomp for optimum periormance - Any i-f $10-160 \mathrm{MHz}$

- Modess for $2 M$, OMr $10 \mathrm{M}, 220$ 號

200 MW EXCITER MODULE KITS
T40-1) Eleven Chonnel Exciter for 2 M
6 M , or 220 MHz $\$ 39.95$
T40-1 One Channel Exciter..... 34.95

T20 Tripler/Driver Module Kit, 150 mW 2 M input, 200 mW 450 MHz output $\$ 19.95$

RF POWER AMPLIFIER MODULES

- NO TUNING -VSWR PROTECTED
- 150 MW DRIVE - COMPLETELY STABLE

T80-150, 140-175 MHz,20-25W output,
wired and tested, simply connect your
cobles. 579.95
T80-450, $430-470 \mathrm{MHz}, 13-15 \mathrm{~W} \quad 79.95$

TEST PROBE KITS

ONLY \$7.95/ea.

TE-3 RF Detector Probe for VTVM, good from 100 kHz to over 500 MHz TE-4 Direct Probe for ac/ohms, etc. TE-5 DC Probe $w /$ res for 11 ineg input VTVM TE-6 Blocking Capacitor Probe for counter, signol generator, etc.
TE-7 Wideband Detector Probe for scopes TE-8 High Z/ Low Capacifance scope probe

Larsen Antennas

We have a large stock of these papular whips. Pick the mount and whip which ore right for you! All whips and mounts are interchangeable. Request catalog for more information. LM-150 5/8 wave 2 meter whip $\$ 23.85$ LM-220 $5 / 8$ wave 220 MHz whip... 23.85 LM-440 Colinear 450 MHz whip.... 23.85 Q $\quad 1 / 4$ wave whip $144-450 \mathrm{MHz} \quad 2.65$

MM-LM-K Magnet Mount \qquad $\$ 14.60$ LM-K $3 / 4^{\prime \prime}$ Blind Hole Mount. . 6.35 GC-LM-K Gutter Clip Mount...... 14.60 TLM-LM-K Trunk Lip Mount......... 14.05 AMB-K Trunk Gufter Mount...... 9.10

$((\square)) \square \square$

We hove larce stock of populer antennos. Call or write for quate ar more infomation.

VHF MODELS FORANY BAND $28-240 \mathrm{MHz}$
R60-(), $0.5-1 \mathrm{UV}$ sens, incl VHF Converter and IF/Audio Boards. 564.95 R69-(), 0.2-0.4 uV sens, incl P9 Preamp, VHF Converter, and IF/Audio . . $\$ 69.95$ Grystals (We stock cormmon freq and will gladly order specials). $\$ 5.50$

UHF MODELS FOR ANY BAND $380-520 \mathrm{MHz}$ R60-450, 5-10 uV economy revr, incl UHF Conv \& IF/Audis Boords only.... \$59.95 R80-450, 2-5 uV sens monitor rcvr, incl UHF Cony, VHF Conv, ond IF/Audio $\$ 84.95$ R95-450, $0.4-1$ w sens rcvr, incl P15 Preamp, UHF Conv, VHF Conv, ond IF-Audio Boards. $\$ 94.95$
 STOCKED IN DEPTH

REQUEST CATALOG FOR MORE DETAILS

AVQ	10-40M Vertical	\$67.00
18AVT	10-80M Vertical	97.00
18 HT	10-80M. Hy-Tower Ve	279.95
TH3-MK3	Tribander	199.95
H3-JR	Tribander	144.50
THG-DXX	Tribander, 6 element	249.95
2BDO	80-40M Trap Dipole	49.95
5809	80-10M Trap Dipole	79.95
263	2M 5/8 wave Trunk Lip	28.95
265	$2 \mathrm{M} 5 / 8$ wave Mag Mir	29.95
214	14 el 2 M Beam	26.

SUPERIOR QUALITY Yet only $\$ 189.95$

IF YOU'VE HEARD THE NEW HY-GAIN 2 M HT, YOU ALREADY KNOW IT'S FANTASTIC! WE HAVE THEM IN STOCK COMPLETE WITH CRYSTALS AND ACCY'S

Inexpensive DC POWER SUPPLIES

Model	Price	Intermittent	Cont
12 CB 4	$\$ 29.95$	2.5 A	1.5 A
103 R	39.95	4 A	2.5 A
104 R	49.95	6 A	4 A
108 RA	79.95	12 A	8 A
$108 \mathrm{RH}=$	99.95	12 A	8 A
$109 \mathrm{R}^{\circ}$	149.95	25 A	10 A
3 1ndicates model	which has panel meteris)		

[^6]
GET YOUR

NEW

 RADIO AMATEUR
CALLBOOKS

The U.S. Callbook has over $300,000 \mathrm{~W}$ \& K listings. It lists calls, license classes, names and addresses plus the many valuable back-up charts and references you come to expect from the Callbook.

\$14.95

PLUS SHIPPING

Specialize in DX? Then you're looking for the Foreign Callbook with over 250,000 calls, names and addresses of radio amateurs outside the USA plus many valuable, additional features of interest to the $D X^{\prime} r$.

See your favorite electronics dealer or write direct for free catalog to the publisher.

	tem	Prict Exah	Shipping	Total Price
\square	U. S. Callbook	\$14.95	\$1.50	\$16.45
\square	FOREIGN CALLBOOK	\$13.95	\$1.50	\$15.45
Illinois residents only add 5% sales tax				
Name___ _-_ ${ }^{\text {Total }}$				
Address._-_ - -				
Charge	\square BankAmericard Credit card \# \qquad	\square Master Chare	Interbank \# \qquad - Expiration date. \qquad	

THE FUTURE NOW! FM 2015 R

All Solid State CMOS PLL digital synthesized - No Crystals to buy! 5 KHz steps -144-149 MHz-LED digital readout PLUS MARS-CAP.*

- 5 MHzBand Coverage - 1000 Channels (instead of the usual 2 MHz to $4 \mathrm{MHz-400}$ to 800 Channels). 4 CHANNEL RAM IC MEMORY WITH SCANNING-MULTIPLE FREQUENCY OFFSETS - Electronic Auto Tuning, Transmit and Receive-Internal Multipurpose Tone Oscilator-RIT-Discriminator Meter -15 Watts Output Unequaled Receiver Sensitivity and Selectivity-15 Pole Filter-Monolithic Crystal Filter and Automatic Tuned Receiver Front End-COMPARE! © Superb Engineering and Superior Commercial Avionics Grade Quality and Construction Second to None at ANY PRICE.

FREQUENCY RANGE: Receive and Transmit: 144.00 to $148.995 \mathrm{MHz}, 5 \mathrm{KHz}$ steps (1000 channels). + MARS CAP*

- AIRCRAFT TYPE FREQUENCY SELECTOR: Large and small coaxially munted knobs select 100 KHz and 10 KHz steps respectively. Switches click-stopped with a home position facilitate frequency changing without need to view LED'S while driving and provides the sightiess amateur with fuil Braille dial as standard equidment
- full automatic tuning of receiver front END AND TRANSMITTER CIRCUITS: DC output of PLL fed to varactor diodes in all front end AF tuned circuits provides full sensitivity and optimum intermodulation rejection over the entire band. APC (AUTO POW.ER CONTROL) - Keeps RF output constant from band edge to band edge and helps keep spurs down. No other amateur unit at any price has this feature which is found in only the most sophisticated and expensive aircraft and commercial transceivers.
- TRUE FM: Not phase modulation - for superb emphasized hi-fi audio quality second to none.
- 4 CHANNEL RAM SCANNER WITH IC MEMORY: Program any 4 frequencies and reprogram at any time. using the front panel controls-scan all or part of the memory-search for occupied (closed) channel or vacant (open) channels-with internal Ni-Cad to retain memory. (No diode matrix to wire or change).
- MULTIPLE FREQUENCY OFFSETS: Three positons A,B,C, provided for installation of optional crystals: EXAMPLE - 1 Mhz offset. Duplex Frequency Offser Built in - 600 Khz plus or minus 5 Khz steps, plus simplex, any frequency.
- INTERNAL MULTIPURPOSE TONE OSCILLATOR: 1750 Hz tone burst for "whistle on operation" and subaudible tone operation possible by simply adding a capacitor across the terminals provided Internal 2 position switch for automatiç and manual operation. tone burst or sub audible tone PL - adjustable 60203 Hz (100 Hz provided).
- RIT CONTROL: Use to improve clarity when contacting stations with off frequency carrier
- modular commercial grade construcTION: 6 Unitized modules eliminate stray coupling and facilitate ease of maintenance -
- ACCESSORY SOCKET: Fully wired for touch tone, phone patch, and other accessories. Internal switch connects receiver output speaker when connector is not in use.
- MULTI-PURPOSE METER: Discriminator Meter, Provides " S " reading on receive and power out on transmit.
- RECEIVE: Better than 25 uv sensitivity. 45 pole filter as well as monolithic crystal filter and automatictuned LC circuits provide superior skirt selectivity
- HIGH LOW POWER OUTPUT: 15 watts and 1 wattswitch selected-low power may be adjusted anywhere between 1 and 15 watts-fully protected-short or open SWR
- OTHER FEATURES: Dynamic microphone-mobile mount-external 5 pin accessory jack-speaker jack- and much, much more-size $21 / 2 \times 7 \times 7 / 2$. All cords, plugs, fuses, microphone hanger, etc. included. Weight 5 lbs .

AMATEUR-WHOLESALE ELECTRONICS

8817 S.W. 129th Terrace, Miami, Florida 33176 Telephone (305) 233-3631 - Telex: 51-5628 U.S. DISTRIBUTOR

[^7] unavailable.

Features:
Custom computer grade commercial components, capacitors, and tube sockets manufactured especially for high power use - heavy duty 10 Kw siver plated ceramic band switches • Silver plated copper tubing tank coil - Huge 4" easy to read meters-measure piate current, high voltage, grid current. and relative RF output - Continuous duty power supply buili in - State of the art zener diode standby and operating bias provices reduced iding current and greater output efficiency - Built in hum free DC heavy duty antenna change-over relays - AC input 110 V or 220 V AC, $50-60 \mathrm{~Hz}$ - Tuned input circuits - ALC-rear panel connections for ALC output to exciter and for relay control- Double internal shielding of all RF enclosures - Heavy cuty chassis and cabinet construction and much, much more.

The New Sigma XR3000D Linear Amplifier Compare! "

- Full band coverage 160-10 meters including mars
- 2000 watts P.E.P. SSB input. 1000 watts input continuous duty, CW, RTTY \& SSTV
Two Eimac 3-500Z conservatively rated firals
All major HV and other circuit components mounted on single G-10 glass plug in board. Have a service problem? (Very unikety) Just unolug board and send to us.
Heavy duty commercia! grade quality and construction second to no other unit at any price!
Weight: 90 los. Size: $91^{2 \prime \prime}(\mathrm{~h}) \times 16^{\circ}(\mathrm{w}) \times 153^{\prime \prime \prime}(\mathrm{d})$.

HOLIDAY INTRODUCTORY SPECIAL!

New! Sigma Model AF250L Deviation/Modulation Meter

Features:

Extremely stable local oscilator for easy measurement of HF , VHF, and UHF bands employing negative feedback, to insure extremely high stability - Easy to read, accurate linear scale - Direct off the air signal measurement capability.

Specifications:

Frequency: 1.8 MHZ -520MHZ:3 range select (A. B, C, EXT), A range: $26.5 \mathrm{MHZ}-40 \mathrm{MHZ}, \mathrm{B}$ range: $48 \mathrm{MHZ}-60 \mathrm{MHZ}$, C range: $140 \mathrm{MHZ}-156 \mathrm{MHZ}$, EXT. range: 1.8 MHZ -520MHZ (Need Signal Generator) - Generous overanges - Input leve!: (1) Through type input level: IW-200W (RF Input Ter minal), (2) Direct input level: More than 80 db 500 hm impedance - Amplitude modulation degree: 0 - 100%. Frequency deviation: $0-20 \mathrm{KHZ}$ - Accuracy $+1-3 \%$ of full scale - Intermediate frequency: 10.7 MHZ . Local input frequency (EXT Range). Measuring frequency +-10.7 MHZ - RF Attenuator: $0-60 \mathrm{db}$ variable * Audio signal oscillator: (1) Audio Frequency - $1,000 \mathrm{HZ}$ (1 KHZ), (2) Output level-More than 1 V RMS - Power Source: AC117V. Dimensions: $H-5^{1 / 2^{\prime \prime}}(140 \mathrm{~mm}), W-1014^{\prime \prime}(260 \mathrm{~mm})$, $\mathrm{D}-7^{1 / 4^{\prime \prime}}(184 \mathrm{~mm})$ - Weight: 7 DS .

Introductory Price

Sigma RF-2000 SWR \& Power Meter

Cal PWR Scales 200W-2000W Freq Range 3.5-150 Mhz Please do not confuse the RF2000 with similar appearing lower priced units. RF2000 is an individually calibrated professional quality instrument. Unequaled at many times the price. Size $7^{\prime \prime}\left(w^{\prime}\right) \times 2^{1 / 2^{\prime \prime}}(\mathrm{h}) \times 2^{1 / 3^{\prime \prime}}$ (d).

NEW CDE HAM III ROTATORS-
Feg. \$159.95- $\$ 125$

 THILL TIMATHIN FREQUENCY CONTROL FOR OC. 225 OWNERS!

No more sol deming diodes every time you

Inst plug the Synthacoderinito the back of yotif radio, select channel 22 , and the Synthacoder takes command of pour radio - Giving you finger tip control of AL. - frequencies.

- Front Panel Thtanbwheel Control of All Channels!
- Fully Automatic Invalid Code Control.
- Small Size: $33 / 2^{\prime \prime} \times 112^{\prime \prime} \times 6^{41}$
- Factor. Wired and tested
- Easy 70 Install

Sale Pace Orly $\$ 69.951$
(Ottar ends :1130/77)
\rightarrow SPECIAL..... ont lo 88.8 -quostpaid

Engineering Specialties

P. O. BO $\times 2233$
1247 COMMERCIAL AVENUE OXNARD CA 93030 $(805) 486.0817$

LI'LL BITE! Please send more info.
\square I'M HOOKED: Please RUSH my Synthacoder.

YES, I would like to purchase a Synthacoder for my IC-22S. Enclosed please find tiny $\$ 69.95$ (Price includes postage and handing), California residents add 6% sales tax: Offer ends $11 / 30 / 77$.
\$. \qquad enclosed. Cash Check \square Money Order Please charge my \square Master Charge \square BankAmericard Credit card : \# \qquad
\qquad
\qquad Expiration date \qquad Signature
\qquad
Name \qquad C.

Address
City State Zip
(masan chasid

HONEYWELL
 SMOKE
 ALARMS

Dual chamber ionization detectoŕs sense tiny air－borne particles of combustion in a fire＇s earliest stage even before there＇s smoke．Operates on 115 VAC ．UL listec． Sh．We 3 L．bs．．7W170349 ．．$\$ 24.88$

Large 2－3／8＂square see－thry plastic cov－ ered meters．External resistor req．Super！ Sh．Wt． 8 oz．．．．7W70343．．．$\$ 2.00$ ea．

TV－COMPUTER

Biget：

 Diagonat INTERFACE KIT WoConverts any standard TV into a comput－ er monitor．This self－contained RF oscill－ ator $\&$ modulator allows easy interface of any video output device to a standard $T V$ set．This kit was part of a video game， and contains its own pawer supply．With instructions \＆data

 used by stock brokers for keeping track of stack quotations．They tied in to a central system which has now been up－ dated，leaving these surplus units behind． Use this unit as a basis for building your own computer input／output station or to build a compact scope ．．．or simply iake it apart for the components within．
Sold complete or in parts．prices and descriptions listed below：
$t 3^{\prime \prime}$ CRT，with Hi－volt．supply $1+3315$ vde：-1730 vde）．and low－vols．supply $+440 \mathrm{~V}:+225 \mathrm{~V}:+125 \mathrm{~V} ;+28 \mathrm{~V} ;-1.2 \mathrm{~V}:$ $+0.6 \mathrm{~V}: 6.3 \mathrm{VDC} ; 6.3 \mathrm{VAC}$ Also－ramp generator card \＆some drive circuits （ 15 Lbs．） $\$ 17.50$
－ 50 key Block keyboard，with diode matrix on 2 eards．（5 Lbs．）．．．．．$\$ 12.50$ t Handsome desk－top．slope front case， suitable for up s o an $11^{\prime \prime}$ CRT，overall 10 友w $\times 16 \mathrm{~d} \times 9$＇h．$(10$ Lbs．$)$ ．．．$\$ 7.50$
t Plus： 3 wire line cord．brown． 7 ＇Ig for \＄1．00； 14 wire connector cable for $\$ 2.50$ ．
\dagger COMPLETE UNIT Sh．Wt． 35 Lbs． 6NB60336．
$\$ 29.95$
＋Also available is a complete tech．man－ ual covering operating procedure，theory disassembly（8 reassembly），trouble－ shooting techniques and schematics． With complete unit－$\$ 1.00$ or sold sep arately for $\$ 3.50$ each．Sh．Wt． 8 oz ． WHEN ORDERING： Specity part，use order no．6NB60336

Build your own and save！These kits are made up of quality components intended for use by a big－name mfr．Iwho we can＇ mention）．Over $\$ 2$ million in irventories were closed out！His loss your gain！Kits are 1 st quality，all U．S．made．Cabinets are vinyl－clad with pre－cut holes，grill are viny－clad with pre－cut holes，grill
cloth is included．Perfect for those do－it－ yourself－ers！Two types of kits available：

SPEAKER SYSTEMS KIT No． 1 Our deluxe model

The printer is connected to a system com－ puter through an input／outpur channel and may be located up to 2.000 wirefeet from computer using a 2 －wire line．Uses standard continuous paper forms．with up to 5 copies and 1 original．Power： 115 V ． 60 Hz ； 6 amps．Size： $30^{\prime} \mathrm{W} \times 27^{\prime \prime} 0 \mathrm{p} x$ $38^{\prime \prime} \mathrm{H}$ ．
These units were working \＆going units when taken out if service．Shipped only on an＂AS iS＂basis，You should be able to put these on lime with a minimum of work，and then you have a $\$ 3,600$ line printer working for you at less than $1 / 5$ the cost．Shipped via truck freight collect to you，F．O．B．Peabody，Ma． 01960. 7SF70298
DATA MANUALS，while they la 7SF70298－M last．． ＊＊Also available are a few clamaged which have broken glass covers．Damage appears to be cosmetics only．Save $\$ 100$ 7SF70299
$\$ 550.00$

Key－to－Tape Recorder
 backup．Unit has internal memory／buffer

SingerfPertec systems with display sta tion，keyboard， 7 rack magnetic da－ tecorder，controller，etc．Singer closes out its computer products division and these unit become surplusl Their loss $\$ 460 \times 10^{\circ}$ ）is your uein ．．．you can bsy this super recorcier for pennies on a dol his seper recorcer for pennies on a dol mfg．and are still being serviced with

PLASTIC CABLE CLIPS

Unique $12^{\prime \prime}$ strip，self－stick backing， $1 /{ }^{\prime \prime}$ high．Use whole or cut into smasler parts to give up to 24 －${ }^{\prime \prime \prime}$ cable clips．Handy！ Sh．Wt． 8 oz. ． $7 K 70354$ ．\＄1．25／2 strips

POSTAGE：Please add sufficient funds for postage and insurance．，Shipping weight for merchandise is listed at the end of each product descriotion．All shipping is from Peabody，Ma． 01960

Mass．Residents Add 5\％Sales Tax
SEND FOR OUR FREE CATALOG！
Or，receive our catalog
an order and insure yourself
of a place on our mailing list
for 80 or 200 character storage．Units show character，character no．，and record no．Read back circuits allows search on record key，editing．duplicating．etc Units were working when taken out of service and are complete \＆ready－togo． but may require minor adjustments．Sold on an＂AS IS＂basis only．Manuals not supplied with unit，available separately． Size： $19^{\prime \prime} \mathrm{H} \times 21 \%^{\prime} \mathrm{W} \times 19 y^{\prime \prime} \mathrm{D}$ ．Tape not supplied．
We have 2 types available
Md． 4301.7 7－vack Data Recorder，our catalog no．7SF70296 ．．．．．．．．S218．88 Complete Manual ．75F70296－M ．$\$ 28.50$ Md．4311－7 7－track Data Recorder with remote data communication channel，our catalog no．7\＄F70297 ．．．．．．．$\$ 248.88$ Complete Manual ．7SF70297－Mi ．$\$ 28.50$ （Manuals weigh 3 Lbs．）

All Magnetic Tape Data Recorders are shipped via truck，freight collect to you，Customer pays shipping． OTHER SINGER／FRIDEN MACHINES ARE AVAILABLE SEND FOR CATALOG

PHONE ORDERS WELCOME！
Bank Americard，Master Charge and American Express Accepted
Phone：（617）531－5774／532－2323
$\$ 10.00$ Minimum on Charge Orders
B\＆F ENTERPRISES
Dept．＂S＂
119 FOSTER STREET PEABODY，MASS． 01960 （617）531－5774／532－2323

AM／FM stereo
TUNER／AMP CHASSIS only $\$ 18.88$ ！

New surplus stereo tuner \＆amp， 4 watts RMS per channel．Super－slim unit mea－ sures only $2 \%^{\prime \prime} \mathrm{H} \times 12 \%^{\prime \prime} \mathrm{L} \times 8^{\prime \prime} \mathrm{O}$ ．Con－ trols include bal．，tone，vol on／off．AM／ FM／FM stereo AFC／Aux．selector and tuning．Diai has red needle and black face with no markings．Sh．Wt． 6 Lbs． 7HU70397．
$\$ 18.88$ each

Susplus irom a computer phone．Power supply is regulated，input of 115 V 60 Hz ． cutputs of -12 V ＠． $125 \mathrm{~A} .+5 \mathrm{~V}$＠． 75 A Uses（3） 723 voltage regulator IC＇s for regulation．Open frame type，Qty．Ltd Size： $7.2^{\prime \prime} \mathrm{L} \times 5.6^{\prime \prime} \mathrm{W} \times 2^{\prime \prime} \mathrm{H}$ ．New Sh．We 5 Lbs ． 7 M 170353 ．．$\$ 13.50$ 3 for $\$ 38.88 \ldots 7 \mathrm{MI} 70353 \ldots \$ 38.88 / 3$ 10 to $24 \mathrm{VDC}, 2$ Amp gREAT FOR POWER SUPPLY KIT
A complete kit which puts out 10 to 24 VDC at 2 amps，regulated， 115 VAC in． Can be wired for contant 13.8 VDC ，idea \＆compact for C．B．Kit includes PC card． components and instructions ．．just add your own case．Super as a bench supply！ Sh．Wt． 6 Lbs．．．6C60498 ．．．$\$ 14.88$

4 in 1 TV GAME
WIth JOYSTICK CONTROLS

Hockey－Soccer／Novice－Expert．Features a hockey mode in which players skate up． down and accross the ice using the joy－ stick．with the ability to＂catch＂the puck and＂shoot＂for goals with another control．A real challenge for ail players LED readouts show score，aperates on 115 V 60 Hz ．Never at this low price！
Sh．Wt． 5 Lbs．．． $7 H \cup 70284$ ．．$\$ 22.50$ 5 for $\$ 100.00$ ． 7 HU70284．$\$ 100.00 / 5$
JOYSTICKS

Joystick：Four 100K Pot＇s；by ALPS The best controls on the market．． 8 oz ． $7 \mathrm{J70293}$.
RADIOSONDE with SENSORS This radiosonde is used by meteorologists for upper atmosphere studies of pressure， temperature \＆humidity．Package has temp．sensor，hygistor，barograph，etc． Tinkerer＇s delight－lots of gadgets！ Sh．Wt． 1 Lb ．．．7F70364． \qquad
SEISMIC SENSOR／XMITTER
A what y This unique looking \＆oper－ ational intruder defector／xmitter was used by the US．army to detect troop movements．It looks like a rock or gioh of mud，but contains：a trasmitter with a range of 300 meters that sends out coded pulses on 150 MHz ；a built－in dipole an－ tenna；seismic sensor；\＆ 3 mercury cells． Weighs about 1 ounce，measures less than ＂across．Fantastic！

Sh．Wt． 3 oz．
7Mi70365 ．．．$\$ 4.00$ ea
$\$ 10.00$ for 3

Frequency Counter $\$ 79^{95}$

You've requested it, and now it's here! The CT-50 frequency counter kit has more features than counters selling for twice the price. Measuring frequency is now as easy as pushing a button, the CT- 50 will automatically place the decimal point in all modes, giving you quick, reliable readings. Want to use the CT-50 mobile? No problem, it runs equally as well on 12 V dc as it does on 110 Vac . Want super accuracy? The CT-50 uses the popular TV color burst freq. of 3.579545 MHz for time base. Tap off a color TV with our adapter and get ultra accuracy - . 001 ppm! The CT-50 offers professional quality at the unheard of price of $\$ 79.95$. Order vours today!
CT-50, 60 MHz counter kit
$\$ 79.95$
CT-50 WT, 60 MHz counter, wired and tested
159.95

CT-600, 600 MHz prescaler option for CT-50, add
29.95

UTILIZES NEW MOS-LSI CIRCUITRY

SPECIFICATIONS

Sensitivity: less than 25 mv .
Frequency range: 5 Hz to 60 MHz , typically 65 MHz Gatetime: 1 second, $1 / 10$ second, with automatic decimal point positioning on both direct and prescale Display: 8 digit red LEO $4^{\prime \prime}$ height
Accuracy: $10 \mathrm{ppm}, .001$ pom with TV time base! Input: BNC, 1 megohm direct, 50 Ohm with prescale option Power: 110 V ac 5 Wasts or 12 V dc@ 1 Amp Size: Approx. $6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$, high quality aluminum case

Color burst adapter for . 001 ppm accuracy
CB-1, kit .
$\$ 14.95$

CLOCK KIT 6 digit 12/24 hour

Want a clock that looks good enough for your living room? Forget the competitor's kludges and try one of ours! Features: jumbo . $4^{\prime \prime}$ digits, Polaroid lens filter, extruded aluminum case available in 5 colors, quality PC boards and super instructions. All parts are included, no extras to buy. Fully guaranteed. One to two hour. assembly time. Colors: silver, gold, black, bronze, blue (specify).
Clock kit, DC-5
Alarm clock DC. 8 ì hr oniv........... $\$ 22.95$ Mobile clock, DC-7 25.95 Mobile clock, 10 min io zimer, DC-10.... 25.95
Clock kit with 10 min Assembled and tested clocks available, add $\$ 10.00$

CHEAP CLOCK KIT	\$8.95	PC Board
DC 4 Features:	Does not	\$2.95
-6 digit .4"LED	include board	Transfortier
- 12 or 24 format	or transformer	\$1.49

VIDEO TERMINAL KIT \$149.95

CAR
 CLOCK
 KIT \$27.95

MIN1-KITs

tone decoder kit
A compere gong deocod co simple FC Buc.

 detwat. ighty g. and many strer usis Use? i.t. $: 2$ nution toschtone cecosing. puns on 5
to $i 2$ wolts.

Complese Kit, TD-1
. $\$ 4.95$

SUPER-SNOOP AMPLIFIER

A super-sensitive amplifier which will pick up a pin drop at 15 feet! Great for monitoring baby's room or as a general purpose test amplifier. Full 2 watts of output, cuns on 6 to 12 volts, uses any type of mike. Requires 8-45 ohm speaker. Complete Kit, BN-9
.$\$ 4.95$

FM WIRELESS MIKE KIT

Transmit up to 300^{\prime} to any FM broadcast radio, uses any zype of mike. Runs on 3 to 9 V . Type FM-2 has added super sensitive mike preamp. FM-1 $\$ 2.95$ FM-2 . . $\%$. $\$ 4.95$

COLOR ORGAN/MUSIC LIGHTS

See music come alivel 3 different lights flicker with music or vaice. One light for lows, one for the mid-range and one for the highs. Each channel individually adjustable, and drives up to 300 watts. Great for parties, band music, nite clubs and more.
Complete Kit, ML- 1
$\$ 7.95$

LED BLINKY KIT

A great artention getter which alternately flashes 2 Jumbo LEDS. Use for name badges, buttons, or warning type panel lights. Funs on 3 to 9 volts.
Complete Kit
.$\$ 2.95$
POWER SUPPLY KIT
Complete triple regulated power supply pro-
vidua variable ± 15 yolts ati 200 rra and +5 volts
 atal small size. Kit less regansformers. Piequires ach V 31 1 Amp And 18 to 30 VC
 Complete Kin, PS.3LT................ . 56.95

SIREN KIT

Produces upward and downward wail characteristic of police siren, 5 watts audio output. runs on 39 volts, uses $8-45$ ohm speaker. Complete Kit, SM-3
$\$ 2.95$

DECADE COUNTER PARTS

Includes: 7490A. 7475, 7447, LED readout
current limit resistors, and instructions on an
easy to build low cost frequency counter.
Kit of parts, DCU-1

ADVA

ASSEMBLED $\$ 17.95$ ADD \$1.25 FOR POSTAGE/HANDLING

VARIABLE POWER SUPPLY

- Continuously Variable from 2 V to over 15 V
- Short-Circuit Proof
- Typical Regulation of 0.1\%
- Electronic Current Limiting at 300 mA
- Very Low Output Ripple
- Fiberglass PC Board Mounts All Components
- Assemble in about One Hour
- Makes a Great Bench or Lab Power Supply
- Includes All Components except Case and Meters

OTHER ADVA KITS:
 pastige and hanciling.
 WRITE FOA FAER CATALOG \#76 aftesing pyer 350 snmizontuctors castied in stock Sermilist teimg.

SPECIALS - THIS MONTH ONLY

1N34 Germanium Diode 60V 10 mA 10/\$1
1N6263 Hot Carrier Diode (HP2800, etc.) $\$ 1.00$
2N918 UHF Transistor-Osc/Amp up to 1 GHz 4/\$1
2N3866 UHF Transistor-1 Watt at 432 MHz \$0.75
RCA29 NPN Power Amp/Switch 30W TO-220 70
LM741 Compensated Op Amp mDIP or DIP 6/\$1
LM1304 FM Multiplex Stereo Demodulator \$0.99
LM2111 FM IF Amp/Limiter/Detector 99
CA3028A RF/IFAmplifier DC to 120 MHz 1.45
RC4136 Quad 741 Op Amp-Low-Noise 95
LP-10 LOGIC PROBE Kit-TTL, CMOS, etc. $\$ 7.85$(See Above - "OTHER ADVA KITS")

BULETT ELEGTROMIS6
 P. O. BOX 19442 E DALLAS, TEXAS 75219

PHONE ORDERS ON MASTERCHARGE OR VISA CARDS
(214) 823-3240

new! PS-14 HIGH CURRENT REGULATED POWER SUUPPLY KIT

A low cost, no frills, heavy duty power supply. Designed for use and abuse!

12V @ 15A

- Better than 200MV load \& line regulation
- Foldback Current Limiting
- Short Circuir Pratected
- Thermal Shutdown
- Adjustable Currenr Limiting
- Lest than 1% ripple.
: 15 amps 71.5 to 14.5 V
- All parts supplied including heavy dury

Quality plated fiberglass PC board.
Less Case meters \& jacks

PS-12
$3-30$ VDC IN 2 RANGES.

- BUT VARIABLE OVEP (without thermal shutdown)

A COMPLETE CAPACITOR DISCHARGE IGNITION KIT for
 \$9.95

You get all the electroncs less the case and heatsinks.

SPECIAL SALE! The response to our anniversary sale on CDI's was fantastic so here goes again...WHILE THEY LAST...Buy wo CDI kits for 59.95 each, get the third CDI kit for $\$ 1.00$!

MK-05 MINI MOBILE CLOCK

The smallest and best priced mobite clock kit on the mar ket. Designed to be a mobile clock from the ground up. There has been no compromise on quality.

FEATURES:

* Quartz crystal timebase
* Toroid \& zener noise \& overvoltage protection.
- Magnified . 15", 6 digit LED readout.
- Complete with presettable 24 hr . alarm
- 9-14 VDC © 40 to 50 ma .
- Readouts can be suppressed
* EASY, QUICK ASSEMBLY
* All components required included (you supply the speaker).
* Top quality drilled and plated PC boards. Clock board: $2.6^{\prime \prime} \times 2^{\prime \prime}$
Readout board: $23 / 8^{\prime \prime} \times .75^{\prime \prime}$

- No COD's.

- Send eheck or MO
- MasterCharge or VISA accepted.
* Foreign orders add 10% (20% airmail)
* Catalog included with each order
- Mexas Residerts add 5% sales tax. * Orders over $\$ 50$. take 10% discount.

Simall enough to
(1) 5 (20) 0
with
With punched front
aluminum case $-\$ 15.95$
mount in the instrament ganel!

SPECIAL! METERS

LARGE, QUALITY $31 / 2$ RECTANGULAR METERS AVAILABLE FOR USE WITH OUR POWER SUPPLIES. DIAL CAN BE BACK LIGHTED. INDIVIDUALLY PACKAGED WITH MOUNTING HARDWARE. NEW DESIGN REQUIRES MUCH SMALLER CUTOUT THAN STANDARD METERS.

$$
\begin{array}{ll}
0-15 V & D C \\
7.16 & 0-15 \text { ADC } 7.16 \\
0-25 V \text { DC } 7.05 & 0-25 \text { ADC } 7.05
\end{array}
$$

DEDUCT 10% IF ORDERED WITH PS 14 OR PS 12 POWER SUPPLY.

OVERVOLTAGE PROTECTION KIT

Provides cheap insurance for your expensive equipment. Trip voltage is adjustable from 3 to 30 volts. Overvoltage instantly fires a 25A SCR and shorts the output to protect equipment. Should be used on units that are fused. Directiy compatible with the PS-12 and PS-14. All electronics supplied. Drilled and plated PC board. (Order OVP-1)

$\$ 6.95$

2N6283 MOTOROLA HOUSE \# DEVICE 20amp NPN Darlington with Hfe $\$ 1.00$ of over 5,000 ! VCE of 80 V . Outperforms MJ3001 and MJ1000 devices.TO-3.

Limited Oty.!

Free Money $\$ \mathbf{\$}$ Free Money

Starting October 1. 1977, each Bullet catalog will be stamped with a different special code number that will be placed in a monthly drawing. The monthly prize will be $\$ 100.00$ in cash! The winning number will be announced each month in this ad and the winner will have until the 20 th of the month to claim the money. No purchase necessary. Catalogs are available free upon request. All orders receive a catalog. Watch for your Lucky Number!

DiBM Multi Colored Riob \circ Cable Standard

26 conductors of no. 28 standard wire with a woven binder for easy separation. Super flexibility. For computers, and other projects. $\quad 10^{\circ}$ ROLL 2.95
50° ROLL 9.95
No. 30 gauge silver plated wire wrap wire with Kynar ${ }^{\circledR}$
jacket.
500 ft .
5.95

MINI ELECTRONIC

GRANDFATHER CLOCK KIT

Complete Electronics!
Chimes the hour (ie: 3 times for 3 O'clock)
*Unique "swinging" LED pendulum

- Tick tock sound matches pendulum swing.
- Large 4 digit .5" LED readout
\$39.95
* All CMOS construction
* Complete electronics including transformer \& speaker; drilled and plated PC boards measure $4.5^{\prime \prime} \times 6.5^{\prime *}$

BEAUTIFUL SOLID WALNUT

Custom case for above kit. Over $93 / 4^{\prime \prime}$ tall. \$19.95

TAKE ADVANTAGE OF THIS NEW STATE-OF-THE-ART COUNTER FEATURING THE MANY BENEFITS OF CUSTOM LSI CIRCUITRY. THIS NEW TECHNOLOGY APPROACH TO INSTRUMENTATION YIELDS ENHANCED PERFORMANCE, SMALLER PHYSICAL SIZE, DRASTICALLY REDUCED POWER CONSUMPTION [PORTABLE BATTERY OPERATION IS NOW PRACTICAL], DEPENDABILITY, EASY ASSEMBLY AND REVOLUTIONARY LOWER PRICING!
KIT \#FC-50C
KIT\#PSL-650
MODEL. \#FC-50WT
MODEL \#FC-50/600 WT

SA NHZ COUNTER WITH CABINET \& P.S.
650 MhZ PRESCALER [NOT SHOWN]
60 mhz COUNTER WIRED. TESTED \& CAL
660 MHZ COUNTER WIRED. TESTED \& CAL

29.95

$$
165.95
$$

199.95

SIZE:

3" High
6 " Wide
5//2"Deep

FEATURES AND SPECIFICATIONS: display: 3 RED LED digits $4^{* "}$ Character height GATE TIMES: 1 SECOND AND $1 / 10$ SECOND
 RREQUENCY RANGE: TO HZ TO gOMHZ : 65 MHZ TYPICAI FREQUENCY RANGE: TO HZ $\operatorname{SENSITIVITY:~} 10 \mathrm{MV}$ RMS TO 50 MHZ . 20 MV RMS TO 50 MHZ TYP. INPUTIMFEDANCE: IMEGOHM AND 20 PE
INPIOEE PROTECTED INPUT FOR OVER VOLTAGE PROTECTION.] ACCURACY: 1 IPPM İ 0001 : IAFTER CALIBRATION TYPICAL IC PACKAGE COUNT. 3 (ALL SOCKETED]
INTERNAL PGWER SUPPLY: 5 V DC REGULATED. INPUT POWER REGUIRED: $8-12$ VOC OR 115 VAC AT $50 / 60 \mathrm{~Hz}$. POWER CONSUMPTION: 4 WATTS

OPTOELECTRONICS, INC.
BOX 219 HOLLYWOOD, FLA. 33022
PHONE [305] 921-2056 / 921-4425

D.R.C. ELECTRONICS

1 AMP RECTIFIERS

House Numbered. Factory marked units. All meet 200 PIV minimum. Many up to 1,000 PIV.

30 FOR $\$ 1$

Full Leads.
RCA HOUSE \#2N3772

NPN Power Transistor. 30
AMP. 150 W . VCEO-60.
TO-3. Vastly out performs
2N3055. Reg. List $\$ 3.04$
2 FOR \$1
OPCOA LED READOUT
SLA-1 Common Anode. .33 In. character size. The original high efficiency LED display.
$\$.75$ each 4 FOR $\$ 2.50$

PRECISION

RESISTORS
1K OHM 1%
10K OHM 1%
Your Choice:
6 FOR \$1
MOTOROLA CD 4040
CMOS 12 Stage Binary
Ripple Through Counter.
$\$.99 \mathrm{ea}$.

CALCULATOR
DISPLAYS
Brand New Units By BOWMAR.
Common Cathode. . 11 INCH CHARACTER. 9 DIGIT - $\$.99$ 6 DIGIT - $\$.69$
MYLAR CAPACITOR 1 MFD. 400 VDC. 5% 2 FOR $\$ 1$
THERMISTOR 1 K OHM at Room Temp. Very Sensitive. 4 FOR \$1
741C OP AMPS MINI DIP. Prime New Units. Has computer MFG's house number. 12 FOR \$2 100 FOR $\$ 15$
DISC CAPACTTORS
.1 MFD 16 V. P.C. Leads Most Popular Value! P.C. Leads. By Sprague. 20 FOR $\$ 1$
HEAVY DUTY
Full Wave Bridge 25 AMP 50 PIV $\$ 1.25$

POWER RESISTORS .5 OHM 50 WATT. Adjustable . 5% 2 FOR \$1
3 OHM 15 WATT. 5%
3 FOR \$1
3FOR \$1
3 OHM 515
.25 OHM
3 WATT. 1% IRC
4 FOR $\$ 1$

POWER ZENER

 IN3998A 10 W .6 .2 V . 2 FOR \$1 W/HDWR16 PIN 1 C SOCKETS Low profile. Solder Tail. 5 FOR \$1

ZENERS

1 W. 15 V.
House Number. Motorola. 5 FOR \$1
TANTALUM CAPACITOR 1 MFD. 35 V. Kemet. Axial Lead. Best Value. 10 FOR \$1

MISC. SEMICONDUCTORS		
709C	Op Amp. ITT	$\$.29$
	14 Pin Dip	
IN4004	1A. 400 PIV. I. R.	$12 / \$ 1$
2N2646	Mot. Unijunction	$2 / \$ 1$
2N4871	Mot. TO-92-Unij.	$3 / \$ 1$
2N3819	T. I. House \#N-FET.	$4 / \$ 1$
EN3906	PNP Driver XSTR	$10 / \$ 1$
LM565	Phase Locked Loop	$\$.99$
LM723C	V. R. 14 Pin Dip	$\$.79$
4136	Quad Op Amp	$\$.99$
2N5777	Photo Transistor	$5 / \$ 1$
1N4748	1 W. 22V Zener	$10 / \$ 1$
2N2925	Pre-amp NPN XSTR	$8 / \$ 1$
2N1307	PNP Germanium	$5 / \$ 1$
EN2222	House \# XSTR	$10 / \$ 1$
2N2219	TO-5 NPN Power	$4 / \$ 1$
1N5384	5W 150V Zener	$5 / \$ 1$
TIS92	NPN Driver	$10 / \$ 1$

TRANSFORMRER

12 Vac. 600 MA . PRI-115 VAC 60 HZ .
Perfect for clocks or power supplies.

- - Small Size.

CABLE TIES

Most popular size. $33 / 4^{\prime \prime}$ overall for̀ a a $3 / 4$," bundle. Ty-wrap style. Nylon self-locking. 100 FOR \$1

FILTER CAP 4 FOR $\$ 1$
Mini Size. Axial. 1.000 MFD 16 WVDC

HEAVY DUTY 115 VAC RELAY

By Guardian. Coil is 115 VAC 60 HZ. DPDT 10 AMP Contacts.

$\$ 1.95$ each

TRANSISTORS

2N3566-TO - 5 plastic. NPN. VCEO-40 HFE 150 TO 600 10 FOR \$1

By Bowmar. .5 in. char. common cathode. Designed for use with multiplexed clock chips. Four digits in one pack.

LIMITED STOCK

MPS-6566 - TO - 92 plastic. NPN.

O-45 HFE 100 TO 400 10 FOR \$1

RED LED READOUT FILTER Very handy. Can be used with our Calculator Displays.
$21 / 4 \times 1 / 2 \mathrm{ln}$. 6 FOR \$1

CINCH-JONES

ROTARY

 SWITCHInstrument Grade. 3 Pole. 6 Position. Centralab.

TERMS: ORDERS UNDER \$15 ADD \$.75. NO C.O.D. WE ACCEPT VISA, MASTER CHARGE AND AMERICAN EXPRESS CARDS. MONEY BACK GUARANTEE ON ALL ITEMS. TEXAS RESIDENTS ADD 5% SALES TAX.

D.R.C. ELECTRONICS

16K E-PROM CARD
S-100 (IMSA1/ALTAIR) BUSS COMPATIBLE

SPECLAL OFFER: Our 2708's (650 NS) are $\$ 12.95$ when purchased with above kit.
IMAGINE HAVING 16K
of software on line at all tme:

KIT FEATURES:

1. Double sided PC Board with solder mask and silk screen and Gold plated contact fingers.
2. Selectable wait states.
3. All address lines and data lines buffered!
4. All sockets included.

5. On card regulators.

KIT INCLLDES ALL PARTS AND SOCKETS: (EXCEPT 2708's) ADD $\$ 25$ FOR ASSEMBLED AND TESTED

$\$ 149.00$ кाт

ADD $\$ 30$ FOR ASSEMBLED AND TESTED. KIT FEATURES:

1. Double sided PC Board with solder mask and silk screen layout. Gold plated contact fingers.
2. All sockets included!

S-100 (IMSAI/ALTAIR)
3. Fully buffered on all address and data lines. BUSS COMPATIBLE
4. Phantom is jumper selectable to pin 67.
5. FOUR 7805 regulators are provided on card.

S-100

Turns the board under test around so that the foil side is facing you Makes trouble shooting and debugging a SNAP! P.C. Layout designed to minimize noise and stray capacitance.

8K LOW POWER RAM KIT:

$\$ 24.95$
with connector

REVERSING

EXTENDER BOARD

COMPUTER GRADE CAP,
48.000 MFD 25 WVDC Mallory

$\$ 3.95$

T. I. ASCII CHARACTER GENERATOR TMS 4103 JC. 28 PIN CER DIP. Has seven bit COLUMN Output for use with Matrix hard copy devices. With specs. $\mathbf{\$ 3 . 5 0}$

MOTOROLA 7805R

 VOLTAGE REGULATORSame as standard 7805 except 750 MA OUTPUT. TO-220. 5VDC OUTPUT.
$\$.44$ each

10 FOR \$3.95

IC SOCKETS

For the newer RAM chips. 18 PIN - 4 FOR $\$ 1$ 22 PIN - 3 FOR \$1

NEW!
2114. The industry standard. 18 PIN DIP. Arranged as $1 \mathrm{~K} \mathrm{X} \mathrm{4}$. FOUR 21LO2's in ONE package! TWO chips give 1K X 8, with data. 2 FOR $\$ 24$

NPN Power Transistor. 30 AMP. 150 W. VCEO-60. TO-3. Vastly out performs 2N3055. Reg. List $\$ 3.04$ 2 FOR \$1

Z - 80 PRÓGRAMMING MANUAL

By MOSTEK, the major $Z-80$ second source. The most detailed explanation ever on the workings of the Z-80 CPU CHIPS. At least one full page on each of the $158 \mathrm{Z}-80$ instructions. A MUST reference manual for any user of the Z - 80. 300 pages. Just off the press! A D.R.C. exclusive!

NATIONAL SEMI. MA 1003 CAR CLOCK
Not a kit. Complete tested module. Works on 12 VDC. has on board time base. Sold by others at $\$ 24.95$. Big . 30° Bright Green Digits. Same as used by Detroit in new cards.

450 N.S.?

EDGE CONNECTOR - \$1.50

2708 EPROMS

Prime new units from a major U.S. mfg. 650 N.S. access time. Equivalent to fout 1702A's in one package!
$\$ 15.75$ each

TERMS: ORDERS UNDER \$15 ADD \$.75. NO C.O.D. WE ACCEPT VISA, MASTER CHARGE AND AMERICAN EXPRESS CARDS. MONEY BACK GUARANTEE ON ALL ITEMS. TEXAS RESIDENTS ADD 5% SALES TAX.

D20
WE PAY POSTAGE!
ELECTRONICS

TERMS: Please allow up to 5 for shipping, more for supply f VP2; excess refunded. Prices good through end of magazine cover month. Californians add tax. COD accepted with street address. For BankAmericard /VISA/Mastercharge orders ($\$ 15 \mathrm{~min}$) call 415-562-0636, 24 hours.

Low power Schottky

10 Slot Motherboard $\$ 124$

 CPU POWER SUPPLY $\$ 50$ 5V © 4A, $+12 \mathrm{Va} \frac{1}{2} \mathrm{~A},-12 \mathrm{~V}$ a EAA. With crowbar.

 into our new location to serve you better. Check our new aderess and telephone number. Thank for helping us grow $1 / 1$! 1 ! 1 :

High quality sockets for ' C 's and PC interconnections. Check our prices and quality-you will see why IRI-TEK is fast becoming the leader in IC sockets.

Low Profile DP Solicer ITail (Tin) End /Side stackable on . 100° centers

	$1-9$	$10-24$	$25-100$
SKT-08028 pin	.15	.15	.14
140214 pin	.18	.17	.16
160216 pir	.20	.19	.18
$180218 p i r$.27	.26	.25
200220 pin	.29	.28	.27
220222 pin	.35	.34	.33
240224 pin	.36	.35	.34
280228 pin	.42	.41	.40
400240 pin	.60	.57	.53

Z Level Wire Wrap Gold $\begin{array}{cccc} & 1-9 & 10-24 & 25-106 \\ 5 K-1400 & .33 & .37 & .36 \\ 1600 & .42 & .41 & -40 \\ 1800 & .73 & .65 & .59 \\ 2400 & 1.00 & .91 & .83 \\ 4000 & 1.69 & 1.51 & 1.37\end{array}$

200 Volt, 30 Amp BRIDGE Hi current bridge in rectangular case. Has integral heot tronsfer dise fo: fest coaling. An overstock ef a large mquipment monufac:urer brings you a borgain
from a famous Semi-Conductor manufocturer 52.00

Latching Reed Reloy

Miniature reed relay with 2 coils and latching reed. Use one coil to set, other to reset or reverse current in one cail for opposise functions. Single palesingle throw eapsule. P.C. Mounting. Rated of 13.5 V but works great on 12 V

RYL-1201C....

G.E. PANEL METER

Attrctive rectangulor meter from G.E.'s 3 HORLZONTAL LINE M mount. Catologs for more than $\$ 20$. Brand new in boxes with hardware GE-20VM.

A角 wernicadcelis

1.2 V cells in transparent rectangular plasti case. Removed from equipment but O.K. Just padd distilled water and chorge. Two sizes to chose from. 1.5 Amp Hour 52.20 $\$ 2.69$

Hi Voltage Hi Power NPH
G.E. D56W is o 1400 V , 5A NPN ransistor in TO-3 cose. Used in Horizontal deflection driver for color T.V. or any hi voltage hi pulse energy applications.

2

MM74C335-1

The MM74C935 Monolithic DVM circuit is manufactured using standard complementary MOS(CMOS) technolagy. A pulse modulation analog-to-digital conversion technigue is used and requires no external precision companents. In eccition, this technique allows the use of a reference woltage that is the same polarity os the input voltage.

One 5 (TTL) power supply is required. Operating with an isolcted supply allows the conversion of positive as well as negative voltages. The sign of the imput veltage is cutomaticaily determined and outpu: on the sign pin. If the power supply is not isolated, only one polarity of voltoge may be converted.

The conversion rate is set by an internal arcillator. The Fequensy of the oscillator cen be set by ar external RC network or the ascillator can be driven from on externol frequency source. When using the external RC network, a square wave output is available. It is important to note that great eare has been token to symahronize digit multiplexing with the A / D conversion timing to eliminate noise sive to power supply ransients.

The MM74C935 has been designed to drive 7 -segmemt multiplexed LED displays directly with the aid of external digit butfers and segment resistors. Under condition of overrange, the overflow output will go high and the cisplay will read tof or -OFL, tepencing on whether The input voltage is posifive or regative. In addition to this, the mest significant digit is blanked when zero.

A stort conversion inpul and a convertion complete sutpit cre included
FEATURES:
O Opeates frem single 5 V supply
Converts OV to $\pm 1,999 \mathrm{~V}$
O Multiplexed 7 -segmen:
0 Dives segments directly
No external precision comoonent recessary
Q Medium speed - 200ms/conversion
0 All inputs and outputs ITL compatible
O Internal clock set with RC network or driven exteratly =

C Overrenge incicated $\mathrm{ky} * \mathrm{OFL}$ or -GFL display reoding and OFLO outpur
O Analog inputs in appliçations shown can withstand 1200 Volts

APPLICATIONS:
O Low cost digital power supply recrdouts
Low cost digitol multimeters
O Eliminate anolog multiplexing by using remote A / D converters
Convert analog tronsducers ('rempergture, pressure, displacement, etc.) to digital transducers
MM74C935N-1. with specs. $\$ 16.98$ Specs only for 74C935.............................. 5.90

LM336Z Reference ciode
Precision $2 V$
DVM chip.
LM336Z..

Tr. tri-tek, Inc
 7808 N. 27 TH AVENUE

PHOENIX, ARIZONA 85021

ALDELGO ELEBTRONIH GENTER NOW OPENI

Kits, Books, Boards, Magazines. Speqial 2102L\$ 8 for $\$ 17.50$. 8080A CPU Chip $\$ 19.95$. We stock OK Battery Operated wire Tool $\$ 34.95$, OK Hand Wire Wrapped Tool $\$ 5.95 .7400$ 1Cs CMOS, Tiners PLL's IC Sockets. All kinds of transistors, rectitiers and diodes. Plus other electronic parts.

Add 5% for shipping. Add $\$ 1.00$ for order under $\$ 10.00$. Out of $U . S, A$. send certified check or money order, include shipping costs.
BUILD THE W7EBX PROGRAMMABLE KEYER. SOLID STATE PARTS WITF IC SOCKETS \$42.OO. WE CAN SUPPLY THE FOUR PC BOARDS AND COMPREHENSIVE CONSTRUCTION MANUAL - ALL FOR ONLY \$29.95.

National MA1003

Actual Size $-1.75^{\prime \prime} \times 3.05^{\prime \prime}$
100° Spoal Green $=30$ wire
Wrap Wire \qquad . $\$ 2.75$
OK Wire Hand Toof
WSU 30 5.95 WSU30M (modified wrap) . 6.95 Battery operated wire-wrap tool BW 630 Wraps $\# 30$ wire 34.95 New! Model BW 2628. Wraps $\# 26+\mp 28$ wire $\$ 39.95$ Batteries not included.

- RECTIFIERS

2 amp 50 volt 20 for $\$ 1.00$ 2 amp 1000 valt 10 for $\$ 1.00$ 2 amp 1500 volt .5 for 1.00 6 amp 100 volt 69 10 amp stud 50 volt . . 1.50 10 amp stud 600 volt .4 .50 40 amp stud 50 volt . . 1.20 40 amp stud 750 volt .2 .05 BRIDGES
2 amp T05 50 volt 35
2 amp T05 200 volt . . . 50
2 amp T05 600 volt . 1.25
3 amp .50 volt 50
3 amp. 400 volt 1.10
25 amp. 200 volt 1.50
25 amp. 600 volt . . . 5.50
25 amp. 1000 volt ... 8.50

VOLTAGE REGULATORS

 T0220 Package $\$ 1.00$ each| Positive | Negative |
| :--- | :--- |
| 7805 | 7905 |
| 7806 | 7906 |
| 7808 | 7912 |
| 7812 | 7915 |
| 7815 | 7918 |

LM309K T03 1.10
LM723 14 pin 55

- FETS

40673 1.55
MPF102 55
2N3819 35
2N5457 50
2N5458 50
2N5459 55
2N5485 50

- DARLINGTON

MPSA $13 \ldots . . .$.
MPSA 14 40
2N5306 50

- SCR

C 106A 55
C 106B 65
C 122B 85

BRIGHT . 3 FLUORESCENT DISPLAY
Same unit supplied as original equipment in many new auto mobiles - 12 volt DC Xtal timebase - 12 hour format completely assemblea unit - dims to comfortable viewing when car lights are on low standby power consumption.

All for ONLY \$24.95

LOGIC PROBE KIT

Aldelco is now the sole distributar of the DIGAPEAKE - a logic probe kit. Now you can buy direct and save. Probe measures logic 1 , logic 0 , and pulsing circuits conditions formerly sold for $\$ 14.95$.

SPECIAL $\$ 11.95$ ACCUKEYER KIT Similar to the famous ARRL Handoook version, Kit includes PC board, IC sockets. ICs, speaker switch and all parts and instructions.

ONLY $\$ 19.95$

ACCUKEYER

 MEMORY KITAdaptable to many keyers. Can store 2 canned messages of 30 characters each. PC board IC sockets, ICs instructians and all parts. $\$ 19.95$

CLOCK CHIPS

5313	49
5314	3.49
5316	3.95
5375	3.95
CT700	

- NEW IMPROVED ALARM CLOCK KIT

ALDELCO KITS

PLUS - FREE

3 push switches and choice of green, blue or amber filter.
also good for marine and aircraft

Digital alarm clock - Six big .5 display LEDs

- New on board AC Transformer - 12 Hour format with 24 hour Alarm - Snooze Feature Elapsed time indicator.
A natural for cars, campers and mobile homes. Use on 12 volf $d c$ with optional crystal time base (not including cabine:) $\$ 19.95$

- CRYSTAL TIME BASE KIT \$4.95

Optional cabinet - in simulated walnut grain or black leather $\$ 4.95$
Plastic cabinets - blue, black, white or smoke
$\$ 3.95$
Fed clock filters $\$.60$
12 or 24 hour DIGITAL CLOCK KIT uses .5 display LED. 5314 clock chip fits our standard cabinet. Freeze feature $\$ 18.95$
Blinky Flasher Kit
PC board, 555 \& all parts works on 9 volts -
$\$ 2.50$. Morse button - \$1.00.

CESSOR CHIPS-MICROPROCESSOR CHIPS-MICROPROCESSOR CHIPS-MICROPROCE

8212 - I/OPORT . 3.50		
8214 - P.IC......................... 12.95	8251 PROG. COMM. INTERFACE. 10.95	2513 CHAR. GEN. 7.50
8216 - NON INVERT BUS 4.4 .95	8255 PROG. PERP. INTERFACE 13.50	8833 QUAD BUS. RECR 2.00
8224 - CLOCK GEN . 4.9 .95		74LS138N - I/8 DECODER 99
8826 - INVERT BUS. 3.9 .95	8830 DUAL LINE DR . 1.75	8 T97 HEX TRI STATE BUFFER 1.25
	8830 dual line pr 1 .15	1488:1489 - RS232. 1.50

NTER CHIPS-COUNTER CHIPS-COUNTER CHIPS-COUNTER CHIPS= COUNTER CHI

FORNEWORUSED AMATEUR RADIO CEAR . . . we're specialists and carry in stock most of the famous-brand fines. Or, we will talk trade.

> FOR FAST, DOORSTEP DELIVERY...
> giveus a call. You'll beamazed; for we guarantee well ship your equipment the same day. Plus, most shipments are PREPAID.

TO SAVE MONEY
. join thousands of our satisfied customers who buy from us as easily as from their local supplier: So, remember your call is Toll Free.

We welcome your Master Charge or Bank Americard

Armchair Copy with new $\$ 67$ RAK-7 Active Antenna
 Shortwave Listening

Our ONLY occupation is supplying everything you need to tune the mediumwave and shortwave bands-and identify what you hear. Our NEW mini-catalog details Barlow Wadley, Drake and Yaesu receivers, WORLD RADIO TV HANDBOOK, logs, receiving antennas \& tuners, calibrators, FM or TV guides, AM pattern maps, QSL albums, ITU publications, RTTY displays, CONFIDENTIAL FREQUENCY LIST. clocks and all SWL books

GILFER ASSOCIATES, INC

P.O. Box 239, Park Ridge, NJ 07656

2 METER CRYSTALS MANY IN STOCK

FOR THESE RADIOS ON STANDARD ARRL REPEATER FREQUENCIES

Clegg HT-146
Drake TR-22
Drake TR-33 (rec only) Drake TR-72 Genave
Heathkit HW-2021
(rec only)
Heathkit HW-202
lcom/VHF Eng
Ken/Wilson
Lafayette HA-146
Midland 13-505
Regency HR-2

Regency HR-212
Regency HR-2B
Regency HR-312
Regency HR-2MS
S.E.E.

Sonar 1802-3-4, 3601 Stanclard 146/826 Standard Horizon Swan FM 2 X
Tempo FMiH
Trio/Kenwood
Trio/Kenwood TF2200
Trio/Kenwoad TR7200

\$3.95 EACH - IN QUANTITIES

 OF 10 OR MORE, $\$ 3.50$ EACHCertified check or money order only NO CODS

ROLIN distributors

P.O. Box 436

Dunelle NJ 08812

PROUD OF YOUR CALL? WORRIED ABOUT THEFT?

Identify your FM transceiver with automatic code on each trans-

SMALL: $2^{\prime \prime} \times 25 / 8^{\prime \prime} \times 5 / 16^{\prime \prime}$ Installation: Only THREE wires

WARRANTY

Returnable for full refund within ten day trial period. One year for repair or replacement.

PRICE $\$ 39.95$ CA.SALESTAX
Your call sign programmed at factory, please be sure to state call sign when ordering.

AUTOCODE

8116 Glider Ave, Dept S Lós Angeles, Ca. 90045 (213) 645-1892

A36

THN 596 chat 160

R15

NEW

less batteries and crystals
ECM-5B MK-II fm modulation meter - $0-6 \mathrm{KHz}$ peak reading linear scale, meets commercial standards

- Operates 25 MHz to 500 MHz

Crystal controlled for easy operation
E Audio/scope output with earphone
Options: NICAD power PAK $\$ 34.95$ Charger \$29.95
Write or call for complete information. Send check or money order for $\$ 145$ plus $\$ 1.75$ for shipping. Indiana residents add 4% sales tax. Crystals for
$146.94 M H z: \$ 4.95$ All other freq: 146.94
$\$ 7.95$

ECMECM Corporation 412 N. Weinbach Ave. Evansville IN 47711 812-476-2121

NEW! A $\$ 34.95$

Meter Calibrator!

A quality volt-ohm calibrator at a breakthrough price! Why put off calibration of your VOM, VTVM, or digital multimeter?
Here's what you get:

- Check DC volts at $0.100 \mathrm{~V}, 1.000 \mathrm{~V}$, and 10.000 V
- Up to 0.02% accuracy on volts
- Check ohms at $100 \Omega, 1 \mathrm{k}, 10 \mathrm{k}, 100 \mathrm{k}$, and 1 meg.
- Up to 0.1% accuracy on ohms Battery powered, uses $2-9 \vee$ batteries (not included)
Uses hybrid IC precision reference
Only $\$ 34.95$ each. Please add $\$ 1.50$ postage. CA residents add $\$ 2.10$ tax.
Gary McClellan and Co. Box 2085
G10
1001 W. Imperial Hwy.

INSTRUCTOGRAPH
 MORSE CODE

Since 1924 Instructograph has serviced the world with the most complete equipment ever devised for learning Continental code. You have complete control of sending \& receiving AT ANY SPEED YOU DESIRE while machine is ruaning, without changing tapes fnot cassettes). A complete course for beginners incl. machine, 10 double sided tapes, key, manual, built-in speaker. Nothing eise to buy. $\$ 98.50$ plus UPS $\mathbf{1 2 1 b}$. del. chg. Add 6% S.T. for Calif. det. For catalog on 45 advanced tapes write: Instructograph Co. Box 5032 Dept. 3, Glendale, CA 91201. (213)246-3902 or 245-2250.

MORSE CODE INSTRUCTOGRAPH

MAKE MONEY

Perhaps you've been thinking of the computer hobby as a way to get into a small business. Why not? This is going to be an enormous field in a couple of years and you can bet that those on the ground floor will have the best chance at the gold ring. Kitobaud will help you learn how to get into mankfacturing . . . to become a dealer ... a manufiacturer's representative . . . a service bureau
a writer. Never before has there been an opportunity like this. Grab hold and start getting your feet wet.
KILOBAUD IS BRAND NEW
The first issue was January 1977. . . and the magazine is the fastest growing and best accepted magazine in the hobby computer field already. You doubt that? Just stop in at any hobby comiputer store and ask anyone you see. Kilobaud is outselling all other magazines combined which says something considering the cover price of $\$ 2$. It's fulf of good articles and has a sense of humor. There are more articles in Kilobaud than you can read in a day . . . most readers comment that Kilobaud just has to be read from cover to cover and this takes several days.

DO YOU WANT TO LEARN COMPUTERS?

Some magazines emphasize OEM systems ... some are written more for computer scientists .. Kilobaud is written for and by its readers ... the hobbyists. You'll find great articles in there by well known hobbvists such as -Don Lancaster .. . Don Alexander Pete Stark . . . Dennis Brown Hal Walker . . . Art Childs. Sheila Clark . . and many more. The emphasis is fun.

TRY A SUBSCRIPTION

The cover price is $\$ 2$ (that's $\$ 24$ a year), but the subscription rate is only $\$ 15$ for the year... a saving of $\$ 9,00$, plus you get a Computermaniac tee shirt ... hurry, limited number available. You can pay for it with your credit card (BankAmericard, Master Charge, American Express) or you can even be billed directly. Send in the below coupon . . . or call TOLL FREE 800-258-5473 (during office hours). Please have your credit card handy.

Your subscription will start with the next published issue, so allow about six weeks for any apparent action. If you would like to be filled in with the back issues they are $\$ 3$ each and at last count some were still available.

If you are like the rest of us you've been reading about microcomputers . . . you're excited about them ... but there is so much to understand and it all seems so complicated that there is no way to understand it.

Hogwash.
A new magazine is being published for computer hobbyists. for people who are beginners neophytes . . . novices . . . people who have no idea what a vectored interrupt is, but just the same want to learn about computers and have fun.

A home computer system can cost you a bundle if you don't know what you are doing. Kilobaud could save you a lot of money ... others have learned the hard way. Kilobaud is a sort
of giant club newsletter for computer hobbyists, a place to tell each other about the problems they've had - and the solutions, It's a magazine filled with great articles . . . all written so you'll be able to understand them.

You want to know about hardware? Read about the new MITS Z-80 CPU in Kilobaud, simply explained by the chap who designed the circuit. Or how about the best-selling TDL Z-80 CPU ... the designer has written about it in Kilobaud too. You're wondering about what cassette system to use? You can go crazy on this one ... but before flipping out, read the Hal Walker article in Kilobaud and find out what the problems are . . . and the solutions.

YESI Start my one vear KILOBAUD subscription for $\$ 15$ with the next published issue. *And send my FREE Tee shint. Sizes for ADUL TS ONLY.
$S \square M \square \angle \square X L \square$
Name Call

Address
City__ State___Zip
$\$ 15.00$ enciosed. \square Cash \square Check \square Money Order
Bill: \square Master Charge \square BankAmericard \square American Express
Card \# \qquad Interbank \#
Signature \qquad Exp. date
\square Bill me direct. (I've signed above)
*Tee Shirt sent when bill is paid. Allow six weeks for processing. Toll Free Subscription Number (800) 258-5473 US only - offer expires 12/31/77

JUNE 63. Sen s scue Dinaz Beacon $7 x$ or 220. ircreasing apC 2 pursoswer sefcuwity sprsad infuctanse tester, opverting EC 230 ix, beginner's ix using BC 453 , recur motor fuming, transistor ew moniter, $8 \mathrm{C}-442$ ant retay conversion, moty!e loadhetg coils, increasing Two-er selecivity. TV with the ART 26 tx, 2 n 2 M .
AUG 63. बenter op 5 M s: an ade molie gen, Wheo modi. ator, megh TF switch, ant gein. Hio inads, ow urewin, VEE Searl ucsigr, ceax ousos fe mutreie. TX tuen Guth inode puve s-zpoty. "Lunchicos" squedet. 3NR explar. ation, vertieal ant info, into on windormant.
OCT 63. wBFM transenivas ideas iff mopagatiot, cheap fone parch, remoterune: Yagi. construcion lums, am coumper. \$s vertical. Gilament xformer consitation, 2th muvistor converser, tatovette $1+1$ 35 mpds, Puyar's

FEB 64. 2h: mu'tichennel exciter, ix design
 MAY 67. Ouad issue 432 Quan quard quad. nxpmand HF croad. Two el quad. miniquad.

 JULY 67. VE ham radio, VEQ hams, dsh adsphor, homs brew tower, trensisto thesign,
39 Worla's Fair. gind plane ont, G42U beam, SSTV momitor. UHF FET preames, ic "at"
strin, verical ant. VHF UHF dimpr, iower

 modern sixing:

JULY 68 , Woglurl tower construction, ithover towers, arccting a teteohone pole. IC AF ose. "owers, explained. ham club lips (Part 1).

 NOV GB, sSg xial iftere, solid seate troubleshooting, ic trea coumber lmany virors $\&$ ormussions), "siv" irancformers, space comm
oflyssey, pulsar info, thin wire ants, ADM tran sistor cun wirx. Be, 348 m double cenversion,
 JAN 69. Suppresser corvaressor. HA: 12 ar
isis. gram rinme AC vatage cortot 2M

FES 69. SSTV camera mod for fast seah.
 MAR 69. Suralus issout -CS ix mats cheap

 himo, Surplise Conversi
heanse study iPary 2 l.
 Two or PTT. Wh inte DC loed. SWR br dge 100

MAY 69. 2 M Tiriskite, 2 M Slut, rx atren atar,
genevatar fite, short VEE, quad ruining. using geneyator fitte, short VEE, quad runing. using
aniennascope, ineasurning amt gain, phone patch
regs, SWR incticator, 160 M short verticants, 15 M antemna. IAF propagation angles, FSK exciter, इW summy load, hi-power linear, exurd license
 Whip UHF w UnEs. ATV VCEc modulator

The back issues of 73 are a gold mine of interesting articles ... just take a look at what's been covered every possible interest. This is the most important library you can have for hamming.

The supply of these back issues is very limited . . . and when these are gone, that will be it. Don't miss out by procrastinating. Treat yourself (or a ham friend) to a fantastic bargain.

AUG 69. FET regen for 3.5 MHE up. FiM
Byscal sumching.

SEPT 69. Tunnet diade theorv malle res.

 acacito is sege, redic propagaticn Ats mod
 OCT 69.
telephone intor scope calibrator, thyrector
surge protwior. slower tuning mites, identity
calibrator harmanics. Fiv adepror tol AM ix, Calnorator harmanics, Fin adeptor for AM ix.

 verter, cocsing inte. 112 arioge. im moble
 transistor bias design, xtal whf sign gen, elca
tronic variac, SB33 mads, extra chass study fpart 10. \$834 linear improwembats.

JaN 70.
power supbly. SSTV color methoch base-turhe center landed ant. 6 M bandpass filter. extri
liesnse stualy fort 12 , rectifier diode useaqe tarsimile info

 goco dip lite, Hoprola 41 V somersion, in
 APR 70 . No:se nharker, 2M hathatrier chesh

 SSE bto ies shorwave talic, wann twe lead

MAY 70. Conmen's on tanacken =imat

sulto mate

JUNE 70. DOAR Mor, wo cesuit, temote ghat

 ning protection. If in methary, al'ic onts

5oivout

JUNE 71. 2 M tram experineums. 3 of 2 M quat,

JULY 71. IC nubl lraceseor, atudic siggen, $=0$

AUG 71. Hemm hacsimite \{nait 1), 500 Watt
linear, dimensions for July collinear, 4 fube
 general class stucty tiar: ill, nint tieker weve

 IT 20C. Hem tics rife foart za, sat ses of

OCT 71. Emergency tepente for transtewer sawer, sibaly, bedicting meteor sinowers, bigi postice copates, parth gesuncus. juco "taior

NOV 71. 3 al 764 beam, motor-imed gnd Dtothe, 2po gain wethat, transistur niasimg. ntit
 1015.20 M quac, transistor bi inet tinal, ant teecal
citer

AUG 72. SSTV intio speech provessor. in

SEPT 72. Plambicon tw camera, WWVE 60 kH
 powt wpply. IC EDA (x, ic tim, arn detwhor

OCT 72. Conecrions for Aug. 1 m rx acaptcr,
 ipart 1 , active tister design \{part 4 , repester

 18 wat ath, SSB modula de supply, transminsion lime uges, radio astron LED info, 40 M : ireamp, wansistor vip, 1972

JAN 73. HT 225 sournene, 3 ef 20% yagn, 30
 Inear. iakif ither. afose noise limiter.
wish aqc, HN2Zs rans miver 40 M mard, HAL

FER 73. OW 14 gen, tmen operared relay.

 power indscetors. 75A. filers, moverante

APH 73. FM deviation meter, $2 M$ FET breamp. two 2 M powner atrips, reptator contiol fari 1$\}$,
repester licensing. European 2 M fim, tim scanter

JUNE 73. 220 MHE sicgen, hf ce.wer meter,
 hared summe: meter, riced lanttery pack, ahm metel, FCC

AUG 73. Logueriodics toar: 11. tone burst gen 1 powe. 3 mp therion, varelstor mdic intercom.
thom ant. Sit monito: tow cost ireag
 SEPT 73. Repgeter cenva swion leg. applicaticns, 7 it pad howkup. Heash HW "s"

OCT 73. GE Pocketmate now microwave frog Thesuremens, ca3102E 2N: tronsend, 2 kw it

 failery provection, 150 M ant accupber, Moto
mala HT into. SSTV 15 B . Class B af arm. FCC

 wich, ic restm, senuertial ane ctoce. 2h fiter tesigr. FCC esgs tpan:
FEB 7

 whin mine it we.

APR 74. Vos for evepters, tow op wased
 Hemote control mate tor samer. HCA or th Repseater Auths.

 Wivest sfs ger. 55 C , ira, bok blatar
 miods, tracting ew filer, and valthetel um we shi regalates supoly,

SEPT 74. WOEKE Y electian Eerel ipm. 1 "x wining singen Heasf ic 103 s sont moes

(More)

OCT 74. MuGrotransistor eurcurts, synthesicet
HT 220 iDart 11, repeater government, regu lated 5 vad suppl, fm seleal, emoverble
mobile ants, Matorola metering. 2 M vertical coilinear. Mo toroba model corde, 2 M vertical dipole, (1. M Mr it strip, Moskey - ectronic kever park 2, barbon, mike serculs hi wowet syne gen, NCX 5 mods, mobile whep for apart

MOV 74. K2OAW counter upaate, regulated 5 sized HT-220 (part 2), 20 M 3-el beam, autopatch pad hookups, double-srub ant match,

 can converter erfaza, repeater offtreq indic

DEC 74. Care of nicads, wind speed/direction tronic kever, hints for novices, converser, elecscales, SSTV tape ideas. TTL logic probe, public service band converter, tuned diode test receivers. dig, swr meter foart 2\}. Ielephane podex

FEB 75. Heath HO. 10 scope mod ior SSTV, electronic keyer, degital satellite oriotal umer, Oscar- 7 operazion, satelite orbital prediction. repeater engineering, Robot $80-\mathrm{A}$ ssiv camera mod, neutralizing Heath SB-110A "Bownceless'd ic switch, tape keyer for cwo $t x$. Bounce-

APR 75. $\$ 50$ walky for $2 \mathrm{M}, 2 \mathrm{M}$ scanning synthesizer, 88 mH torold into, 8 -tunction
repeater controller, nicad battery precautions TR22C preams, telephone attachment regs, Guide to 2M Hand-held Transceivers, 2M 7 -el baam, basic telephone systems (part 1), 10 min 9 m timer, modified hf Hustlea mobile ant for 2m, 15m quad macitied for 20 M . 2 m collinear 2 M ant. Hallicrafters $\mathrm{S} \times 111 \mathrm{rx}$ mods. 760 M cw

AUG $75.146 / 432 \mathrm{MHz}$ Helical ants to art 21,10 debugging rf fédback DVM byer's guide, wx satellite monitor, cmas "accu-kever r. pig board method, sweep-tube final precautions, compace mutiband dipoles, small digital ctock, accessory multi-function gen, 2 M scanning synthesizer errata, KP-202 waiky charger, 10 M multielement beam.
SEPT 75. Calculating freq counter, wx satellite buttor TT decoder troubileshonting 5 thty pix. 40 M dx ams, $146 / 432 \mathrm{MHz}$ helical amts (con. clusion), digi sws computer (conclusion), reed
relay tor CW Dk in. NE555 preset timer, bowerrelav for CW Dk in. NE555 preset timer, power-
failuve alarm, portable aro rig pawer unis failure alarm, portable rip rig power unit,

There's little to get stale in back issues of 73 (our magazine is not padded . . . like others . . . with reams of activity reports), you or "giffee" have a fantastic time reading them. Most of the articles are still exciting to read . . . and old editorials are even more fun for most of the dire predictions by Green have now come to pass. Incentive licensing was every bit the debacle he pre dicted . . . and more. You'll really get a kick out of the back issues.

 QCT 76. Buld Worrd Z Bard Mobicie Antenne. Buitd a Eounter for

 Decoder, Using a wireless ' Erowastaster, The Ouiet Spy - Amateve Cncowers, Spy Ring in

DEC 76. Go Tone tar Ten - Simple Subsudible Encoder, World's

 - Totk Mbsut Cold Salser Joints:, Explosing the Power Mivth

40,

 Cash in on the co - inssuation tor Fun and Prath, TLung Those

(

The ONLY Complete License Study Guides

- NOVICE STUDY GUIDE - Here is a completely new study guide and reference book for the potential ham. This is not a question/answer memorization course. Electronic and radio fundamentals are presented and explained in an easy-to-understand fashion, preparing the beginner for the Novice exam. Includes the latest FCC amateur regulations, as well as application forms. Easily the best path into the exciting world of ham radio! $\$ 4.95$.
- GENERAL CLASS STUDY GUIDE - A complete theory course for the prospective General or Technician. This reference explains transistor, amplifier, and general radio theory, while preparing the Novice for the "big' ticket. After getting your ticket, you'll use this guide again and again as an electronic reference source. Not a question/answer guide that becomes dated when the FCC updates the amateur exams. $\$ 5.95$.
- ADVANCED CLASS STUDY GUIDE - Ready to upgrade your license? To prevent retaking the FCC theory exam, you need the 73 Advanced theory guide. SSB, antenna theory, transmitters, and electronic measuring techniques are covered in detail in this easy-to-follow study guide. Special modes and techniques, such as RTTY, are also treated. An engineering degree is not necessary to master Advanced theory - try this book before visiting the examiner's office! $\$ 3.95$.
- EXTRA CLASS LICENSE STUDY GUIDE - Before going for your 1×2 call, it pays to be a master of the Extra class electronic theory. This study guide is the logical extension of the 73 theory course. All the theory necessary to pass the exam is presented. Antennas, transmission lines, swr are discussed, as well as noise, propagation, and specialized communication techniques. Th is book is not a classroom lecture or memorization guide, but rather a logical presentation of the material that must be understood before attempting the Extra exam. Save yourself a return trip to the FCC and try the 73 method first! $\$ 5.95$.

You'll be astounded at how really simple the theory is when you hear it explained on these tapes. Three tapes of theory and one of questions and answers from the latest Novice exams give you the edge you need to breeze through your exam.

73 is interested in helping get more amateurs, so were giving you the complete set of our tapes for the incredibly low price of ONL Y \$15.95.

Scientists have proven that you learn faster by listening than by reading because you can play a cassette tape over and over in your spare time - even while you're driving! You get more and more infe each time you hear it.

You can't progress without solid fundamentals. These four hour-long tapes give you all the basics you'll need to pass the Novice exam easily. You'll have an understanding of the basics which will be invaluable to you for the rest of your life! Can you afford to take your Novice exam without first listening to your tapes?

FOUR TAPES for $\$ 15.95$ $\$ 4.95$ EACH
5 WPM This is the begin ning tape for people who do not know the code at all. It takes them through the 26 letters, 10 numbers and nec essary punctuation, complete with practice every step of the with practice the newest blitz way using the newest blitz
teaching techniques. It is teaching techniques. It is
almost miraculous! in one hour many people - including kids of ten - are able to master the code. The ease of learning gives confidence to beginners who might other wise drop out.

NEW CODE SYSTEM - Four Speeds Available

$6+$ WPM This is the practice tape for the Novice and Tech. nician licenses. It is made up of one solid hour of code, sent at the official FCC standard Ino other tape we've heard uses these standaros, so many people flunk the code when they are suddenly - under pressure - faced with charac pressure - faced with charac-
ters sent at 13 wpm and ters sent at 13 wpm and
spaced for 5 wpm). This tape is not memorizable, unilike the zany 5 wam tape, since the code groups are entirely ran dom characters sent in groups of five. Practice this one dur ing lunch, while in the car
anywhere, and you'll be more than prepared for the easy FCC exam.
$13+$ WPM Code groups again, at a brisk 13 per so vou will be at ease when you sit down in front of the steely eyed government inspector and he starts sending you plàn language at only 13 per. You need this extra margin to over come the panic which is uni versal in the test situations. When you've spent your money and time to take the mest you"ll thank heavens you test you'll thank heavens you had this back-breaking tape.

20+ WPM Code is what gets you when you go for the Extra Class license. It is so embarrassing to panic out just because you didn's prepare vourself with this tape. Though this is only one word faster, the code groups are so difficult that you'll almost fall asleep copying the FCC stuff by comparison. Users report that they can't believe how easy 20 per really is with this fantastic one hour tape. No one who can copy these tapes can possibly fail the FCC test. Remove all fear of the code forever with these tapes

ONLY 4 for $\$ 15.95$! 73 is in the publishing business, not tapes, so these are priced much
you ever seen one hour cassettes for under $\$ 6$? For 1 st class mail add $25 d$ per tape ordered.

BUMPER STICKERS:
RADIO AMATEURS TALK TO THE WORLD!! AUTHORIZED VEHICLE
SUPPORT YOUR LOCAL POLICE
$50 \&$ each; any 3 for $\$ 1.00$
BINDERS - Red Binders with gold lettering keep your 1976 \& 197773 s safe from being lost or damaged. Each binder holds 12 issues. $\$ 6.00$ ea. 2 for $\$ 11.00$

BACK ISSUE BUNDLE! 7t Mapgaine classics, issues containin hundrads of articies \& projects. Grapt for nogtalgia buffs. 20

 copies (all different) for \$3.00LIBRARY SHELF BOOK BOXES $\$ 2.00$ each
$2 / \$ 3.00 \cdot 8 / \$ 10.00$

Use the order card or itemize your order on a separate piece of paper and mail to
73 Radio Bookshop Peterborough NH 03458 Be sure to include check or detailed credit card information
Note: Prices subject to change withous notice on books not published by 73 Magazine

- WEATHER SATELLITE HANDBOOK Simple equipment and methods for getting good pictures from the weather satellite. Antennas, receivers, monitors, facsimile you can build, tracking, automatic control (you don't even have to be home). Dr. Taggart WB8DQT \$4.95.
- REPEATER ATLAS Hundreds of new listings . . . by both location and frequency . . . dual listing, invaluable for your car . . . find those repeaters as you travel. This is the ONLY complete list of repeaters being published. Almost 3000 repeaters listed in this issue . . . repeaters from all over the entire world. Only $\$ 1.95$.
- VHF ANTENNA HANDBOOK The NEW VHF Antenna Handbook details the theory, design and construction of hundreds of different VHF and UHF antennas ... A practical book written for the average amateur who takes joy in building, not full of complex formulas for the design engineer. Packed with fabulous antenna projects you can build. $\$ 4.95$.
- THE CHALLENGE OF 160 is the newest book in the 73 technical library, dedicated to 160 meter operating. Si Dunn provides all necessary information to get started on this unique band. The all-important antenna and ground systems are described in detail. The introduction contains interesting photos of Stew Perry's (the King of 160) shack. This reference is a must for new and experienced "Top Band ${ }^{\text {r* }}$ operators. Price: $\$ 4.95$.

- COAX HANDBOOK The world's only handbook devoted exclusively to coax, feedines and connectors. Special price only $\$ 1.50$.
- VOL. I COMPONENT TESTERS . . how to build transistor testers (8), diode testers (3), IC testers (3), voltmeters and VTVMs (9), ohmmeters (8 different kinds), inductance (3), capacity (9), Q measurement, crystal checking (6), temperature (2), aural meters for the blind (3) and all sorts of miscellaneous data on meters ... using them, making them more versatile, making standards. Invaluable book, $\$ 4.95$.
- VOL. II AUDIO FREQUENCY TESTERS . . . jam packed full of all kinds of audio frequency test equipment. If you're into SSB, RTTY, SSTV, etc., this book is a must for you . . . a good book for hi-fi addicts and experimenters tool $\$ 4.95$.
- VOL. III RADIO FREQUENCY TESTERS Radio frequency waves, the common denominator of Amateur Radio. Such items as SWR. antenna impedance, line impedance, if output and field strength; detailed instructions on testing these items includes sections on signal generators, crystal calibrators, grid dip oscillators, noise generators, dummy loads and much more. $\$ 4.95$.
- THE NEW RTTY HANDBOOK is a brand new 1977 edition and the only up-to-date RTTY book available. The state of the art has been changing radically and has made all previous RTTY books obsolete. It has the latest circuits, great for the newcomer and the expert alike Only \$5.95.
- 73 VERTICAL. BEAM AND TRIANGLE ANTENNAS by Edward M. Noll W3FC.J Describes 73 different antennas for amateurs. Each design is the result of the author's own experiments: each has actually been built and air-tested. Includes appendices covering the construction of noise bridges and antenna line tuners, as well as methods for measuring resonant frequency, velocity factor, and standing-wave ratios. 160 pages. $\$ 5.50$.
- IC OP-AMP COOKBOOK by Walter G. Jung. Covers not only the basic theory of the IC Op amp in great detail, but also includes over 250 practical circuit applications, liberally illustrated. 592 pages, $51 / 2 \times 81 / 2$, softbound \$12.95.
- 73 DIPOLE AND LONG WIRE ANTENNAS by Edward M. Noll W3FQJ This is the first collection of virtually every type of wire antenna used by amateurs. Includes dimensions, configurations, and detailed construction data for 73 different antenna types. Appendices describe the construction of noise bridges, line tuners, and data on measuring resonant frequency, velocity factor, and swr. 160 pages. $\$ 5.50$.
- RF AND DIGITAL TEST EQUIPMENT YOU CAN BUILD Rf burst. function, square wave generators, variable length pulse generators 100 kHz marker, i-f and rf sweep generators, audio ose, af/rf signal injector, 146 MHz synthesizer, digital readouts for counters, several counters, prescaler, microwavemeter, etc. 252 pages. $\$ 5.95$.
- SSTV HANDBOOK This excellent book tells all about it, from its history and basics to the present state of the art techniques. Contains chapters on circuits, monitors, cameras, color SSTV, test equipment and much more. Hardbound $\$ 7$, softbound $\$ 5$.

Use the order card or itemize your order on a separate piece of paper and mail to:
73 Radio Bookshop - Peterborough NH 03458 Be sure to include check or detailed credit card information. Note: Prices subject to change without notice on books not published by 73 Magazine.

- RTL COOKBOOK by Donald Lancaster. Explains the how and why of RTL (Resistor-Transistor Logic) and gives design information that can be put to practical use. Gives a multitude of digital applications ranging from the basic switch to the sophisticated counter. 240 pages; $51 / 2 \times 81 / 2$; softbound. $\$ 5.50$.
- TTL COOKBOOK by Donald Lancaster. Explains what TTL is, how it works, and how to use it. Discusses practical applications, such as a digital counter and display system, events counter, electronic stopwatch, digital voltmeter, and a digital tachometer. 336 pages; $51 / 2 \times 81 / 2$; softbound. $\$ 8.95$. - TVT COOKBOOK by Donald Lancaster. Describes the use of a standard television receiver as a microprocessor CRT terminal. Explains and describes character generation, cursor control and interface information in typical, easy-to-understand Lancaster style. This book is a required text for both the microcomputer enthusiast and the amateur RTTY operator who desires a quiet alternative to noisy teletype machines. $\$ 9.95$.

- FASCINATING WORLD OF RADIO COMMUNICATION Interesting stories in the history of radio pioneering and discovery. Also includes the fundamentals of broadcast band DXing. A must for every radio amateur. $\$ 3.95$.
- PRACTICAL TEST INSTRUMENTS YOU CAN BUILD 37 simple test instruments you can make - covers VOMs, VTVMs, semiconductor testing units, dip meters, wattmeters, and just about anything else you might need around the test lab and ham shack. \$4.95.
- 1001 PRACTICAL ELECTRONIC CIRCUITS Tab's new 1001 circuits is available for only $\$ 9.95$ ppd. The next time you want a circuit for just about anything, eat your heart out that you didn't send for this book the first time you read about it. You'd better order the book right away, before they run out. $\$ 9.95$.
- HOW TO MAKE BETTER QSLs Be proud of your QSL cards have a card which gets front space on every hamshack wall ... win prizes at hamfests. The only way to have a truly outstanding card is to make it yourself . . . which is easy when you have this new book. $\$ 2.00$.
- WHAT TO DO AFTER YOU HIT RETURN PCC's first book of computer games . . 48 different computer games you can play in BASIC . . programs, descriptions, muchly illustrated. Lunar Landing, Hammurabi, King, Civil 2, Qubic 5, Taxman, Star Trek, Crash, Market, etc. \$6.95.
- 101 GAMES IN BASIC Okay, so once you get your computer up and running in BASIC, then what? Then you need some programs in BASIC, that's what. This book has 101 games for you, from very simple to real buggers. You get the games, a description of the games, the listing to put in your computer and a sample run to show you how they work. Fun. Any one game will be worth more than the price of the book for the fun you and your family will have with it. $\$ 7.50$. - BASIC by Bob Albrecht, etc. Self-teaching guide to the computer language you will need to know for use with your microcomputer, 324 pages. This is one of the easiest ways to learn computer programming. $\$ 4.95$.
- THE UNDERGROUND BUYING GUIDE Here is a handy guide for the electronics enthusiast. Over 600 sources of equipment and literature are provided; some are mail-order-only outfits that do not advertise. Sources are listed alphabetically, by service or product, and by state. The guide is cross-referenced for ease of use. Electronic publishing houses are also listed. Published by PMS Publishing Co., $\$ 5.95$ each.

- AN INTRODUCTION TO MICROCOMPUTERS, VOLS. 1 AND 2 At last! Someone has finally written a book containing hardware details about most of the popular micro chips available to computerists. An introduction to Microcomputers, Volumes 1 and 2, by Adam Osborne Associates, are references dealing with microcomputer architecture in general and specifically with details about most of the common chips. These books are not software-oriented, but are invaluable for the hobbyist who is into building his own interfaces and processors. Volume 1 is dedicated to general hardware theory related to micros, and Volume 2 discusses the practical details of each micro chip. (Detailed review in Kilobaud \#2) Published by Osborne Associates, Vol. I - \$7.50; Vol. II - \$12.50.
- 8080 PROGRAMMING FOR LOGIC DESIGN Here is an ideal reference for the person desiring an indepth understanding of the 8080 processor. The work is application-oriented, and the 8080 is discussed in light of replacing conventional, hard-wired logic systems. Both hardwars and software is described. Practical design considerations are provided for the individual wishing to implement an 8080 -based control system. (Detailed review in Kilobaud \#1) Published by Osborne Associates, $\$ 7.50$.
- 6800 PROGRAMMING FOR LOGIC DESIGN Oriented toward the industrial user, this book describes the process by which conventional logic can be replaced by a 6800 microprocessor. Both hardware and software techniques are discussed, as well as interface information. This reference, and its companion dedicated to 8080 users, provide practical information that allows an experimenter to design a complete micro control system from the "ground up." An exceilent reference! Published by Osborne Associates, \$7.50.

Use the order card or itemize your order on a separate piece of paper and mail to:
73 Radio Bookshop - Peterborough NH 03458 Be sure to include check or detailed credit card information. Note: Prices subject to change without notice on books not published by 73 Magazine.

- BRAND NEW DICTIONARY This new microcomputer dictionary fills the

- SCELBI'S GALAXY GAME FOR THE "6800" Here's a new twist in computer games by Scelbi Computer Consulting and Robert Findley/Raymond Edwards. The game, "Galaxy." pits the operator of a spaceship against alien craft, as well as such variables as speed, time, and ammunition. No two games are the same! This game is described in Galaxy Game for the 6800, published by Scelbi Computer Consulting, Inc. \$14.95.
- 6800 SOFTWARE GOURMET GUIDE $\&$ COOKBOOK If you have been spending to much time developing routines for your 6800 microprocessor, try the new book by Scelbi Computing and Robert Findley. This manual 6800 Software Gourmet Guide and Cook book, describes sorting, searching, and many other routines for the 8080 user. $\$ 9.95$.
- 8080 SOFTWARE GOURMET GUIDE AND COOKBOOK If you have been spending too much time developing simple rout ines for your 8080, try this new book by Scelbi Computing and Robert Findley. This manual, 8080 Software Gourmet Guide and Cookbook, describes sorting, searching, and many other routines for the 8080 user. $\$ 9.95$.
- CMOS COOKBOOK by Don Lancaster. pub. Howard W. Sams Company. Another winner from Don Lancaster, author of the famous RTL and TTL Cookbooks. The CMOS Cookbook details the application of CMOS the low power logic family suitable for most applications presently dominated by TTL. The book follows the style of the original Cookbooks. Eight chapters cover all facets of CMOS Iogic, and the work is prefaced by 100 pages detailing the characteristics of most CMOS circuits. The CMOS Cookbook is required reading for every serious digital experimenter. $\$ 9.95$.
- HOBBY COMPUTERS ARE HERE If you (or a friend) want to come up to speed on how computers work . . . hardware and soft ware ... this is an excellent book. It starts with the fundamentals and explains the circuits, the basics of programming, along with a couple TVT construction projects, ASCIIBaudot, etc. This book has the highest recommendations as a teaching aid for newoomers. $\$ 4.95$.
- FUN WITH COMPUTERS AND BASIC by Donald D. Spencer, contains an easy-to-understand explanation of the BASIC Programming Language and is intended for persons who have had no previous exposure to computer programming but want to learn BASIC quickly, easily, and interestingly. Over half the book is devoted to problems using games, puzzles, and mathematical recreations you don't need a math background to understand most of the problems in this book). A superior book for self-teaching and learning computer programming. $\$ 6.95$.
urgent need for all computer people, engineers, scientists, industrialists communications people - as professionals, amateurs, teachers, or students - to become quickly acquainted with the terminology and nomenclature of a new revolution in computer control capabilities in areas that pervade most of man's daily activities.

Over 5000 definitions and explanations of terms and concepts (704 pages) relating to microprocessors, microcomputers and microcontrollers. There are also separate appendices on: programmable calculators; math and statistics definitions; flowchart symbols and techniques; binary number systems and switching theory: symbol charts and tables; summaries of BASIC. FORTRAN and APL. In addition there is a comprehensive electronics/computer abbreviations and acronyms section. \$15.95.

- COMPUTER PROGRAMMING HANDBOOK by Peter Stark. A complete guide to computer programming and data processing. Includes many worked out examples and history of computers. $\$ 8.95$.
- MY COMPUTER LIKES ME ... WHEN I SPEAK BASIC An introduction 10 BASIC ... simple enough for your kids. If you want to teach BASIC to anyone quickly, this booklet is the way to go. $\$ 2.00$.

- THE STORY OF COMPUTERS by Donald D. Spencer is to computer books what Dick and Jane is to novels . . .extremely elementary gives the non-computerist a fair idea of what the hobbyist is talking about when he speaks computer lingo. Attempts to explain what computers are and can do to a spouse, child or any un-electronics-minded friend. \$4.95.
- SCELBI'S FIRST BOOK OF COMPUTER GAMES Need a game for your 8008 or 8080 microprocessor? Try Scelbi's First Book of Computer Games for the 8008/8080 which describes three popular games, "Space Cap ture," "Hexpawn," and "Hangman." Com plete flowcharts, logic description, program fisting, and instructions are provided. A must for the game freak! \$14.95.
- MICROCOMPUTER PRIMER by Mitchell Waite and Michael Pardee, pub. by Howard W. Sams Company. If you are afraid to get involved with microcomputers for fear of not understanding them, worry no longer! The Microcomputer Primer describes basic computer theory, explains numbering systems, and introduces the reader to the world of programming. This book does not elaborate on specific systerns or chips, but describes the world of microcomputing in "real world" terminology. There is probably no better, way of getting involved with the exciting new hobby of microcomputing. $\$ 7.95$.
- INTRODUCTION TO MICROPROCESSORS by Charles Rockwell of MICROLOG. Here is an ideal reference for the individual desiring to understand the hardware aspects of microprocessor systems. This book describes the hardware details of computer devices in terms the beginner can understand, instead of treating the micro chip as a "black box." Addressing schemes, registers, control, and memory are all explained, and general information about hardware systems is provided. Specific systerns are not described and programming is only briefly discussed. Introduction To Microprocessors is a hardware introduction ... and a good one. $\$ 17.50$ US and Canada, $\$ 20$ elsewthere.
- THE NEW HOBBY COMPUTERS! This book takes it from where "Hobby Computers Are Here" leaves off, with chapters on Large Scale Integration, how to choose a microprocessor chip, an introduction to programming low cost $1 / 0$ for a computer, computer arithmetic, checking memory boards, a Baudot monitorfeditor system, an audible logic probe for finding those tough problems, a ham's computer, a computer OSO machine
and much, much more! Everyihing of interest is there in one volume, ready to be enjoyed by you. $\$ 4.95$.
- KILOBAUD The Small Computer Magazine written for the non-PhD computer hobbyist who wants to know what's new. $\$ 2.00$ each at the newsstand, $\$ 15.00$ for 1 year sub.
Use the order card or itemize your order on a separate piece of paper and mail to:
73 Radio Bookshop Peterborough NH 03458 Be sure to include check or detailed credit card information. Note: Prices subject to change without notice on books not published by 73 Magazine.

- computer dictionary by Donald D. Spencer. A compendium of computer terms for beginners and professionals alike. The Computer Dictionary by Donald D. Spencer defines words and acronyms used by computerists in a clear, easy to understand style. Over 2000 definitions are provided. This reference is a must for the individual getting started in the world of microcomputers. The Computer Dictionary by Donald D. Spencer; published by Camelot Press, $\$ 5.95$.
- CHEMISTRY WITH A COMPUTER by Paul A. Cauchon. An exciting new chemistry book which contains a collection of tutorial, simutation and problem-generation computer programs. Tutorials provide individuatization of assignment, immediate evaluation of responses and a new set of problems with each run. Simulations provide models of lengthy laboratory experimentation beyond the limited classroom timeframe and enhancement of course studies by encouraging prelaboratory research. Problem-generating programs provide individualized sets of questions on a given topic. Can be used with almost any chemistry course at the high school or college level. All programs are written in BASIC, the most popular and easy to learn educational programming language. \$9.95.
- TYCHON'S 8080 OCTAL CODE CARD Slide rule-like aid for programming and debugging 8080 software . . . contains all the mnemonics and corresponding octal codes. Instructions are color coded to indicate which flags are affected during execution. Pocket sized card only $61 / 2 \times 3$ inches provides neat, logical format for quick reference. Back side of card is printed with an ASCII code chart for 128 characters plus the 8080 status word and register pair codes. Also available. Tychon's 8080 Hex Code Card, same as above only has hex codes instead of octal. Only $\$ 3.00$ each.
- LIGHTED TRAVEL DESK Hendy little gadget, looks like a clipboard with a light and plugs into the cigarette lighter of your car. Read books or maps easily in the car, great for note taking if you come up with ideas while driving ... helps make riding in the car a little more enjoyable for kids who can use it for puzzles or playing games at night. Only \$7.50.
- PERIODICAL GUIDE FOR COMPUTERISTS This is a 20 page book which indexes over 1,000 personal computing articles for the entire vear of 1976 from Byte, Creative Computing, Digital Design, Dr. Dobbs Journal, EDN, Electronic Design, Elactronics, Interface Age, Micratrek, Peoples Computer Company, Popular Electronics, QST, Radio Electronics, SCCS Interface and 73 Amateur Radio. Articles are indexed under more than 100 subject categories. Price $\$ 2.50$.
- A QUICK LOOK AT BASIC by Donald D. Spencer. Here is a perfect reference for the beginning programmer. A Quick Look at BASIC assumes that the reader has no previous programming experience. This book is a self-teaching guide for the individual desiring to learn the fundamentals of BASIC. the most common hobbyist programming language. Price: $\$ 4.95$

Use the order card or itemize your order on a separate piece of paper and mail to: 73 Radio Bookshop - Peterborough NH 03458 . Be sure to include check or detailed credit card information. Note: Prices subject to change without notice on books not published by 73 Magazine.

FORTRA
 Workbo

FORTRAN $\underset{\text { spencegr }}{ }$ Pamming

- SIXTY CHALLENGING PROBLEMS WITH BASIC SOLUTIONS Donald Spencer. This book provides the serious student of BASIC programming with sixty interesting problems and their solutions. None of the problems require a knowledge of math above algebra and should interest the casual user of BASIC on hobby machines. A number of game programs are also provided, as well as programs for financial interest, conversions. and numeric manipulations. Price: $\$ 6.95$
- SOME COMMON BASIC PROGRAMS pUblished by Adam Osborne \& Associates, Inc. Perfect for non-technical computerists requiring ready-to-use programs. Busitess programs like depreciation formulas, loan payment solutions and loan interest rates; math routines containing statistical packages and polynomial derivations ... plus miscellaneous programs. Most routines are short and some provide optional statements that can be inserted into the code to slightly modify the results. invaluable for the user who is not an experienced programmer. All will operate in the stand-alone made. $\$ 7.50$ paperback.
- THE SECRET GUIDE TO COMPUTERS Parts 1, 2, and 3 by Russ Walter. Part One describes computers in general, and after reading for ten minutes you will be writing simple BASIC programs! The reference employs a step-by-step teaching process, the end result being a working knowledge of BASIC. Part Two discusses computer applications. It's one thing to master the syntax of a language such as BASIC and another to solve problems using the new tool. This also provides useful techniques in problem solving. The reference follows the light hearted style of the first section. Part Three describes programming languages. Ever heard of APL and QLISP? BASIC is not the only language used to program computers, and as the hobby industry grows additional languages will become commonplace. Get in on the secret now - with THE SECRET GUIDE TO COMPUTERS. Published by Russ Walker, 7th edition. Part I - \$1.75; Part II - \$2.50; Part III- $\$ 3.50$:
- FORTRAN PROGRAMMING By Donald Spencer. If you are familiar with BASIC you will appreciate the additional capabilities of FORTRAN, a computer language with most of BASIC's features, and much more! FORTRAN was designed for complex numeric calculations; and possesses extended I/O capability. It is easily learned, as it is an Englishlike computer language. FORTRAN PROGRAMMING is written for the beginning FORTRAN programmer. His reference, in conjunction with the FORTRAN WORKBOOK, provides the student of computer languages with an easy method of mastering FORTRAN. Basic rules of syntax are discussed, as well as the use of "built-in" functions and $1 / 0$ procedures $\$ 7.50$.
- FUZZBUSTER Radar Detector judged most dependable, fastest and overall BEST by Wayne Green in a side by side three month study of all the other radar detectors on the market. Specially priced at $\$ 95.00$.
- FORTRAN WORKBOOK By Donald Spencer. Provides practical examples and problems to solve. Flowcharting, necessary for most programming applications, is also discussed. Almost all micros support BASIC it won't be long before FORTRAN is commonplace. Don't miss the programming boat . . learn FORTRAN; and be ready for the next language boom! $\$ 3.95$.

what do you give the man who has everything?
 a box
 to put it in.

73 Magazine, as thick as it is, is more like a floppy when it comes to standing on the bookshelf. Enter the new 73 Magazine Library Shelf Boxes, sturdy corragated cardboard boxes which will hold yout magazines on the shelf and keep them from flopping around.

Yes, we know all about binders... we have them too... and we sell them, but binders are a drag when you want one copy of a magazine. And they cost like sin (which costs plenty).

Just to be rotten (a talent we are trying to develop, but which comes hard), we have self-sticking labels for the boxes, not only for 73 Magazine, but also for Kilobaud ... and for Personal Computing, Radio Electronics, Popular Electronics, Interface Age, and ... yep ... Byte. Heh, heh! Just ask for whatever stickers you want and we'll throw 'em in with your box order. Hams may want our labels for CQ, QST or Ham Redio, if they get any of those magazines. This is a way you can buy one set of matching boxes and line 'em up on your shelf... looks very nice that way.

The boxes are a white color and are particularly resistant to dirt, a real plus for white boxes. There's some kind of funny plastic finish on 'em.

You'll probably do like most people who have tried these so filr and order one or two for starters . . . then get a couple dozen. The postage on these is the killer... so one box costs $\$ 2.00$ postpaid and \$1.50 for each additional box, 7 for $\$ 10$.

Unless the magazine gets whole lot fatter than it is right now these boxes should hold a full year of 73 . . or Kilobaud.

One side is cut low to permit you to see the binding of the magazine ... and note that we are now printing the information on the top part of the binding so it will show in these boxes. You an put the boxes on your shelves with the bindings showing or with just the white board showing, there are little marks to help you center your labels on either side.

Your magazine library is your prime reference, so keep it handy and keep it neat with thesc strong library shelf boxes.

Send me \qquad boxes for 73 Magazine Shelf Storage at $\$ 2.00$ for the first box and $\$ 1.50$ for each additional box, or 7 for $\$ 10$. Include the following labels: \qquad
$\$$ __Enclosed ■ Cash ■ Check \square M.O.
Bill: \square American Express \square BankAmericard
\square Master Charge - Interbank \# \qquad
Card \# \qquad Expiration date \qquad
Signature
Name \qquad
Address
City State \qquad Zip \qquad

73 MAGAZINE LIBRARY SHELF BOXES
Peterborough NH 03458
or call Toll Free $(800) 258-5473$
NH \& Evenings $(800) 251-6771$

Before the prices go up again, treat yourself to a bargain The best and biggest amateur radio magazine, 73 , is $\$ 9$ OFF the cover price for 12 issues when you subscribe for one year... for only $\$ 15.00$!

Call us, it's toll free:

800-258-5473

Tell us your credit card number so we can enter a subscription for you. A subscription saves you a bundle of money . . . just figure it out. At $\$ 2$ a copy you're spending $\$ 24$ a year. yet a subscription costs a lousy \$15. Nine Dollars saved may not be a lot today, but that's no reason to just throw it away because you don'twant to bother to pick up the phone.

Someone is usually around during office hours to take your order, credit card number (Master Charge, BankAmericard or American Express). While you're calling what would it hurt to get Kilobaud too? And maybe a few beoks for the bathroom.

If the line is busy tear out the card bound in the back of the magazine . . . just inside the back cover . . .

While you are tearing out cards it is high time for you to mark up the reader's service card and seend that in too. A good response convinces advertisers to run more ads . . . you get more pages of magazine. It's a good investment.

year eito ndecialil

Forgeet what prices you've read ou other 73 tape ads in this magegine -

 If you order before 1978^{*} any single 75 tape will be $\$ 3.95$, and any set of $4, \$ 13.95$.Call our toll free number, 800-258-5473, NOW! Have your credit card \# handy Sorry, no C.O.D.'s
*U.S. orders only.
Offer ends Dec. 31, 1977

If you order early enough we'll do everything we can to ship before Christmas.
Dept. Y.E.S.
73 Magazine • Peterborough NH 03458

PROMISE Anything, But GIFT

It's nearly that time of year again ... time to start to plan your holiday gift giving and hope that the gift you select is the right size and shape and color for the receiver as well as the right price for your pocketbook ... You're reading 73 now ... You know what a big, thick informative magazine it is . . And there will be no size, shape or color problem ... The price is right too! Twelve issues for
only $\$ 15$. And we'll reduce the price of the second and third gift one year subscriptions too ... Only \$14 per year for the second gift subscription and only $\$ 12$ per year for the third gift sub. Think about it, all those articles, projects and Wayne's provocative editorials to boot. And all those ads with bargains, bargains, bargains!

Certainly one (or more) of your friends is interested in hamming
and would appreciate your thoughtfulness in arranging for a copy of 73 to be delivered to his mailbox every month for a whole year. Not sure if your friend is a subscriber or not? We'll check for you ... Be sure to include the call letters if at all possible. For notification of your gift to reach its destination before Christmas, please mail your subscription orders to us no later than December 5th.

ANY HAM who's hinting can give this ad to a friend as a "friendly reminder" of what he really wants.

YES, I WANT TO GIVE 73 MAGAZINE ONE YEAR SUBSCRIPTION GIFTS.

Please mail first gift subscription (\$15) to: Name

Call.
Address
City
State \qquad Zip \qquad New \square Renewal/Extension \square Don't know

Sign the card(s) as follows:

Enclosed (Total) \$ \qquad \square Cash \square Check \square Money Order Bill: \square American Express \square BankAmericard Card \# \qquad Exp. date \qquad
Signature
FOR CREDIT CARD PURCHASES, PLEASE COMPLETE THE FOLLOWING:

11-77
Name
Call \qquad
Address \qquad
City
1
ity State _ Zip

YES, I WANT TO GIVE 73 MAGAZINE ONE YEAR SUBSCRIPTION GIFTS.

Please mail second gift subscription (\$14) to:
Name
Call \qquad
Address
City
State \qquad Zip \qquad
NewRenewal/Extension
Don't know

YES, I WANT TO GIVE 73 MAGAZINE ONE YEAR SUBSCRIPTION GIFTS.

Please mail third gift subscription (\$12) to: Name \qquad
Call \qquad
Address \qquad
City
\qquad
State Zip
\square New \square Renewal/Extension \square Don't know

propasation
by
J. H. Neison

EASTERN UNITED STATES TO:

GMT				05	08	10	17	14	16	18	20	22
ALASKA	24	7	3	3	3	1	3	7	7	13	14	14
ARGENTINA	7 A	7	7	7	7	7	14	14A	21	21	21	1.4A
AUSIRALIA	14	78	78	78	70	78	78	14	14	14	14	IAA
CANAL ZONE	7A	7	7	2	7	7	14	21	21	21	21	14
ENGzAND	7	7	7	3A	7	78	14	14A	tha	14	71	7
HAWAII	14	2 A	7	7	7	7	7	7 B	7 A	21	21	14A
INDIA	7	7	28	刀3.	78	7 E	14	14	78	76	\rangle	7
JAPAN	14	78	78	-78.	7	7	7	7	78	78	2 P	14
MEXICO	14	2	7	$?$	7	7	7	14	21	1AA	144	14
PHILSPPINES	14	78	78	78	JB	78	7	$?$	78	78	7 B	7 A
Puerto rigo	7	7	7	7	7	3 A	14	14	14a	14A	14	14
SOUTH AFFICA	7	7	7	7	78	7 A	14	21	21	21	14	14
U.s.s.r.	7	7	3 A	$3 A$	7	78	14	34	14	79	78	7
WEST COAST	14	7 A	7	7	7	7	7	14	36	21	21	14

CENTRAL UNITED STATES TO:

ALASKA	14	7 A	3	3	3	3	3	7	7	34	144	18
ARGENTINA	14	7 A	7	7.	7	7	7 A	2	21	21	21	21
AUSTRALIA	1sA	1%	28		78	78	7	7	14	15	14	21
CANAL ZONE	14	72.	7	1	7	7	7 A	21	21	21	21	21
ENGLAND	7	7	7	3A	7	7	78	14	14	14	78.	78
Hawall	14А	14	7	2	7	7	7	7	7A	21	71	71
INOIA	7	7	78	观	78.	78	38	7 A	7A	78	78	78
JAPAN	14	78	78	7	7	7	3 A	7	,	78	78	14
MEXico	14	7	7	7	7	3	3	7 A	14	14	14	14
PHILIPPINES	14	14	78	38	78	78	3A	1	7	7	38	14
Puerro hico	14	7	7	7	7	7	7 A	14A	21	21	148	14
SOUTH AFRICA	14	7	7	2.	78	78	14	21	21	21	14	14
U.S.S. R.	2	3	3 A	3 A	7	7	78	14	14	78	78	7

WESTERN UNITED STATES TO:

ALASKA	14	7A	7	3	3	3	3	3	2	44	14	14
ARGENTINA	14	14	28	J	7	7	78	14	21	21	21	21
AUSTRALIA	21	tma	14	78	78	7 F	7	7	14	14	14	21
CANAL ZONE	14	7 A	7	7	7	7	7	14	21	21	21	21
ENSGLAND	78	7	,	34	7	7	78	78	14	14	38	78
Hawall	21	14A	JA	7 -	7	7	7	7	7 A	21	21	21
INDIA	148	14	72	38	38	78	38	7	7	3	3	76
JAPAN	4 A	14	38	73	7	7	7	3 3	7	3	38	is
vexico	15	JA	3	7	7	7	7	7A	21	14A	14A	14
PHILIPPINES	! $¢$	14	78	78	78	${ }_{7}$	38	7	7	7	$\rightarrow-3 \mathrm{~B}$	14
PUERTO PICO	4	7	7	7	7	7	?	14	21	21	21	14
SOUTH AFAICA	14	2	7	3	78	78	78	74	21	27	14	[4
U. S.S.R.	7	3	7	3 A	3 A	3 A	3 h	14.	14	28.	78	18
EAST COAST	15	3A	7	7	2	7	7	14	14	21	21	14

$A=$ Next higher frequency may also be useful $B=$ Difficult circuit this period
FG = Fair to Good $P=$ Poor

1977		NOVEMBER			1977	
	MoN				FRI	
-	\bigcirc	1	2	3	4	5
6			9			
6	7	8	9	10	11	
13	${ }^{14}$	15	16	${ }_{17}{ }_{F}$	18	$\begin{array}{r} 19 \\ \mathrm{FG} \end{array}$
20	$2 \underset{F G}{21}$	$\underset{F G}{22}$	23	24	25	$2{ }^{26}$
27	28	29	30		3	9

[^0]: *Skip Reymann W6PAJ, PO Box 374. San Dimas CA 91773 . For 1977 handbook send $\$ 5.00$ nonAMSAT members; \$3.00 AMSAT members and a self-addressed sticky label.

[^1]: By the manulaciurer of inve Jikins Low fass Filters. Phone Patches and Antenna Im-pederice-matchigg Tuners

[^2]: Santa Barbara, CA 9311

[^3]: Gary McClellan and Co. Box 2085
 G11
 1001 W . Imperial Hwy.
 La Habra CA 90631

[^4]: R-30:

[^5]: "Radio has a plural known as mass communication."
 "Water scientists have

[^6]: - CALL OR WRITE NOW FOR FREE CATALOG OR TO PLACE YOUR ORDER!
 - PHONE 716-663-9254, 9AM-9PM EST DAILY
 - Use your credit card or C.O.D.
 - Specify operating freq * Add \$1 shipping and handling.

[^7]: Dealer Inquires Invited.
 Please order from local dealer or direct if

