

4－BTV THRIVES ON COMPARISON！ FOUR BAND－ 40 THRU 10 METERS FIXED STATION TRAP VERTICAL

Whether you want－

－one setting for total band coverage
－extra weight and high mechanical strength
－easy assembly and installation
－or just plain performance and reliability－
Hustler is the verified choice！

PERFORMANCE AND MECHANICAL SPECIFICATIONS

－Lowest SWR－PLUS！
－Bandwidth at its broadest！SWR 1.6 to 1 or better at band edges．
－Hustler exclusive trap covers ＂Spritz＂extruded to otherwise unattainable close tolerances assuring accurate and permanent trap resonance．
－Solid one inch fiberglass trap forms for optimum electrical and mechanical stability．
－Extra heavy duty aluminum mounting bracket with low loss－ high strength insulators．
－All sections $11 / 4^{\prime \prime}$ heavy wall，high strength aluminum．Length $21^{\prime \prime} 5^{\prime \prime}$ ．
－Stainless steel clamps permitting adjustment without damage to the aluminum tubing．
－Guaranteed to be easiest assembly of any multi－band vertical．
－Antenna has $3 / 8$＂－24 stud at top to accept RM－75 or RM－75－S Hustler resonator for 75 meter operation when desired．
－Top loading on 75 meters for broader bandwidth and higher radiation efficiency！
－Feed with any length 50 ohm coax．
－Power capability－full legal limit on SSB and CW．
－Ground mount with or without radials；roof mount with radials．

MODEL 4－BTV
WGT． 15 pounds
Buy Hustler ．．．buy the verified choice of thousands！
Available from all distributors
who recognize the best！
new•
tronics
corporation
15800 commerce park drive，
brook park，ohio 44142

Exporter：Roburn Agencies，Inc．，New York，N．Y．

FEATURES

2 Never Say Die W2NSD/1
3 Looking West
4 SSTV Scene
6 AMSAT
6 Traveling Ham
6 Novice
8 Guest Editorial
8 Book Review
950 MHz Band
9 Ham Help
9 Social Events
10 Repeater Update
12 News
14, 139, 141,144 Letters
16 QSL Contest
16 Hamburgler
17 Solid State
42 Emergency Ferrite Beads
64 Rf Hot Dog
72 Tool and Time Saver
74 Heat Sinks from Scrap
94 An Emergency Transformer 106 Jacking the Gal. Trans.

[^0]
amateur RADIO CONTENTS

20 Dipole Antenna Tuning WA4RSX

26 Latest Counter Update K2OAW
36 Who Needs A 5V Supply? WA \emptyset ABI
37 How To Win A Big Contest VK4SS
40 Digital Wind Direction Indicator W2AOO
44 Build A 2M Frequency Synthesizer W8KBC
66 Experiment in Terror WA9VLK
67 A Wind-Proof 20M Beam VE7DKR
71 Tones and How to Touch Them K1NUN
73 The Double Stub Matching SystemWA6CPP
75 How You Can Teach Novices WA9NJZ
80 Build This Digital SWR Computer W6OTG
88 A Real Hot Front End For Six K1CLL
95 Build A Basic Bridge . WA WABI
97 MOSKEY - Part III . W3HPX
105 August 73 Converter Update W WLMD
108 Beep - Beep - Beep - Beep, You're HighW 2OC
116 What's Really Inside The Regency HT? W3WTO
124 Would You Believe 187,000 Phone Patches? . . K7NZA

EDITOR/PUBLISHER
Wayne Green

MANAGING EDITOR

Stuart Norwood

ASSOCIATES

Schley Cox WN9LHO
Tom DiBiase WB8KZD
Terry Fox WB4JFI
Mike Frye WB8LBP
Dave Ingram K4TWJ
Joe Kasser G3ZCZ/W3
Bill Pasternak WA2HVK/6
John Schultz W2EEY
Waller Scott K8DIZ
Bill Turner WAØABI
PRODUCTION
Lenore DeLigouri
Carol Dostilio
Bill Heydolf
Biff Mahoney
Lynn Panciera-Fraser
Bob Sawyer
Rod Tulonen
Barbara Walker

ADVERTISING

Bill Edwards WB6BED/1
Karen Hebert

BUSINESS

Knud E. Keller KV4GG/1
MARKETING
David A. Behnke
CIRCULATION
Barbara Block
Dorothy Gibson
Diane Grophear

TRANSPORTATION

Bill Barry
Paul Krulis

DRAFTING

T. M. Graham W8FKW Bill Morello
Wayne Peeler K4MVK

PAYING THE FREIGHT

Inflation is doing fine, as you know. In the ham rag business we notice the frequent increases in paper prices, printing prices, postage and salaries for staffers who go to the A\&P expecting to say WeeeO, but instead say WOW!

Our subscription rates will inch up a tad, but this isn't enough. We can't raise our advertising rates too much without hurting all of those small companies who depend heavily on 73 to bring them customers.

After a lot of thought - and figuring that a page of ads in 73 will pay for almost three pages of articles and news - the obvious solution was to encourage non-ham advertisers to help pick up the tab. Since most hams wear pants, the Haband ad last month seemed like a good start - and we are very familiar with their amazingly good clothes. We think the Haband pants and shoes are one of the best bargains around, possibly with the exception of the 73 subscription rate.

The advertising department is working on a few more surprises like that, all of which means a thicker magazine for you and a lot more articles. Oddly enough, the cost of reaching prospective customers via 73 is incredibly low - much lower than most companies in other fields believe is possible. This may have something to do with our running the magazine from one of the United States' low rent districts.

ANTENNA GADGETEERS ARISE

Not since the olden days when Sam Harris (W8UKS and W1FZJ) was playing around with his 75 m bi-square beams has much been done to develop gain on that band - at least as far as the work resulting in any articles of value to antenna experimenters.

The fact is that during these unsunspot days quite a few of us would be interested in some antenna info for the lower bands. Has anyone been working on this? Perhaps someone has tried out a twin-three antenna on 75 m ? Let's see some work on this and some articles.

I remember all too well how Sam used to work all over the world on 75 m with 50 watts and his bi-square and how my kilowatt and dipole was

EDITORIAL BY WAYNE GREEN
quite a few dB down in South Africa and Europe. It seems like some new work must have been done in the last twenty-five years on antennas for 75 m.

ARTICLES WANTED

A newspaper clipping sent in by reader Joecks from up in Vermont tells about a chap who has hooked up his phone so he can turn on his air conditioning by remote control. Hmmm. Seems this chap uses a Touchtone pad and has thirty different things he can do by remote control. Why anyone would want to turn on his television set by remote control is probably not worth a lot of consideration - the reason is probably simple - just to be able to do it.

The ham applications are many (obviously) and I think a few of the 73 readers might like to whomp up something like this, if there are any builders out there with more time and ICs than they need to do a minimum while waiting out their lives.

Some of us would like to be able to call home and tone on the 2 m rig and monitor the local channel - maybe even be able to call in and casually describe the process, with just that right sigh of slight boredom.

Tell you what - you build up the gadget and we'll print the article. And you think up the clever applications.

Bill Pasternak WA2HVK/6
14725 Titus St. \#4
Panorama City CA 91402
In a recent T.V. Guide interview, F.C.C. Chairman Richard Wiley stated that he was opposed to unnecessary regulation of the broadcast media. Based on some of the newly proposed legislation regarding amateur radio, it is becoming obvious that Commissioner Wiley and the FCC are really listening to us and that his opposition to unnecessary regulation is being extended to us also. Therefore, if no one else has said it yet, a hearty thank you Chairman Wiley from those of us who make up the amateur radio community.

Some of the legislation I speak of, which by the time you read this may have been enacted, was released in docket form on July 25 as dockets number 20112 and 20113 respectively. 20112 deals with permitting automatic remote control of amateur repeaters while 20113 is designed to ease restrictions against cross - band operation of repeaters. The latter is based on a petition filed by the ARRL (RM 2337) while the former, 20112 can in good part be credited to hard work on the part of the Southern California Association and especially its Vice - Chairman Dick McKay K6VGP.

Late in 1973, Dick approached the F.C.C. for permission to experiment with a control system on the repeater's input channel. In January of this year, Dick was granted a six month "Special Temporary Authorization" to experiment with a semiautomatic remote control system on his two repeaters WRGAAD and WR6AAE. It took very little time to prove that the concept was both valid and viable. But AAD and AAE are sub-audible tone access repeaters with limited membership. Could this same system work on a heavily populated open system? A short time ago Fred Deeg K6AEH repeater trustee for the Palisades Amateur Radio Club, applied for and was granted an STA to experiment with a fully automatic remote control system on the input to the club repeater WR6ABB. It was felt that the PARC machine with over half the club's membership using it daily plus a large number of non club
members also communicating on it would make for an ideal test bed. Without being long winded about it, it worked perfectly! Based on this dual success, Dick prepared a petition asking that Part 97 be amended "To allow for the definition and operation of automatically remote controlled repeater stations"; doing so in the name of the Southern California Repeater Association. Shortly thereafter, 20112 was released and while it does not mention either Dick or the SCRA by name, it does thank those amateurs and organizations that experimented with semi-automatic and fully automatic remote control systems. Unless I miss my guess, we here in L.A. are those amateurs they are talking about. Dick, Fred and the rest of the SCRA have put in many long hours on this project, not just for those of us out here but for all of you. When 20112 is finally enacted it will be a giant step forward in providing again that round-the-clock operation that makes the amateur repeater one of the most valuable aspects of amateur radio.

Five days after 20112 was released your reporter flat on his back in Ceders-Sinai Medical Center - Mt. Sinai Hospital recovering from an attack of kidney stones; the seventh time in the same number of years. Now while no one likes to go to the hospital, least of all yours truly, there are times when these things cannot be avoided. However, Ceders-Sinai is unlike any other hospital I have ever been in and if ever the need arises again it is the place I will pick. They seem to believe if you treat a patient as a guest, carefully cater to a patient's needs promptly and most important keep the atmosphere cheerful, a person will recover a lot more quickly. From first hand experience I can tell you that it works, and works well. Most important to me, the food they served was not just good but better than many restaurants I have frequented. As to medical attention, it was the finest I have ever received and everyone on the staff went out of his or her way to make me as comfortable as possible. This then is my personal thank-you to those fine men and women who helped me recover so quickly, and to Denny WA6LVO for loaning me his KP202 HT to keep HVK/6 on-the-air while there.

A number of friends suggested that I get away for a few days to recuperate. My physician gave me a green light as long as I was back in time for some tests. Since Sharon's mom and dad were visiting from New York we decided to make Las Vegas our destination. Though I have been there a number of times in the past, I always flew there via Air-West and never had
a radio with me. This time we drove and were never out of range of a repeater, a comforting thought when you cross the Mojave Desert and it's about 110 degrees outside. Since I live in the San Fernando Valley it was faster for us to head north on the San Diego Freeway (1-405) to the Newhall area and head out the newly completed Antelope Valley Freeway (Cal. 14). Heading out of town we QSO'd the AM rush-hour crowd on the WR6ABE Mt. Wilson Repeater (147.435 - 146.40) though once in the hills along 14 it was spotty. About 20 miles west of Palmdale we lost ABE completely. As we came down out of the hills and approached the Palmdale area we were able to access the .16 - .76 Table Mountain Machine located near Barstow. As we soon learned, WR6AFB does cover a large section of the Southern California Desert area along 1-15 and Cal.: 58. We were able to use it from Palmdale, through Mojave, Barstow finally loosing it while going through Mountain Pass at better than 4,000 feet, descending the eastern side. Scanning the eight available channels in my Sonar 3601, I came across a QSO on $.28-.88$. Not having anything to add to the QSO, I just SWL'ed it into Las Vegas proper. Arriving at our hotel, we went QRT for the rest of the day. Since this was an overnight one day venture we were on the road the next morning. We found a machine on $.34-.94$ and after a short OSO there went back to .28 . . 88 and worked some stations there that filled us in on what machine covers what area of Las Vegas. . $28-.88$ is the home of WR7ADZ, part of the famous Gronk Radio Network. Sitting atop Mt. Potosi, ADZ has almost phenominal coverage extending from St. George, Utah to the northeast and San Bernadino, California to the southwest. A quick look at a roadmap will give you a better idea of ADZ's coverage than my description here. I also personally can verify coverage to the southwest at least as far as the Cajon Pass on the return trip. Now that's what I call coverage!

WR7AEH on . $34-.94$ is the local coverage machine designed for in town coverage. I found it could be accessed as long as the "Strip" was in sight from I-15. There are also two other machines in the Las Vegas area I was told. The $.07-.67$ repeater covers north Las Vegas and a machine on 147.18 - 147.84 covers the western area. Due to lack of proper crystals I was unable to use these latter machines. WR7AEH is operated by the Las Vegas Radio Amateur Club while the two other machines are privately owned. All machines are
open carrier squelch and judging from those I worked while there, the Las Vegas area repeaters are inhabited by a friendly bunch of amateurs.

Well, the shows were great, and I made it home with the shirt still on my back. In fact I even came out a couple bucks ahead! Most of all, it was the kind of fun I needed to help forget the previous three weeks. Good old New York may call itself Fun City, but Las Vegas is also deserving of that same title. At least in my book.
de WA2HVK/6

Dave Ingram K4TWJ

Rte. 11, Box 499, Eastwood Vil. 50N Birmingham AL 35210

Is Slow Scan TV Dying?

Some serious questions have been raised on Slow Scan TV lately which deserve our utmost consideration. Is SSTV interest dwindling? Why are we not hearing more activity on the air? Is it a result of recently poor band conditions that seemingly isolate various SSTVers around the world or are newcomers merely replacing older enthusiasts who become bored due to the lack of interesting material on the air? Is SSTV interest great enough to attract commercial manufacturers or will they, like some others, fall by the wayside? We know many SSTVers are involved with experimentation more than actual operation because each years' knowledge gain is twice the previous year. We can scan convert pictures on both ends of a QSO, ASC II Typewrite messages on a SSTV screen, exchange color pictures and even span continents with these pictures. However, a means of communication is only as good as its use. More imaginative operators would be enthusiastically received on the air. Let's all try to work up more interesting pictures (if one picture is worth a thousand words, let's prove itl) and recruit more SSTV operators. Operators with gear ready to move in time of emergency can prove SSTV's full capabilities. Bring your thoughts out on the air. . .send me your comments. Let's not allow SSTV to fall into the "way out group" category by doing like so many people today. . .reading this, then forgetting it. Do so and SSTV will surely fade out.

Newcomers

Newcomers can now get started in Slow Scan TV quite easily. Used monitors are periodically appearing for around $\$ 200$, the same price as many 2 meter rigs. Through Slow

Scan TV you can see various places around the world, swap circuits over the air or see those items of interest many hams have. Does 2 meters offer this kind of excitement or do you find it fun to hear the same people say the same things every day.

An excellent way to get started in Slow Scan TV is the W6MXV kit unit which is available from Mike Tallant for around 100 to 150 dollars, depending on your junkbox. This unit is tops. Mike's detailed instructions, neat P.C. boards, X-Ray plans, etc., make it easier to construct than Heath gear! I built much of mine by carrying the boards with me, adding parts in my spare time and then soldering the connections at night. Recently I for warded one of these kits down to WA2ZDF/CP1. Mike is really doing them up neat now. . .nice packing, large plans, gosh, it even includes the sync tuning tube! I don't know how he manages to break even on the kits.
Want to know more about what countries are on SSTV? Look over the following list of contacts from one of the DX leaders, Jack VE3GMT. There are around 90 countries presently on SSTV which means DXCC isn't far off. It's looking like the first certificates will be going to VE3GMT, W8YEK and W4MS. Any other challengers? What's your DXCC/SSTV total?

DJØCN	W. Germany
EA4DT	Spain
EA8CI	Canaries
EL2CB	Liberia
ET3DS	Ethiopia
F6AXT	France
FG7XT	Guadeloupe
FM7WW	Martinique
FO8DO	French Oc.
G3RHI	England
GC3YIZ	Guernsey
GI3NBB	N. Ireland
GW3DZJ	Wales
HA7LF	Hungary
HB9IT	Switzerland
HBØNL	Liechtenstein
HK3CF	Colombia
HR2HH	Honduras
I1BNT	Italy
IS1PEM	Sardinia
JA7FS	Japan
W4YK	U.S.A.
KC4DX	Navassa
KC4USX	Antartica
KH6HJF	Hawaii
KL7HAB	Alaska
KP4GN	P. Rico
KV4CM	Virgins
KX6DR	Marshalls
LA2BK	Norway
LU7AAG	Argentina
OD5HC	Lebanon
OE6GC	Austria
OK1NH	Czech
ON5SV	Belgium
OX3LP	Greenland

OY1M	Faroes
OZ4IP	Denmark
PAøLAM	Netherlands
PJ2CU	Antilles
PY1DCB	Brazil
PZ1DX	Surinam
SMQBUO	Sweden
VK5MF	Australia
VP2AR	Antigua
VP2ME	Monserrat
K4GXO/VP7	Bahamas
VP9GR	Bermuda
VQ9R	Seychelles
VU25KV	India
XE1JM	Mexico
YN3RBD	Nicaragua
YU2CDS	Yugoslavia
YU5AJ	Venezuela
ZF1TV	Cayman
ZC1AOY	N. Zealand
ZS6PP	S. Africa
ZS3B	S.W. Africa
4X4TW	Israel
6Y5GB	Jamaica
8RIW	Guyana
9K2AM	Kuwait
9Q5BG	Zaire
9X5PB	Rawanda
9Y4VU	Trinidad
Late additions	into SSTV:
OA4F	JY8AA
HZ1SH	9V1RA
YU2CDS	W6AXE/KG6
DU1SS	AP2AD
OH2KT	VK9XX

Incidentally, you don't need an expensive rig to work SSTV: 90 percent of the DX stations show on 20 meters exclusively. A single bander SSB rig and, if you like, a single band homebrew linear amplifier are quite sufficient.

Scan Converter

Several Slow Scanners have asked how Slow-to-Fast Scan converted pictures look and if there are any simple shortcuts for accomplishing the same results. Not really! However a simple "visual coupler" could be constructed using an inexpensive closed circuit (Fast Scan) camera which has a "channel" rf output and your present SSTV monitor. Place the camera to view your Slow Scan monitor screen, then adjust contrast and brightness for optimum results. A hood or light-tight enclosure between camera lens and monitor screen would be advantageous in brightly illuminated rooms. Next, feed the camera's rf output to

Fig. 1. Simple "Visual Coupler" SSTV converter.

Front panel and interior view of OK2PAD's homebrew monitor. Note the outstanding workmanship.
your regular TV and you can view large, bright pictures. Nice, eh?

Slow Scan TV activity in Czechoslovakia appears on the upswing, as reported by Franta, OK100. There are approximately 15 stations presently active on SSTV, with around 35 more interested and due to have gear going soon. The more active stations include OK1GW, OK3ZAS, OK2BNE and OK100. Their most popular frequency is 14.230 kHz . Although "Telsa" is their only manufacturer and IC availability is limited, transistors are rather plentiful. Shift Register memories are presently not available. Prices are high compared to our standards (would you work 7 or 8 hours to afford 3 or 4 simple ICs?) so amateurs must have a genuine interest before indulging in a SSTV venture. Their main SSTV cathode ray tubes are similar to our 5FP7 and use numbers like 13LM31, 25QP21 and 1800086. The first numbers appear to designate screen size in centimeters. Most of the fellows live some distance apart and work dilligently building their gear to reduce unnecessary components. OK3ZAS and OK2BNE, for example, are getting good results from the W7ABW camera while using regular vidicons.

This month's pictures are of OK2PAD's homebrew monitor and reveal outstanding workmanship. The unit uses a 13LM31 and much modified W6MXV circuit. Two emitter coupled transistors replace a CA3028 IC and sweep circuits are similar to W9LUO design. A WØLMD type video analyzer is included on the unit's right. The single tube visible behind the c.r.t. yoke is the high voltage rectifier.

A while back, Jack VE3GMT, suggested a monthly newsletter on SSTV. Interested parties could send info to him and he would get this out to all active SSTVers. He never received any letters! Come on now, aren't you proud of your accomplishments? How long does it take to scribble a short note? We are going to that same idea in this column, so drop me a card now on your new gear, DX worked, planned modifications or whatever. I'll get this right into the next month's column so we all will know more about "what's happening."
. . K4TWJ

Exciting New Type of TV Tube

W.E. Parker W8DMR

2738 Floribunda Dr.
Columbus, Ohio 43209

I believe this is the first amateur television test pattern reproduced by the new solid state self-scanning image sensor. The sensor is a 100 by 100 element charged coupled device (CCD). Instead of the conventional vidicon camera tube employed in generating television pictures, a Fairchild CCD-201 was used. The 10,000 element self-scanning image sensor is mounted in a 24 lead dual-in-line package with an optical glass window. I believe the CCD's impact on TV cameras can be considered analogous to that of the transistor on vacuum tubes.

The image sensing elements are 1.2 mils by 0.8 mils located on 1.2 mil vertical centers and 1.6 horizontal centers. The light sensitive area is a 100 by 100 array of photo elements which provide an image aspect ratio of 4 by 3 . In addition, the image sensing chip includes 100 columns of two.
phase shift registers interdigitated among; the photo elements, a 102 unit two-phase analog output shift register, an output preamplifier, and a compensation amplifier. Charge coupled devices are a new class of semiconductor structures. When arrays of 512 by 512 elements are commercially available, the resolution wedges on the test pattern will be distinct from the outer circle to the inner circle.
... W8DMR

AMSAT-OSCAR-B before final thermalvacuum testing of the spacecraft. The tenmeter antenna (provided by Amatek-Hunter Spring), and 2304 MHz quadrifilar antenna (furnished by RCA Astro-Electronics Div.) are on the top of the spacecraft. With the spacecraft is Elizabeth, XYL of WA3LND.

Oscar 6 orbiting information for November.

Orbit	Date (Nov.)	Time (GMT)	Longitude of Eq. Crossing W
4775	1	0008.7	49.8
4788	2	0103.6	63.5
4800	3	0003.5	48.5
4813	4	0058.5	62.2
4826	5	0153.4	76.0
4838	6	0053.3	61.0
4851	7	0148.3	74.7
4863	8	0048.2	59.7
4876	9	0143.1	73.4
4888	10	0043.1	58.4
4901	11	0138.0	72.1
4913	12	0037.9	57.1
4926	13	0132.9	70.9
4938	14	0032.8	55.8
4951	15	0127.7	69.6
4963	16	0027.7	54.6
4976	17	0122.6	68.3
4988	18	0022.5	53.3
5001	19	0117.4	67.0
5013	20	0017.4	52.0
5026	21	0112.3	65.7
5038	22	0012.2	50.7
5051	23	0107.2	64.4
5063	24	0007.1	49.4
5076	25	0102.0	63.2
5088	26	0002.0	48.1
5101	27	0056.9	61.9
5114	28	0151.8	75.6
5126	29	0051.8	60.6
5139	30	0146.7	74.3

[^1]

Joe Kasser G3ZCZ
1701 East West Highway, Apt. 205
Silver Spring MD 20910
Have you heard or worked those ubiquitous Italian stations on 20 meters lately? What do you think of those stations who proceed to spell out their name, which is ten letters long, phonetically, twice or three times, and then the name of their town, which has twenty letters and then say "seventy threes"?

Do you realize that they are holding the QSO in what is to them a foreign language? Could you do the same, say hold a QSO in Italian or Spanish.

Italy has a very competent amateur radio set up. The national club is called the Associazione Radiotecnica Italiana, and they put out a very fine monthly magazine called Radio Rivista. The magazine contains a number of original technical articles as well as the occasional translated one from Radio Communication or from OST. It is full of advertisements for Yaesu, Drake, Gladding, Standard, Ten-Tec, Clegg and locally built equipment. Rigs are available for both FM and SSB on two meters, a band that is planned for mode sharing, with calling frequencies, RTTY frequencies and FM channels. The Clegg FM-27B is also sold covering the range of $144-146 \mathrm{MHz}$. The published address of the ARI is: Via Domenico Scarlatti 31, 20124 Milano, Italy. Tel 203192.

Although Italy does not yet have a reciprocal agreement with the USA, it does have one with the countries comprising the European Common Market. So if you get a permit from one of these countries you may be able to get an Italian permit using one of your other reciprocal permits. It's not so complicated as it sounds, for there is an ON8. ./W on the air from the USA, and ON8 is the "call are" allocated to foreign residents or visitors under the reciprocal agreements with Belgium. It must be explained though that this ON8 is a native of Belgium but received his first ham license in France and was subsequently issued with an ON8 call. I've also heard a WN call signing Portable From South America on twenty meter phone, so strange things happen in the world of overseas operations.

For those intending to visit Italy on the most useful two meter frequencies are the calling channel on 145.5 MHz
and the International calling Channel on 145.55 MHz . There is also an SSB calling channel on 144.2 MHz . There is a lot of activity on SSB and in the summer, DX contacts can be made over the Mediterranean Sea. If you are taking a qrp hf rig, you might consider adding a grp transverter module as described in vhf communications magazine. This unit would be advantageous in most European countries because a lot of mobile activity is on SSB using commercial equipment.

Does anybody read this column and if so what would you like it to cover? Reader response has been abismal lately and, if nobody reads this column then I might as well turn the space back to Wayne to fill with something of more interest to you readers.
... G3ZCZ/W3

Schley Cox WN9LHO
 219 Kilgore Avenue
 Muncie IN 47305

WHAT DO YOU SAY?

At 0011 GMT the other night I called a WN8 in answer to his CQ. I didn't get a chance to give him his 479C signal report because he answered my call with a too lengthy preamble and then sent "QRM 73 CUL" and then signed off the air. At 0015 I logged an end to my shortest contact on record outside the Novice Roundup.

I know that sometimes we get on the air and the dinner call suddenly comes 30 minutes early or the envelope starts to melt on the final amplifier tube, but I have a suspicion that sometimes the super short contact is due to one or both operators having nothing to say.

Tradition has saved some new ops from mike fright by dictating that the RST, QTH and name be sent on the first transmission; the rig and antenna on the second; and finally, heart warming 73 s and fervent CUL's on the third and last.

This is unfortunate unless there is a distinct need for brevity - e.g., contests, traffic or emergencies. There is a lot to talk about even at 5 wpm . 1 like to know something about who I am talking to on the air. How old is the other person, what does he (or she) do for a living, how many states has he

Today when you ask "How can I modernize my SSB operation?", the answer certainly is KENWOOD. The deluxe TS-900 transceiver, the superb, go-anyplace TS-520 transceiver Hilw and the versatile R-599A receiver and T-599A transmitter offer today's amateur advanced design, reliable solid-state performance, contemporary styling. . . and the cost is modest. Now more than ever the answer is KENWOOD.

TS-900Kenwood's superb state-of-the-art SSB transceiver
the ultimate transceiver. The promise of the transistor has been fulfilled. Here is the transceiver you will want to own . . . whatever you have now, get ready to trade up. Its important features are far too numerous to list. Its specifications are superb. The TS-900 is unquestionably the best transceiver of its kind ever offered. The price . $\$ 795.00$ PS-900 (AC Supply) \$120.00, the DS-900 \$140.00

TS-520
Kenwood's go every place do everything transceiver
The new TS-520 is the transceiver you have wanted, but could not buy until now. It is a non-compromise, do everything, go everywhere 5 band transceiver for SSB or CW that performs equally well at home, in an automobile, airplane, boat or trailer. The TS-520 features built-in AC power supply, built-in 12 volt DC power supply, built-in VOX with adjustable gain delay and anti-VOX. The price $\$ 629.00$

The "Twins" by Kenwood

R-599A Receiver

The R-599A is the most complete receiver ever offered. It is solid state, superbly reliable, small and lightweight, covers the full amateur band . . . 10 thru 160 meters, CW, LSB, USB, AM, AM.N and FM.
The price . $\$ 459.00$
The T-599A is mostly solid state . . . only 3 tubes, has built-in power supply, full metering (ALC, Ip. RF output \& high voltage), CW-LSB-USB-AM operation.
The price
$\$ 479.00$

T-599A Transmitter

See the Kenwood line at the following dealers: • ALABAMA / L \& T Electronic Specialties, Birmingham • ALASKA / Service Electric Co., Inc., Ketchikan - ARIZONA / Ham Shack, Mesa - Orbit Electronics, Tucson • CALIFORNIA / Communications Headquarters, San Diego - Gary Radio, Inc., San Diego - Ham Radio Outlet, Burlingame - Henry Radio, Anaheim - Henry Radio, Los Angeles - Webster Radio, Fresno - COLORADO / Radio Communication Company, Arvada - FLORIDA / Amateur Electronic Supply, Orlando - Amateur Radio Center Inc., Miami • Amateur Wholesale Electronics, Miami - Grice Electronics Inc., Pensacola - Hollister Electronic Supply, Jacksonville GEORGIA / Clayton Communications, College Park • IDAHO / United Electronics Wholesale, Twin Falls • ILLINOIS / Klaus Radio, Inc., Peoria - INDIANA / Graham Electronics, Indianapolis - Hoosier Electronics, Terre Haute - Radio Distributing Company, South Bend - IOWA / Hobby Industry, Council Bluffs - KANSAS / Associated Radio Communications, Overland Park - MAINE / Down East Ham Shack - MARYLAND / Electronic International Service Corp., Wheaton - Professional Electronics, Baltimore - MICHIGAN / Electronic Distributors, Muskegon - Radio supply \& Engineering Company, Detroit - MINNESOTA / Electronic Center, Minneapolis • MISSOURI / Ham Radio Center, St. Louis - Henry Radio, Butler - MONTANA / Conley Radio Supply, Billings - NEW MEXICO / Gene Hansen Company, Corrales • NEW YORK / Adirondack Radio, Amsterdam • Harrison Radio Corp., Farmingdale, New York City, Spring Valley - Tom's Radio, Johnson City - NORTH CAROLINA / Freck Radio, Asheville • Vickers Electronics, Durham - OHIO / Amateur Electronic Supply, Cleveland • Communications World, Cleveland • Queen City Electronics, Cincinnati - Srepco Electronics, Dayton - OKLAHOMA / Derrick Electronics, Broken Arrow Radio, Inc., Tulsa - OREGON / Portland Radio Supply, Portland - PENNSYLVANIA / Electronic Exchange, North Wales - JRS Distributors, York - Kass Electronics, Drexel Hill - SOUTH CAROLINA / Accutek, Inc., Greenville - SOUTH DAKOTA / Burghardt Amateur Center, Watertown. TEXAS / Douglas Electronics, Corpus Christi - Electronics Center, Inc., Dallas • Ed Juge Electronics, Inc., Fort Worth • Madison Electronics, Houston • UTAH / Manwill Supply Company, Salt Lake City • WASHINGTON / Amateur Radio Supply Company, Seattle WISCONSIN / Amateur Electronic Supply, Milwaukee •
worked, does he build or buy, has he ever visited Indiana (or wherever I might be)?

One of the important things I like to hear from other ops is how my signal sounds. I have heard a few novices get into lengthy discussions about signal reports and maybe how one person's signals are not quite chirpy but that there is a definite frequency change during key down.

Some amateurs seem to be afraid to tell the other operator if they have a little chirp or click. There are some people on the air who either never work weak stations or they just can't bring themselves to give an honest 249 signal report.

Most novice ops have to depend on signal reports from other hams for any idea how their transmitter or antenna is performing. Sending an inflated signal report in hopes of avoiding embarrassment or insuring receipt of a much needed QSL card is a disservice to any operator.

If you feel like talking awhile you may have to ask some questions of the other guy before you get the conversation going. But if you do get a rag chew going remember to keep the transmissions short to make sure you are being copied.

There is very little reason for hit and run contacts on the novice bands. The ARRL suggests we refrain from talking about religion, politics or sex on the air. That leaves a pretty good selection of things we can and should be discussing.

Schley Cox WN9LHO

Guest Editorial

JERSEY SHORE

AMATEUR RADIO SOCIETY
Ye olde editorial staff was sitting around with a bunch of hams at the recent ARRL convention. We had been up and down the three "large" rooms of exhibits, and had sat in on one forum and part of a second. About halfway through the second forum, we started getting internal signal reports that it was time to refresh and restoke. Finding a nearby oasis, we cuddled around a Tequila Daisy and then noted that we were surrounded by several other hams intent on the same purpose. After nodding a time or two to establish our mutual relationship in amateur radio, we gave a password which joined us all
into a small congenial group, " Hi there, can I buy you a drink?" Several Tequila Daisies later, we were all well introduced and seemed to represent not only the W2 area, but also several W3's, W4's and one W6.

Discussions began with reaction to the convention. It must be reported that aside from two of the fellows who were involved in part of the convention activity as participants, the overall reaction was one of disappointment. "Oh, it's great to eyeball so many of your old contacts" but it would appear that the facilities were not particularly geared to what one might expect of a convention which was billed as being national in concept. Great expectations regarding what the major manufacturers were going to unveil during this gathering were dashed as one traveled through the exhibition rooms. Oh there were a few presentations, but the absence of companies such as Drake and Heath were apparent. One could purchase touch tone pads and bargain LEDs (shades of our local flea market). The fellow cutting callsign badges had a waiting line, even the opportunity to guess how many pieces of junk (including used cigar butts) were contained in a bottle for a prize seemed to draw a crowd seeking fulfillment of their original expectations. A stranger to the hobby could easily wonder at the limited amount of emphasis placed on other than 2 meter FM.

Another point which met with accumulated nods of our assembled group was that several of the forums and seminars did an excellent job in presenting programs geared towards specific interests. One of the W3's noted, however, that in his opinion, some of the interest areas were so esoteric that the average ham who enjoys amateur radio as an outside hobby might find himself as lost as a high school youngster sitting in on a graduate class. This thought was picked up by tbe W6 who advised that he had sat in with the W3, and although he had professional background in the field, he found the choice of interesting groups was rather limited. The ad hoc group agreed that more choice on the part of the general membership to suggest seminars and forums might have engendered specific areas to be presented which would have more realistically represented the broad spectrum and level of ham interests. The W6 suggested that it was the responsibility of the member to rise to the level of the presentation or he really couldn't consider being a "real" amateur. (The fact that he had ceased to spring for any more rounds was not lost upon the group, and so they gave this arrogance the sneer that it deserved.)

About this time, our group was graced with the presence of a rather fetching YL who soon introduced herself as a fellow ham from W4 land. Sharing from our beaker of Daisies, she also shared a personal view with us. It seems that although she has been in amateur radio for quite a few years and holds a respectable advanced license, her status in the fraternity is generally relegated to a subservient level of something classified as "XYL or YL." "Good grief" she exclaimed, "I can handle a key, mike or soldering iron as well as most other hams (the Tech's and Conditional's in the group seemed somewhat nervous). Why do the various groups seem to consider us as people who make sandwiches while ham activity takes place? Why do they always seem to think that they must advise that YL activities are available? In point of fact, why do they set up YL groups and nets which definitely create a difference in the minds of many as to the ability of female amateurs? An amateur is an amateur. No wonder so few XYL's take an active interest in what seems to be a male-oriented activity.
"We feel as if we are trespassing into the 'MEN'S ROOM!" (Noting the number of Daisies she had consumed in this short time, we can attest that she would fit right into many of the radio club meetings we know of.)

Well, it seemed time to return to the convention room and so we set on and said our 73's to the group. Our discussion had turned to what several of the members termed, "the attitude of apathy within the radio fraternity" and we felt that this was discussion for another day. We admit to thinking how sad their home clubs must seem if they were beset with this problem of membership apathy - and we bethought of how lucky we were in our own JSARS club. So we merely smiled and walked out - warmed by the thought of the upcoming annual club picnic.

The KaChunker WR2ABR

Book Review

WORKING 1600 METERS

W2IMB has a little book out on QRP use of the $160-190 \mathrm{kHz}$ band. This is NOT a hamband, but one open (with some restrictions) to anyone who wants to experiment with it. The book discusses antennas, circuits, DX that has been worked, sked times, etc. Send $\$ 1.75$ for the book to Ken Cornell, Box 721, Westfield NJ 07091.

50 MHz BAND

Bill Turner WAØABI
Five Chestnut Court
St. Peters MO 63376

WB4OSN says August brought a number of openings but nothing very spectacular. Joe worked the Northeast, plus a few 8's, 9's and \emptyset 's and heard the TI2NA beacon a few times. The WBDELN QSL finally arrived in Margate, Florida making 48 confirmed for Joe.. .congratulations are due! The final comment is a sad one, other KZ5's report that Don KZ500 has left the Canal Zone.

John WA2UON says he has been reading this column for some months and has recently gotten active on the band. John lives in Castleton-onHudson, New York and is interested in contacting a club in the Eastern New York area. Anyone with information is invited to contact John at 1216 Maple Hill Road. . the ZIP is 12033.

Seven contacts in six new states isn't a bad evenings work. That is the record according to Nick WA4ZDP of Jacksonville, Florida (wife Diane is WA4ZDQ). Nick worked Vermont, Connecticut, Ohio and four other states during an opening July 25th. Stations were heard as high as 50.200 and as low as the bottom of the phone band. The equipment consists of an FT-101B, FTV650 transverter, five elements at 60 feet with a Spectronics DD-1 digital readout as frosting on the cake. Commenting on other local activity, Nick says "Big AI" WA4HLP worked VE, KP4 and 30 states in one month.

SMIRK has passed the 500 member mark and shows no sign of stopping there. It is very encouraging to note the amount of activity generated by a relatively new organization founded by a relatively small group. This group has promoted 50 MHz operation to a greater extent than anything since the Sunspot peak of the late 50 's. More power to them and others working along side to generate the interest and activity the band so sorely needs. I for one would very much like to see a close association between the major Six Meter organizations, SMIRK, S.P.E.S.M., and the SIX-SIX Club, Inc plus the numerous smaller groups in order to further increase activity, work for RFI legislation, persuade manufacturers to design and produce equipment, and represent the 50 MHz fan in FCC matters.
As an example, would it not be worthwhile to petition the FCC to allow phone in the 50.0-50.1 band segment? I cannot recall having ever heard more than a half dozen stations
on CW in this 100 kHz , even during the widest of openings. What little CW there is normally finds its way into the phone segment (or should I say Technician segment). Obviously the lower the frequency the more common the openings and the longer they last. Why should the vast majority be denied for the benefit of the few? Incentive you say? NONSENSE! If the desire were to upgrade the quality of the operator the proper way to go about it would be to dangle something he wants. My proposal is this.

1. Open $50.0-50.01$ to all classes, CW ONLY. The space available would then be in keeping with the number involved.
2. Open 50.01-50.1 to PHONE, General and above. There would then be valid reason for the thousands of Technician Class licensees to improve their lot by upgrading.

I frankly have reservations in proposing the above. I have never felt that the good of amateur radio was served by setting off "lower" class operators to themselves. I know of no other activity which segregates the master from the apprentice. The archer, the bowler, the ball player all play on the same field and learn from the more experienced. If we must be divided, let us do it in some reasonable manner.
. . .WAØABI

HAM HELP

This column is for those needing help in obtaining their amateur radio license.

If you need help, let 73 know don't be bashful - the readers are solid gold and are anxious to help you. If you would like to help, let 73 know about that plus your area of expertise, if any, so we can list you for either general help or as a technical advisor.

The following need some help can you spare some time? Clubs in particular take note.

Authur L. Avillo, 5848 Garden Avenue, Marysville CA 95401.

Alan Kline, 30 King Street, Lynn, Mass. (ph 617 595-0873).

Leonard E Booth, 3123 South 13th, Niles MI 49120. (ph 684-3578).
W. Kenneth Lidman, c/o Walter Lidman, 12 Irwin Place, Hazlet NY 07730. (ph 201 26405371).
W. J. Elperin WNøLDN, 936 Curran Avenue, Kirkwood MO 63122.

SAN DIEGO NOV 1-3
ARRL SW Division convention Town and Country Hotel - talk in $34-94,3900,7250 . \$ 5.50$ registration, $\$ 9.75$ banquet. Write Box 82297, San Diego CA 92138 for inf0 and preregistration details.

MANILA NOV $8 \& 9$
South East Asian Net Cohvention. For info write DU1JO, P.ל. Box 386 MCC, Makati, Philipines.

CANTON - NOV 22

Massillon ARC Annual Flea Market and Auction. Send card for map and details: Marc, Box 8711 , Canton OH 44711.

DELAWARE QSO PARTY NOV 30

Starts 0001 z Sat. Nov. 30 and runs for 24 hours. Good news for ops still needing Deleware on some band. Try 356070601406028160 or 3975 $\begin{array}{lllll}7275 & 14325 & 21425 & 28650 & \text { or }\end{array}$ (Novices) 371071202112028160.5 pts per Deleware station, 3 for two counties worked or 5 for all three counties. Send logs to K3YHR.

FORT WAYNE, IND-JAN 19

The Fort Wayne Hamfest is January 19,1975 at Shiloh Hall ($1 / 2$ mile west of Ind. 3 on Carroll Rd.). Flea market, food. Tickets are $\$ 1.50$ at the door. XYLs and children under 12 years free. Tables available at $\$ 1.00$ for 4 ft . Talk in on $28-88$ and $16-76$.

STOUGHTON, MASS. NOV 10

HUGE AUCTION. The Minuteman Repeater Assn., a club with more than 300 members, will hold an auction with tons of good equipment on Sunday, Nov. 10, starting at 1PM, at the Stoughton High School. Bring your own goodies to be auctioned if you wish (club takes 10% of selling price). Snack bar, refreshments. For info call Maurice Finer K1GGP, Milton MA 617-698-7198.

 Repeater Atlas

WR5ABH	Albuquerque	6.91-6.31
WA5VKY	Albuquerque	6.13-7.06
WR5ABV	Capitan	6.346.94
WR5ABU	Los Alamos	6.28-6.88
WR5ACE	San Antonio	6.16-6.76
WR5ACM	Mt. Taylor	6.34-6.94
NEW YORK		
WR2ADM	Bellmore	6.25-6.85
WR2ABU	Boston	6.31-6.91
WR2ADR	Buffalo	6.13-6.73
WR2ACM	Dunkirk	6.25-6.85
WR2ABL	Elmira	6.10-6.70
WR2	Hunter	6.28-6.88
		444.55-449.55
		223.38-224.98
WR2ABD	Ithica	6.37-6.97
WR2ABW	Larchmont	CLOSED
WR2ADZ	Long Island	7.973-7.375
WR2ABA	Long Island	52.64 .52 .525
		7.81-7.21
WA2KSB	Long Island	6.10-6.70
WR2ACW	Long Island	6.145-6.743
W2001	Long Island	6.22-6.82
		6.58-6.82
WR2ACG	Long Island	7.085-7.685
WR2	Long Island	7.73-7.13
WR2ACH	New York City	6.28-6.88
WR2AC0	New York City	7.69-7.09
W2JUP	New York City	7.87-7.27
WR2ABK	New York City	7.915-7.315
WR2	New York City	444.55-449.55
WR2	New York City	223.26-224.86
		444.70-449.70
K2GGT	New York City	449.30-444.20
WR2AAA	Manhattan	442.05-447.05
		7.73-6.73
WR2ACD	Manhattan	6.40-7.00
		449.30-444.30
WR2	Norwich	6.07-6.67
WR2ACT	Olean	6.25-6.85
		6.34-6.94
WR2ADF	Oswego	6.25-6.85
WR2ADC	Pearl River	7.72-7.12
WA2UWQ	Rochester	6.28-6.88
WR2ADW	Rome	6.34-6.94
WR2ADN	Saratoga	6.40-7.00
		445.50-147.00
WR2ABV	Schenectady	6.46-7.06
WA2RJX	Syracuse	6.04-6.64
WR2ACL	Troy	6.34-6.94
WR2ADW	Utica-Rome	444.2-449.2
		6.34-6.94
WR2ACR	Watertown	6.10-6.70
WR2	Watertown	6.16-6.76
WR2ACN	Woodmere	6.04-6.64
WR2ABW	Yonkers	6.31-6.91
NORTH CAROLINA		
WR4AEV	Asheville	6.16-6.76
		222.34-223.94

WR4AGF	Asheville
WR4	Asheville
WR4	Burlington
WR4AGC	Durham
WB4QFT	Durham
WR4ADT	High Point

WR4AFV	High Point
WR4	Laurinhurg
WR4ABX	Lexington

| | WR4 |
| :--- | ---: |\quad Manteo $\quad 43.31-448.91$

NORTH DAKOTA
 WREACJ Bismark WRBADO Fargo

OHIO
WB8CXO Akron WR8ACI Athens $\begin{array}{ll}\text { UC } & \text { Canton } \\ \text { WR8 } & \text { Central Ohio }\end{array}$ WR8ACB Cincinnati WR8ACC Cincinnati WR8 Cincinnati WR8ACP Cleveland WR8ABL Cleveland WB8APD Cleveland WABCEW Cleveland WB8CRV Cleveland WBBCRP Cleveland WR8ABC Cleveland

WA8BBN	Cleveland
W8WV	Cleveland
W8TQA	Columbus
WR8ABV	Columbus
WR8ABR	Columbus
WR8ACA	Columbus
WR8ABR	Columbus
WR8ACV	Dayton
WA8PIA	Dayton
UC	Freemont
WR8ABW	Galion
WR8ACU	Hudson
WR8ACM	Marietta
UC	McConnelsville
WR8	Millersburg
WR8ABS	Monroe
WR8ABX	Newark
WR8ABJ	Newcomerstown

K8JHG Ottawa
WR8ADC Toledo
WR8ACT Toledo
WR8ABU Vandalia
WR8ACZ Vandalia K8NPY Willowick

OKLAHOMA

WR5ADO	Bartlesville	$6.16-6.76$
WR5	Elk City	$6.16-6.76$

| WR5 Lawton | $6.16-6.76$ |
| :--- | :--- | :--- |
| WR5 Norman | 6.34 .94 |

WR5 Norman 6.28-6.88
$\begin{array}{ll}\text { WR5ADE } & \text { Oklahoma City } \\ \text { WR5ADO } & \text { Ponca City }\end{array} \quad 6.34-6.94$
WR5 Still Water \quad 6.13-6.73
OREGON
$\begin{array}{llll}\text { W7DBS } & \text { Eugene } & \text { T1.8 } & 6.10-6.70 \\ \text { KTTBL } & \text { Eugene } & & 6.16-6.76\end{array}$
$\begin{array}{ll}\text { KTTBL } & \text { Eugene } \\ \text { W70FY } & \text { Grants Pass }\end{array}$
WRTADC Klamath Valley
WR7ABK Medford
WR7ADD Philomath
WA7CHL Portland
WR7ABE Portiand
WR7ADI Portland
6.22-6.82
6.31-6.91
6.07-6.67
6.22-6.82
449.10-444.10
6.40-7.00
447.90-442.90
6.19-6.79
6.07-6.67
6.31-6.91
222.30-223.90
6.34-6.94
6.34-6.94
6.16-6.76
7.69-7.09
6.34-6.94
6.19.6.79
6.115-6.70
7.99-7.39
448.90-443.90
53.15-52.79
53.25-52.60
52.92-52.68
52.96-52.72
6.28-6.88
6.22-6.82
6.16-6.76
6.355-6.76
449.95-447.95
6.25-6.85
6.115-6.715
52.76-52.525
6.16-6.76
6.31-6.91
7.81-7.21
6.37-6.97
6.046.64
443.75-448.75
6.31-6.91
6.25-6.85
6.01-6.61
6.28-6.88
6.22-6.82
6.07-6.67
6.01-6.61
6.28-6.88
6.13-6.73
6.325-6.73

W1.8 6.28-6.88
52.76-52.525
$6.01-6.61$
6.34-6.94
6.19-6.79
6.25-6.85
442.85-447.85
53.70-53.46
6.16-6.76
6.34-6.94
6.01-6.61
6.34-6.94
6.22-6.82
6.10-6.70
444.45-445.45
444.17-449.17
6.34-6.94
6.40-7.00

PENNSYLVANIA

WR3ACM	Altoona
WR3AAA	Freedom
WR3AAB	Lehigh Valley

444.10-449.10
6.34-6.94
444.50-449.50
6.07-6.67
7.75-7.15
449.20-444.20
449.10-444.10
6.16-6.76
6.34-6.94
6.22-6.82
6.22-6.82
6.34-6.94
6.22-6.82
6.28-6.88
6.13-6.73
6.28-6.88
449.00-444.00
6.28-6.88
6.31-6.91
6.25-6.85
6.346 .94
6.16-6.76
449.10-444.10
53.16-52.56
448.90-443.90
6.16-6.76
6.07-6.67
6.10-6.70
6.13-6.73
6.16-6.76
6.19-6.79
6.25-6.85
6.31-6.91
6.34-6.94
6.34-6.94
6.34.6.94
6.61-6.76
6.046.64
6.34-6.94
6.34-6.94
6.22-6.82
6.22-6.94
449.20-444.20
52.880.52.525
6.22-6.82
6.346 .94
6.01-6.61
6.28-6.88
6.16-6.76
449.10-444.10
6.34-6.94
6.13-6.73
6.22-6.82
6.22-6.82
6.34-6.94
6.28-6.88
6.34-6.94

MORE NEXT MONTH
Send any and all corrections, updates or new listings to 73 Magazine, Peterborough NH 03458.

REPEATER OWNERS

Don't Take Chances. SENTRY offers custom made crystals made exactly to your specifications. When it comes to crystals for your repeater, BUY THE BEST - SENTRY.

REPEATER USERS

If you want reliable access to the repeaters in your area, you want and need SENTRY CRYSTALS. SENTRY CRYSTALS are custom made for your rig. We don't stock a large quantity of crystals for a certain frequency and hope you can tweak them to frequency in your rig. We do offer FAST service on crystals made especially for you and your rig. If you want reliable, on-frequency operation, INSIST ON SENTRY.

Amateur lıadio

MCMLXXIV

Monthly Ham

THE NEXT VOICE YOU HEAR WILL BE. . . A HOOLIGAN

MOSCOW -Strange things can bel heard crackling over the Soviet air waves these days - not from the hated foreign broadcast but from such stations as Radio Demon, The Diamond, Dragon, Ninochka, Black Soul, Sea Devil and Tempest.

They are all illegally operated inside the Soviet Union - mostly by young radio enthusiasts - and the government is taking ever more serious measures to stamp them out. How ever, with all of the modern electronic means of tracking down the private shortwave and ultrashortwave broadcasts, the authorities have found that as soon as one is silenced another pops up.

But the fact that the term applied to these illegal operators is "radio hooligans" indicates an even more serious official displeasure over the political jokes criticizing the regime, the distribution of information offending the government and the Communist Party, and the playing of rock music, which is regarded by the authorities as "degenerate" and "decadent bourgeois culture."
The above was reprinted from the Los Angeles Times and brought to our attention by Dave WB6ZGF.

STUDY OF LDE PHENOMENON

A startling new interpretation of the rarely observed phenomenon of "Long Delayed Echoes" is being researched by a small group of engineers

Curt Powell, WB4WAA, makes an adjust ment to the WR4ABP repeater located at 1300^{\prime} on the WITN-TV tower at Grifton, N. C. The 146.16/76 FM repeater was first licensed in May 1972 as W4NBR and was constructed by F N C Repeater, Inc., an amateur club of 60 members residing
throughout eastern North Carolina. The unit is radio controlled via 450 MHz from five control points. An elevator in the WITN-TV tower provides easy access for infrequent maintenance of the solid state repeater which now uses transmitter and receiver boards from a Standard 803 transceiver.
at EMI's SE Computer Peripherals plant in Feltham, Middlesex, England.
The effect was first investigated by radio pioneers in the 1920s.

Led by Tony Lawton, SE's technical manager, the group is setting up an experiment to test an hypothesis by Scottish researcher, Duncan Lunan.

Lawton and his team are conducting the investigation in their own time, but with EMI's full backing. Even if they disprove Lunan's theory, they hope to shed light on a phenomenon that has puzzled scientists for decades.

The first reports of LDEs was published in a letter to Nature on November 3,1928 by the ionospheric expert, the late Prof. Carl Stormer of Oslo. He and engineer Jorgen Hals observed LDEs on transmissions made by Dr. van der Pol using the Phillips experimental transmitter PCJJ at Eindhoven in Holland. The frequency used was 9.55 MHz with 15 kW into a long wire aerial.

Morse letter " S " was repeated at intervals of 30 seconds, and received almost instantaneously by Stormer and Hals. Also noticed was the fairly common one-seventh second echo effect as the signals circled the globe, but other distinct echoes were heard with intervals varying between 3 and 15 seconds.

Two French workers, J.B. Galle and G. Talon observed LDEs in May 1929 using a 500 watt transmitter on a wavelength of 25 meters. A description of the very long sequence of echoes with delays between 1 and 30 seconds was published by Galle and "L'Onde Electrique" Vol. 9, 1930.

The key lies in the plotting of a simple graph for each echo sequence. The sequence of transmitted signals is plotted along the horizontal axis, while the delay of the echo (in seconds) is plotted on the vertical axis.

Stormer's sequence plotted in this way gives a pattern which Lunan points out bears a striking re semblance to the constellation Bootis.

The graphs for other sequences yield plots of many other recognizable stars and constellations.

Overall, the information, if such it is, decoded by Lunan is consistent with the hypothesis that LDEs are being returned by a space probe that arrived in the solar system from the star Bootis some 13,000 years ago to

2ecuss Parges

News of the World

search for intelligent life, as manifested by radio transmissions.

Tony Lawton and his colleagues plan to put this to the test by beaming transmissions, probably using a high powered 144 MHz transmitter and a high gain aerial.

PEOPLE'S REPUBLIC OF CHINA

The People's Republic of China has acceded to the International Telecommunication Convention, 1965, but has made three statements including one to the effect that China makes reservations on the articles concerning the assignment and utilization of radio frequencies in the Radio Regulations. In other words there is still no regulatory backing for repeated requests for the removal of unwanted broadcast stations in the amateur exclusive band, 7 to 7.1 MHz .

The form of call signs to be issued by the Chinese administration to amateur stations is:

The letter B followed by a letter designating the geographical area followed by a single digit, and then followed by the letter A or A with one of two letters.
The letters designating the geographical areas are listed below:
F - Shensi, Honan
G - Nanking
H - Shanghai
I - Kiangsu, Chekiang, Anhwei
J - Hankow
K - Hupeh, Hunan, Kiangsi
L - Chungking, Szechwan, Sikang, Tibet
M - Yunnan, Kweichow
N - Kwangtung
D- Canton, Kwangsi, Fukien
P - Peiping, Tientsin
Q - Hopeh, Shantung, Shansi
R - Jeohl, Chahar, Sulyuan
S - Kansu, Ningsia, Chinghai
T- The nine northeastern Provinces
U - Sinkiang
V - Taiwan

FCC TASK FORCE HUNTS FOR HOME RADIO ABUSERS

No one knows when they'll hit town - it could be tomorrow. They move in under a cloak of secrecy and set themselves up in a lonely motel room or vacant office. They bring
their equipment with them, the most sophisticated in electronics gear. Their cars are specially rigged with tracking devices. They have a van crammed with recorders, meters and detectors. The job takes about a week. They get what they need and move on to another town, another state.

These are not a band of super criminals setting up some slick caper. They come to town to track down the source of a common complaint from families throughout the nation - TV interference from home radio hobbyists. The FCC has recently reorganized and expanded a special task force division, setting up specialized 10-man enforcement teams assigned to "clean up" mounting abuses among operators of the popular "Citizens Band" radio rigs.
Reprinted from the Sunday Star-Ledger, Newark NJ.

WB1ETH

A Special Events Station, WB1ETH, was operated for the Bethlehem, NH Bicentennial the weekend of August 9, 10 and 11. Operators were Mike Blandin WA1RKH, Chris Hanson WA1SHO and Bob Daniels WA1ODG. The station transmitted approximately 35 radiograms, many being from passers-by to friends or relatives. We made approximately 90 contacts on $15,20,40$ and 80 meters using a Ranger and an HW-101. Antennas were a 120^{\prime} dipole and a 22^{\prime} vertical. Those who contacted WB1ETH are requested to send a QSL and SASE to WA1RKH.

Mike Blandin WA 1RKH

Box 25
Bethlehem NH 03574

RECIPROCAL LICENSING IN ISRAEL

Every radio amateur who presents a valid license from his own country can receive an Israeli license. At the time of government examinations, he will be questioned in those specific areas where it is felt that the technical level in his own country is lower than in Israel. Decisions regarding the technical levels will be based upon a comparison of the syllabus from the amateur's own country to the syllabus in Israel. An amateur who does not psss the examination, or decides not to sit
for it, will automatically be issued an Israeli license that is one grade lower than his original license. Examinations are currently held in Israel twice a year during the school vacations of the holidays Passover and Rosh Hashana (the Jewish New Year).

In the case of the U.S., Canada, U.K. Austria and Costa Rica, special reciprocal licensing agreements exist. Amateurs from these countries may receive licenses during any period of their stay in Israel, and they are not required to sit for any examinations.

Amateurs who do not bring equipment can receive permission to operate every amateur station in Israel as second operators.

Further information, application forms for reciprocal licenses may be obtained from:

Ministry of Communications,
Engineering Services
Postbox 29107
Tel-Aviv, Israel
(from R. Kline 4X4NJ)

COUNCIL AVOIDS ROW WITH HAMS

Bell, California's City Council warded off a confrontation with irate ham and citizen band radio operators worrying that restrictive rules might be passed by the council (they were not considered).
The meeting started off with an overflow crowd of some 125 persons jamming the council chambers, most of them amateur radio operators alarmed over reports that city officials might consider requiring special permits as a way of controlling transmitters interfering with television and radio reception and even telephone communications.

But a threatened protest never developed because city officials heard a report from City Administrator John Pitts that he had contacted owners of offending transmitters and they had cooperated fully by adjusting their sets or dismantling overpowered transmission equipment.

The council heeded the administrator's recommendation to drop the matter, and was immediately treated to the rare sight of a packed house cheering their actions.

Courtesy of Leonard R. Fox WAGSXK

FM REBUTTAL

Re AI Chapman's (W6MEO) letter in the September issue of 73. The two meter FM "growing pains" here in the Southland are no different than most other large urban areas throughout the country. I can attest to this since I have had the opportunity to see the situation on both sides of the continent and a number of places in between; In most cases, one repeater, the one that combines the virtues of best area coverage with a minimal number of operating restrictions will become the congregating spot for the majority of operators. It will become the training ground for 9 out of every 10 newcomers to two meter FM. It was that way back in N.Y.C. on the old WA2SUR and is the same out here on a number of machines. No ham, whether he or she has been around amateur radio for more years than they wish to remember or is the newest of newcomers can be an "A-1 $\mathrm{Op}{ }^{\prime \prime}$ the moment they enter the world of VHF-FM. Operating technique on a VHF repeater takes time and effort to learn in the same way one learns to be a champion DXer.

I must, however, take exception to Al's suggestion concerning types and duration of license. One cannot legislate a good operator into existance. A ham either wants the respect of his peers or he doesn't. It is not the class of license that one holds that makes him or her a good operator, but a sense of self respect. To carry this further, if a person has no respect for himself, then he will show little respect for others. The ham who will "step on you" on a two meter repeater is the same type of ham that will "step on you" while you are trying to get that "rare one" on 20 SSB. It's not the class of license that is at fault, but rather the personality traits of the operator.

Sure, many of our machines get plagued by "Kerrrchunker's," Jammers and poor operators. But a combination of peer pressure and the marvelous ability that we in amateur radio have to police ourselves usually works and those that are habitual offenders eventually change their ways or just "go away." If there is one shame to be found in this whole affair it is that in the process we sometimes also loose potentially fine members of the VHF-FM community due to the poor first impressions they may get. However, before you prejudge two meter FM and its associated repeaterized operation I suggest you think
carefully about one of those "DX Pile-ups." In both cases you will find the "screwball" who has to spoil it for the rest of us. Remember, though, that we are hams because we love amateur radio and that there is a place in it for all of us regardless of what class we may hold. No band or mode is a utopia and each suffers in its own way. It is the obligation of all of us to build amateur radio from within if we are to survive.

Bill Pasternak WA2HVK/6 Associate Editor-Looking West

THANKS, STEVE WA1DFL

While reading the September 74 issue of 73 , I noticed a letter from a ham whose call was very familiar. I refer to Steve Rich WA1DFL from Revere, Massachusetts.

I was a patient at Chelsea Naval Hospital in 1966 like a lot of other Viet Nam veterans. My dad brought my PC62B to the hospital for me to use to help pass the time. This is where I met Steve.

Steve became very friendly with us at the hospital. He began running phone patches and messages for the guys making them very happy. I'm sure I speak for all the guys when I say thanks Steve for making our stay enjoyable!

Ron Pariseau K1VSC

RECEIVER PROJECT WANTED

Your questionaire in the back of the just received 73 prompts me to write. Yes, there is definitely something I'd like to see in the way of a construction article.

Remember the old 6L6-807 ARRL rig? Everybody built one. . .at least it seemed that way back in 1946 when I first got my ticket. . .now nobody builds unless it's a Heathkit.

What I'd like to see in the way of a construction article would be a receiver. .from 80 through 10 meters. . .using standard and readily available parts, straightforward circuitry and transistors where possible. I'd like to see this in the light of a re-birth of the home-built station where you can build something that is at least capable of keeping up with what is offered built up commercially, then possibly later, a matching transmitter. AM, CW and SSB, of course.

I am not capable of designing such a rig and I've written to OST every so often over the last quarter century and got nothing. Most responses are "design it yourself and submit it and
we'll print it". Hmmm. . .nobody likes a smartass and so it goes, the good basic ham receiver you can build yourself is yet to be offered. Sure there is the specialized CW or SSB receiver either for a single band or one some engineer whipped up with exotic components or a squirrily circuit nobody could get to work. There must be someone in your vast circle of acquaintances in the ham world that can give us "The 73 Basic Receiver you can build it yourself."

Oh, yes, how did you get the apple to move so fast and the bullet to stand still for the apple to pass through the bullet. . . at least that's the caption on the apple/bullet photo - OK so everybody makes a mistake.

Best to you and keep up the fine magazine.
...W4KFK

A GREAT AMPLIFIER

Wayne, I want to tell you about a great company that I read about in 73. I ordered a 2 -meter 15 watt amplifier from VHF Engineering. It is well engineered and easy to build. I tested it and found it very stable and easy to tune up and broad band.

I drive the amp with a TR-22 measuring the power output with a Bird wattmeter from the front seat of my car - 20 watts out. Then I started my car engine -26 watts out with a $5 / 8 \lambda$ whip on the rear deck and 52 watts ERP.

Now that's a product that gives you your moneys worth.

Keep up the best magazine there is!
Robert A. Daffer, Jr. WBøFUR
3016 Bristol Court
Blue Springs MO 64015

COMTEC?

The communications technologies described by G. J. Hanneman (September, 1974) are exciting. The sad part is that we hams remain largely unaware of what lies around the next bend in the wire. Communications is what ham radio is all about. Yet we tend to think entirely in terms of ham radio (the far past) plus a little new stuff when the related ICs become available from the surplus dealers (the near past).

Hanneman has offered to write a couple of articles on the state of the art. By all means, let him bring us up to date. But don't stop there -73 should keep us up to date with regular articles or even a column on communications technologies.

William W. Creitz K3TJC
NOSTALGIA
And to think when I first subscribed you were selling lifetime subs for $\$ 25$. Keep your head above water, we need you.

WA2MGA

WARNING

Fig. 4 of the 3000 volt power supply article in the July issue has a note that says to connect the neutral of the 220 volt (3 wire) line to the transformer if operating two 110 volt primaries in series.

This is very bad business, because if one of the line fuses blows you won't know it. A very slight drop in high voltage output results that is easily passed off as line voltage fluctuation, or is overlooked entirely. The primary with the fuse that didn't blow takes the entire load, and will overheat and burn out if operation is protracted or if the transformer is not greatly oversize.

The reason for this is that the transformer primary connected to the fuse that blew begins to act as a 110 volt secondary winding, excited from the other 110 volt primary that is still energized by the good fuse. If the upper fuse on the diagram blows, the fan will still operate and the bulb lights. If the bottom fuse blows, the relay still works.

One fuse blowing (normally only one will blow in case of momentary overload, or just old age sometimes) is an extreme case. In the meantime, differences in voltage between the two 110 volt sides, and they are never exactly the same, will cause differences in load sharing between the two primaries.

It is best not to make this connection. It is best to treat the two 110 volt windings in series the same as if they were one continuous 220 volt winding. Indeed, that's what they are, as far as the transformer operation is concerned. It's like having a 220 volt winding with a 110 volt tap, when the two primary ends (one start end, one finish end) are connected together, with the tap unused.

When the transformer is used on 110 volts, the two primaries are connected in parallel, and both share the load equally if the connections are made properly. They are treated like a single heavy winding and never individually fused. Similarly in series, the only way to ensure equal load sharing is to leave the "center-tap" unconnected to neutral, so that in effect one continuous 220 volt winding is active.

Ted Chernin KH6GI

TEETH GIVE FEEDBACK

It was one of those cases, my 90 day guarantee was in its last couple of weeks. One morning I was talking on my handheld 2 m unit when, "Hey you have a sick radio there old man, you have feedback on your signal!" Well, the next day I went back to
where I bought the unit to get it repaired. A day later it was back and there was that feedback again! I took it over to a friend's house and we talked over it with no feedback. I took a transmission - bang - there was the feedback. He placed his car keys near the mike and there was the feedback. Next we tried it with my partial dental plate out and no feedback. I put a 150 pF silver mica from each side of the mike to ground and this cleared up the problem. Now I can wear my teeth and talk at the same time.

J.W. Greelak
 Ontario CA 91762

MONO-REPRODUCER IMPROVEMENTS

Having built the Nono-Reproducer (K9VXZ Sept 74, 73 Magazine) I would like to pass along some improvements I made while experimenting with the unit.

I changed C1 to .01 from .05 to improve the high frequency response. The entire assembly was built in a Pamona box with BNC plug and jack already mounted (available from Gateway Electronics, St. Louis) for ease in connecting and disconnecting the unit, a feature valuable in demonstrations. All parts were mounted on a PC board to conserve space and improve the appearance of the unit. For line (1) in the original figure I used a piece of RG-17U coaxial cable, which I had in the junkbox, to improve the RF characteristics and to eliminate stray capacitance. This should, of course, be as short as practible.

I am now working on a Stereo Reproducer, utilizing the same design, while trying to retain the valuable foolproof features incorporated.

Michael R. Hanna K8UUO

GREEN SUPPORTER

I've just heard the news and I'm horrified. Guess this is "old hat" to you and much could have happened since the original verdict was promulgated. . I hope it has and I'm sure the "gang" is rallying round to give you support. Just what form this might take is difficult for me to imagine from this part of the world but I want you to know that I'm a Wayne Green supporter and if there is a call for some monetary aid, then I'll be a supporter again.

I realize too that you gave NZART some real help last year because of my request - just another aspect of your efforts in support of amateur radio in general. So - old friend - keep on keeping on. In spite of all, ever so many folks are very appreciative of your efforts over the years and I'm sure will expect you and " 73 " to continue to flourish in the future.

Good cheer to you and kindest to the family.

Jock White ZL2GX

ANTENNA

Enclosed is a photograph of, I think, a rather unique VHF antenna installation that I happened to come across recently. Possibly you will be able to use this photo in some future issue of 73 Magazine. Hope you can use it.

Pete Walton VE3FEZ

BACK ISSUES

I received the 36 issues of 73 which I ordered from the Book 'n Stuff portion of your magazine. I would like to say that it was one of the most enlightning deals I ever got. Just skimming through them brought back memories of circuits that were tried and, due to my ignorance, failed.

Most of them were from my "pre$\mathrm{FM}^{\prime \prime}$ days and, having been almost exclusively FM for the last few years, I really got an education in the old tube circuits. Currently, there are plans afoot to put squelch in a converted AM rig (December '60 page 26) as the highly modified circuit I "stole" from a military receiver ain't so hot.

Again, many thanks for offering this fine selection. At 33d a copy, I kind of felt guilty about ripping you off. The other books I ordered were also quite interesting, especially the VHF Projects for Amateur and Experimenter."

TNX es BCNU on VHF/UHF FM es CW.

Carl Hattan KøBZV/KL7 More LETTERS on page 144.

OSL CONTEST

We have two winners this month. WB9HPT has not only designed a card which really stands out on a wall but by including illustrations of his other interests, he lets his contacts know more about himself. We have included the note which our co-winner, WA9FTH, sent along with his card. He receives a free one year sub as well as WB9HPT, proving that it pays to blow your own horn. If you think your QSL is something special, send it to 73, QSL Contest, Peterborough, NH 03458. You could win a one year subscription.

WINNING CARD

Enclosed you will find the winning entry for your QSL design contest. I am sure you will notice that this card design is striking and beautiful. I am almost ashamed to turn this beautiful card into your contest as it is so obviously superior to any other card in the world.
... WA9FTH

Mfr., Model, Ser. No.	Owner	Issue
Clegg 27B No: 72013-1068	W3BXL	7/73
STD. 826 MA No 208078	WB2DEW	7/73
Drake ML-2 No 10582	W3MSN	8/73
Sonar FR-2528 No. 21-4250	Doherty	12/73
STD SRC-851-SH		
No. 9725		
STD SRC-707C		
No. 2833		
TPL PA-6-IDE No. 1092		
RP MEA-22 No. 212		
Two Larsen Antennas		
Swan 270 No. M-252616	W4NTB	12/73
STD SRC-146A		
No. 208070	W7DKB	12/73
Marker Luxury	W7BVP/6	2/74
No 2296		
Regency HR-2A 2m FM	WB8NSU	3/74
No. 04-05632		
Collins Model KWM-2	W9JS	3/74
No. 13551		
Regency HR-2A	WA3TVI	4/74
No. 04-0787		
Kenwood TS-520	W7JFR	5/74
No. 840092		
CW-520/511S filter		
Inoue EC-20 No 1161	W1PVF	7/74
1-RF Communications		
RF-403-2 VHF-FM XCUR		
No. 1277	K3YHR	7/74
Sonar 3601 No 1416	K1UXD	7/74
SBE Model SB-144		
No. 46316 \$25 reward		
\$25 for information for arrest		
and conviction of thief.	K4KVF/5	7/74

 7318 Hollywood Drive West Chester OH 45069

Thanks to the response of several of you readers, I have been selected to provide you with a monthly update on the world of solid state electronics. While I may have my ideas as to what types of circuits and devices you are interested in hearing about, I would greatly appreciate a short note, or even a QSL card, listing your solid state and experimenting interests. With your help we can make the best use of this space each month.

A growing number of hams are becoming interested in tone control circuits: repeater access control, Touch Tone signaling for auto-patch systems, tone keyed squelch, and remote control of whatever needs to be controlled.

Microsystems International has developed a series of telecommunication products using monolithic linear and digital ICs together with Tantalum thin and thick film technologies. Of particular interest is the MH8900 series of tone generators. This unit requires double pole TouchTone type switches in its keying circuit. It generates the standard tone dialing frequencies of $697,770,852$, 941 Hz (low group) and 1209, 1336, $1477,1633 \mathrm{~Hz}$ (high group). Supply voltage can be between 4.5 and 35 VDC. Current requirements are from 7 to 12 mA depending on supply voltage. Typical rise time to a specified output frequency even when Vcc is switched -5 ms max. The tone generator is constructed in hybrid form using silicon ICs and the Tantalum thin-film process developed by Micro-systems. The circuit comprises unique, dual, high gain amplifiers with a bias and clipping network, coupled to modified parallel T filters. All capacitors and all but four resistors are fabricated using Tantalum thin-film resulting in a high degree of frequency stability and close tolerance. The resistors in each IC are precisely adjusted, with the circuit operating, by burning away resistance material with a laser! Worst case frequency drift of this IC is less than 1.5% when considering the effects of the temperature coefficients of the passive components, amplifier pulling, long term drift for the full lifetime (greater than 15 years), and varying supply voltages.

The MH8913J is being offered for sale by KA Electronics Sales (1220 Majesty Drive, Dallas TX 75247), including data and application sheets for $\$ 18.00$ (see Sept. 73, pg. 153). Further info on this series of ICs can be obtained from Microsystems International Ltd., Marketing Mgr. Telecom Products, Box 3529 Sta. C, Ottawa, Canada K1 Y 4J1.

Other manufacturers are interested. in the telecommunication market. Motorola will soon have available a CMOS version of a Touch Tone generator. The low power requirement should make this a winner. A CMOS Touch Tone receiver should be available in the not too distant future. More on these as info becomes available.
In those areas where Touch Tone service is not yet available on the land line circuits, some additional circuitry is necessary to interface your tone signals with the phone line for remote control or auto patch use. General Instruments has introduced a telephone dialer circuit which could perform the dialing into a pulsed dialing phone system. The AY-5-9100 is primarily intended for providing a way to use a push-button phone with a dial pulse only system. In a radio system a Touch Tone receiver could take the place of the push-button dial or keyboard. The transmission path would be something like this: FM transmitter modulated with tones - FM receiver demodulates tones - tones fed to a Touch Tone decoder - decoder drives AY-5-9100-AY-5-9100 drives transistor and dialing relay. The Touch Tone decoder could be constructed of seven 567 PLL tone decoders and some logic gates.

The AY-5-9100 contains four storage registers to store the dialed number in BCD format either in total or partially depending upon the difference between the dial in and dial out speeds. Pulse repetition rate, interdigital pause, and mark-space ratio are all programmable. Outputs are provided for line pulsing and muting. An input inhibit is provided to allow storage of one number of up to 20
digits. This allows the original dialed number to be redialed just by providing one command signal rather than repeating the dialing procedure. The IC operates from -15VDC and only requires 2 milliwatts of power. This is a PMOS IC available in an 18 pin DIP. It is available in single quantities for \$20.00 from General Instruments Corporation, Microelectronics Div., 600 W. John Street, Hicksville, New York 11802. This is quite a sophisticated IC!

TIMERS AND COUNTERS

A flexible 24 -stage ripple binary counter, and a real time 5 -decade counter have been introduced by Motorola. Capable of counting from 1 to 2^{24}, the MC14536CP PROGRAMMABLE TIMER consists of 24 counters with the last 16 stages selectable by a four-bit select code. Real time event counting can be accomplished with the MC 14534CL FIVE DECADE COUNTER in continually update multiplexed displays.

By varying the input clock frequency of the MC14536CP Timer a wide variety of timing intervals can be achieved. Using a four-bit binary select code the output intervals can also be adjusted to meet the timing needs of many applications. An onchip monostable circuit incorporating a pulse type output has been included. By selecting the appropriate output along with the correct input clock frequency, a variety of timing intervals can be achieved. Clock inhibit and set/reset input are also provided. The first 8 flip flops may be bypassed if desired. The maximum clock frequency for this CMOS is 3 MHz at 10 volts, and the counter advances on the negative going edge of the clock pulse.

The MC 14534 CL is a CMOS circuit composed of five decade ripple counters that have their respective outputs time multiplexed using an internal scanner. Outputs of each counter are selected by the scanner and appear on four BCD pins. The selected decade is indicated by a logic

Continued on page 139

Motorola MC14534 \& MC14536

тне ultimate in

Here it is, the FMer's dream, a fully synthesized transceiver that'll cover the entire two meter band, PLUS a built-in scanning receiver that'll locate any repeater frequency in your area that's in use. . .

$\$ 1495.00$

- Frequency stability of 0.0005\%
- Built-in tone burst and PL encoders and decoders
- Built-in touch tone pad
- Full LED Digital readout
- Built-in S Meter also serves as VSWR bridge, power output meter, battery indicator, deviation indicator and discriminator meter
- Audio output 4 watts @ 10% THD
- Speaker built-in to left side of cabinet for maximum mobile reception
- Headphone jack for noise-free mobile operation
- Independent selectable priority channel
- Built-in Auto CQ
- Temperature range from -20° to 170°

Fahrenheit

- Size: $4^{\prime \prime} \mathrm{H} \times 8^{\prime \prime} \mathrm{W} \times 10^{\prime \prime}$ D Weight: 10 pounds
- One million channels (1000 Rec. $\times 1000$ Trans.)
- Operates on FM, AM or Modulated CW
- Built-in DC and AC power supplies
- Frequency range of 143.5 to 148.5 MHz in 5
kHz increments
- Autoscan in 5 kHz steps across entire band with adjustable speed and frequency limits
- Synthesizer flexibility that offers choice of 600 kHz up or down, 1 MHz up or down, simplex, frequency split, or any nonstandard split (programmable) all from a single function switch - Receiver sensitivity of 0.35 mV for 12 dB SINAD on FM
- Dual power output of 20 watts or 5 watts across entire band
- Adjacent channel rejection (30 kHz) 100 dB minimum
- Image spurious and intermodulation (EIA) 80 dB minimum
- 10 pole, 13 kHz crystal filter

Now monitor every channel - all 7000 of them - all synthesized - equal to $\$ 14,000$ worth of crystals. That's right, you monitor every channel from 140 to 175 MHz . Keep track of police, fire, ham and marine frequencies. Easy-to-read thumbwheel switches set exact frequency down to 10 kHz . For split frequency or off channel there is a variable + or -5 kHz fine tuning control. Tunable front end automatically changes as frequency is varied, assuring phenomenal .5 microvolt sensitivity. Works on 12 VDC or 117 VAC, both cords supplied.
$\$ 399.00$
ennergency
beacon corp.

SYNTHESIZED FM TRANSCEIVERS

EBC 144 JR

HEY! This is like two transceivers in one! Fully synthesized covering 143.5 to 148.5 MHz in 5 kHz increments. Standard 600 kHz offsets up or down automatically. Reverse simplex and frequency split allow totally independent receive and xmit frequencies, and a priority channel guard that switches you back to it as soon as a signal is detected.

$\$ 599.00$

- Sensitivity -. $35 \mu \mathrm{~V}$ for 12 dB sinad, $.30 \mu \mathrm{~V}$ for 20 dB quieting
- 20 watts output
- Intermodulation, spurious and image 60 dB minimum
- 10 pole \times tal filter
- Frequency stability .001\%
- S-meter speaker built in
- Independent selectable priority channel

Priority channel is functional but with the added plus of digital read-out of frequency. All the offset functions operate; thus, if the channel is a repeater with standard offsets, key the mike to lock onto that channel (with proper xmitter offset). Of course, any channel can be "locked out" of scan sequence. Those bright yellow LED digital readouts make night mobile operations a dream.

- Scans any 6 channels
- Indicates offsets
$\$ 199.00$
- No xtals to buy
- Locks on xmitting channel
- Easily added to EBC 144 Jr .
- Room for options, i.e. tone burst, touch-tone
pad, PL encoding
- Easy reprogramming of channels
- Individual channel lockout

Emergency Beacon Corp.
15-A 3 River Street
New Rochelle, N. Y. 10801
Please send me:

- EBC-144
\$1495.00 (\$150.00 dep)
EBC-145SA
$\$ 199.00$ (\$20.00 dep)
- EBC-144 Jr. \$ 599.00 (\$ 60.00 dep)
- EBC-7000
$\$ 399.00$ ($\$ 40.00 \mathrm{dep}$)

10\% deposit will insure early delivery and guarantee price.

\square Payment Enclosed	\square BankAmericard No.
\square Send further info.	\square Master Charge No.
	(Include four digit No. above name.)
	Expires.

Name
Expires.
St. Address
City Adress State Zip

DIPOLE ANTENNA

TUNING

Much of what has been written about antennas, includes something about tuning. Relative to the dipole antenna, the procedure is to add or subtract from the lengths of the legs. This is what I am writing about, except that presently I can stand on the ground and change the lengths of the legs of the dipole by merely pulling or pushing the transmission line. The drawings are almost completely explanatory. They describe the additions I made to my 40 m Inverted " V " Antenna.

Fig. 1. Overall view of system.

If you study the drawings a moment, you will see portions of the two legs of the antenna pulled into an aluminum pipe, which acts as a shield against pickup and radiation of radio frequency energy. The pipe is grounded of course, and each leg of the antenna is insulated for at least 3 meters beginning at the center of the dipole. I made my antenna from an old length of coax cable. The braid is stripped from the center conductor and insulation in one piece, and is

Fig. 2. Details of pulley mechanism at Apex.
taped to prevent contact with the pipe shield or any other metal part. The center conductor with its nylon cover is ready to be used.

The two wires, at one time antenna and at another time transmission line in a pipe, raised a question in my mind. What would happen to the impedance and SWR? Could a low SWR be obtained? There was always a chance that a combination of lengths, change in position, etc., might compensate for the variable and unknown impedance, so I made alterations to my antenna and gave it a trial run. SWR's between $1: 1$ and $1: 2$ were easy, and quickly secured.

Fig. 3. A look at the actual antenna minus the supports.

Above the 80 and/or the 40 meter band the antennas act as harmonic antennas, for all higher frequencies, at least to the limit of the pipe shield length. Very little change in length of the legs is necessary to tune to the exact wavelength desired. It is recommended that the transmission line be calibrated for the most used frequencies so one can shift from one to the other without any trouble.
.. .WA4RSX

DATA SIGNAL

the latest in station accessories

AUDIO AUTOMATIC GAIN CONTROL AMPLIFIER

Is your tone decoder having problems due to input signal variations? If so, eliminate these and other problems caused by weak, strong or varying input signals. The AAGC-1 will take signal levels between 50 mV to 5 Volts and feed a clean rock stable signal to any decoder for perfect operation. Give your decoder a chance to decode properly with our AAGC-1 amplifier.

Shipping Weight $3 \mathrm{oz} . \quad \$ 14.95 \mathrm{kit}$
$\$ 19.95$ wired
DELUXE RECEIVER PREAMPS
Specially made for both OLD and NEW receivers. The smallest and most powerful single and dual stage preamps available. Bring in the weakest signals with a Data Preamp. Now with improved FET's for greater performance.

BAND	STAGES	GAIN	NOISE FIGURE	KIT PRICE	WIRED PRICE
10 meter	Single	25 dB	2 dB	$\$ 15.50$	$\$ 18.50$
6 meter	Single	25 dB	2 dB	$\$ 15.50$	$\$ 18.50$
2 meter	Single	20 dB	2.5 dB	$\$ 15.50$	$\$ 18.50$
2 meter	Double	40 dB	2.5 dB	$\$ 30.50$	$\$ 36.50$
220 MHz	Single	17 dB	2.5 dB	$\$ 15.50$	$\$ 18.50$
220 MHz	Double	35 dB	2.5 dB	$\$ 30.50$	$\$ 36.50$

CRICKET 1 ELECTRONIC KEYER

A popularly-priced IC keyer with more features for your dollar. Cricket I is small in size and designed for the beginner as well as the most advanced operator. It provides fatigue-free sending and its clean, crisp CW allows for easy copying at all speeds. Turned on its side, the Cricket can be used as a straight key for manual keying. Right or left hand operation. AC/DC.

Shipping Weight 3 lbs . $\$ 49.95$

OTHER EXCITING PRODUCTS INCLUDE

TOUCHTONE TO ROTARY CONVERTER TOUCHTONE TO TOUCHTONE CONVERTER TOUCHTONE PADS
AUTOMATIC DIALER
ANTI-FALSING TOUCHTONE DECODER
AGC AMPLIFIER

Write today for complete details

Successor to Data Engineering, Inc.
2212 Palmyra Road
Albany, Ga. 31701
912-435-1764

Witson êlechonics DIRECT SPECIAL XMAS SALE

WILSON 1402SM HAND HELD 2.3 WATT FM TRANSCEIVER

*Rubber Flex Antenna *Complete Set NiCad Batteries *Leather Case *Three Sets of Crystals
$16 / 76,34 / 94,94 / 94$, Other Available at $\$ 8.00 \mathrm{Pr}$.

ALL FOR JUST
 $\$ 19995$

- 6 Channel Operation, Individual Trimmers On All TX and TR Xtals. All Xtals Plug In.
- S Meter Battery Indicator.
- 10.7 IF and 455 KC IF Ceramic Filter.
- 3 Microvolt Sensitivity For 20dB QT.
- 2.3 Watts Minimum Output.
- Microswitch Mike Button.
- Size $8-7 / 8 \times 1-7 / 8 \times 2-7 / 8$ Inches.
-Weight 1 lb .4 counces, Less Battery.
- Current Drain Rx 14MA TX 380 MA. ACCESSORIES:
SMI Speaker Mike $\$ 24.00$ BCI Battery Charger \$29.95 1410A Amplifier Mobile Mount $\$ 99.00$

```
To: Wilson Electronics
    P.O. Box 794
    Henderson, Nevada }8901
    (702) 451-5791
Ship me 1402 SM Special Summer Package
Plus }\square\mathrm{ SM1 }\square\mathrm{ 1410A }\square\mathrm{ BC1
Enclosed is \$
``` \(\qquad\)
``` \(\square\) Check \(\square\) Money Order \(\square\) Master Charge \(\square\) Bank Americard
```

\qquad
\qquad

```
Card Expiration Date M/C Imterbank \#
Extra Xtals
``` \(\qquad\)
``` .
Name
``` \(\qquad\)
```

Address

``` \(\qquad\)
```

City and State Zip
All orders will be shipped Air Mail within 24 hours after receipt of order (excluding weekends). Enclose additional $\$ 3.00$ for prepaid Air Mail shipping. Nevada residents add sales tax.
Sale ends October 31, 1974

```

\section*{WILSON ELECTRONICS}

\section*{WTGVA designed MONO \& DUO BAND BEAMS}

\section*{QUALITY MONO \& DUO BAND BEAMS AT LOW PRICES}

Wilson Electronics offer a complete line of Mono \& Duo Band Beams. With our purchasing power on large quantities of aluminum and low overhead, we can give you a rugged heavy duty top quality beam for a much lower price than any other manufacturer.
Model No.

\section*{WILSON MONO BAND BEAMS}

M340 3 ELE, 40 METER BEAM (full size)
Gain \(8.5^{\circ}\) DB gain. Boom length \(38.5 \mathrm{ft} .3^{\prime \prime}\) OD .200 wall to .065 .
M240 2 ELE. 40 METER BEAM (full size)
M720 Gain \(5.5^{\circ}\) DB. Boom length 16 ft . \(3^{\prime \prime}\) OD .065 wall.
7 ELE. 20 MEIER BEAM
Gain 14 DB. Boom length 58.5 ft . 3" OD .200 wall to .065 wall.
M620 6 ELE. 20 METER BEAM
M520 Gain 13 DB. Boom length \(50 \mathrm{ft} .3^{\prime \prime}\) OD .200 wall to .065 wall.
M420 Gain 12 DB. Boom length 40 ft . \(3^{\prime \prime}\) OD .065 wall.
M320 Gain 10 DB, Boom length
Gain 8.5 DB. Boom length \(20 \mathrm{ft} .3^{\prime \prime}\) OD .050 wall.
M715 7 ELE. 15 METER BEAM
Gain 14 DB. Boom length 40 ft . \(3^{\prime \prime}\) OD .065 wall.
M615 6 ELE, 15 METER BEAM
M415 Gain 13 DB, Boom length 32 ft . \(3^{\prime \prime}\) OD .065 wall.
M810 Gain 10 DB. Boom length \(20 \mathrm{ft} .3^{\prime \prime}\) OD . 065 wall.
OELE. 10 METER BEAM
M510 5 ELE. 10 METER BEAM
Gain 12 DB. Boom length 20 ft . \(3^{\prime \prime} .065\) wall.

\section*{WILSON DUO BAND BEAMS}

\section*{D862 6 ELE. \(20 \& 2\) ELE, 40 INTERLACED BEAM}

Gain 13 DB- 205.5 DB 40 . Boom length \(50 \mathrm{ft} .3^{\prime \prime}\) OD .200 wall to .065 wall.
DB52 5 ELE. 20 \& 2 ELE. 40 INTERLACED BEAM
Gain 13 DB -205.5 DB 40 . Boom length \(40 \mathrm{ft} .3^{\prime \prime}\) OD .200 wall to .065 wall.
DB54 5 ELE. 20 \& 4 ELE. 15 INTERLACED BEAM
Gain 12 DB-20 \(10 \mathrm{DB}-15\). Boom length 40 ft . \(3^{\prime \prime}\) OD .065 wall.
DB43 4 ELE. 20 \& 3 ELE. 15 INTERLACED BEAM
DB32 Gain 10 DB-20 8.5 DB- 15 . Boom length \(30 \mathrm{ft} .3^{\prime \prime} 0 \mathrm{OD} .065\) wall.
Gain \(8.5 \mathrm{DB}-206 \mathrm{DB}-15\). Boom length 20 ft . \(3^{\prime \prime}\) OD .050 wall.
DB76 7 ELE. 15 \& 6 ELE. 10 INTERLACED BEAM
Gain 14 DB- 1513 DB- 10 . Boom length 40 ft . \(3^{\prime \prime}\) OD .065 wall.
Gain 13 DB 1512 i2 10 IN. Boom length \(32 \mathrm{ft} 3^{\prime \prime}\) OD .065 wall.
D844 4 ELE. 15 \& 3 ELE. 10 INTERLACED BEAM
Gain \(10 \mathrm{DB}-158.5 \mathrm{DB}-10\). Boom length 20 ft . \(3^{\prime \prime} .065\) wall.
If not available from your dealer write direct to factory for catalog or information and fast service. All prices F.O.B. factory. Wilson beams are available at the following dealers:
HENRY RADIO STORES AMATEUR ELECTRONIC SÜPPLY . MILWAUKEE, WISCONSIN AMRAD
HAM RADIO OUTLEET
HARRISON RADIO
OAKLAND, CALIFORNIA BURLINGAME, CALIFORNIA LONG ISLAND, NEW YORK

\title{
NOW! BUY DIRECT
}

\section*{WHAT DOES THIS MEAN?}

It means that GENAVE'S outstanding line of Amateur radios is now available to you at new, inflation-beating prices. A glance at the new prices confirms that the dealer's discount has been entirely eliminated, to your benefit. The same fine radios that you've seen in his shop may now be ordered on a FactoryDirect basis. You pocket the savings. Warranty policies remain the same: if your new GTX fails within three months of purchase, send it back. We'll fix it or replace it, fast.

\section*{Order TODAY-Orders will be processed as they are received!}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Standard crystal frequencies in stock @ \$3.75 each:} \\
\hline \multicolumn{2}{|r|}{\(11 / 4\) Meter} & \multicolumn{2}{|c|}{2 Meter} & \multicolumn{2}{|r|}{6 Meter} \\
\hline TX & RX & TX & RX & TX & R X \\
\hline 222.30 & 223.50 & 146.01 & 146.34 & 52.25 & 52.38 \\
\hline 222.34 & 223.90 & 146.10 & 146.52 & 52.525 & 52.525 \\
\hline 222.38 & 223.94 & 146.12 & 146.61 & 52.70 & 52.60 \\
\hline 223.14 & 223.98 & 146.16 & 146.70 & 52.76 & 52.64 \\
\hline 223.26 & 224.74 & 146.19 & 146.72 & 52.82 & 52.68 \\
\hline 223.30 & 224.86 & 146.22 & 146.76 & 52.88 & 52.72 \\
\hline 223.34 & 224.90 & 146.25 & 146.79 & 52.92 & 52.79 \\
\hline 223.50 & 224.94 & 146.28 & 146.82 & 52.96 & 52.80 \\
\hline & & 146.34 & 146.85 & 53.15 & 53.05 \\
\hline & & 146.52 & 146.88 & 53.25 & 53.08 \\
\hline & & 146.94 & 146.94 & 53.68 & 53.16 \\
\hline \multicolumn{6}{|c|}{Contact factory for prices on other crystal frequencies.} \\
\hline
\end{tabular}

USE THIS HANDY ORDER FORM TO HELP YOURSELF TO GIANT SAVINGS!

\section*{for GIANT SAVINGS!}

GTX-600 6-Meter FM 100 channels, 35 watts WAS \$309.95 NOW \$21995 (Incl. 52.525 MHz)

GTX-2 2-Meter FM 10 channels, 30 watts

WAS \$299.95 NOW \(\$ 18995\)
(Incl. 146.94 MHz)

GTX-200 2-Meter FM 100 channels, 30 watts

WAS \$299.95 NOW \$19995
(Incl. 146.94 MHz)

GTX-100 \(11 / 4\)-Meter FM 100 channels, 12 watts WAS \(\$ 309.95\) NOW \$21995
(Incl. 223.5 MHz)

GTX-10 2-Meter FM
10 channels, 10 watts
WAS \(\mathbf{\$ 2 3 9 . 9 5}\)
\[
\begin{aligned}
& \text { sow } \\
& \text { No9 }
\end{aligned}
\]
(Incl. 1 46.94 MHz)

GTX-600 @ \$219.95 \$
GTX-200@ \$199.95 \$
GTX-100@ \$219.95 \$

GTX-2 @ \$189.95 \$ \(\qquad\)
\(\square\) Lambda/30 2-M Base Antenna
@ \(\$ 59.95\) \$ \$ Lambda/6 2-M Trunk Antenna
 @ \(\$ 29.95\) TE-1 Tone Encoder Pad
@ \$59.95 \$ PSI-9 Port. Power Package
@ \(\$ 29.95\) \$
GTX-10 @ \$169.95 \$ \(\qquad\)PS-1 AC Power Supply
@ \$49.95 \$
and the following standard crystals @ \$3.75 each:
\(\qquad\)
Sub-Total \$ \(\qquad\) Cal. residents add \(6 \%\) sales tax: \(\qquad\) TOTAL: \$
All orders shipped post-paid within continental U.S. NAME \(\qquad\) ADDRESS \(\qquad\) CITY \(\qquad\) For C.O.D., Include 20\% Down. AMATEUR CALL STATE \& ZIP \(\qquad\)
Payment by: Certified Check/Money Order Personal Check C.O.D. Note: Orders accompanied by personal checks will require about two weeks to process.
\(\square 20 \%\) Down Payment Enclosed. Charge Balance To:
\(\square\) BankAmericard \# \(\qquad\) Expires
\(\square\) Master Charge \# \(\qquad\) Expires \(\qquad\) Interbank \#
Prices and specifications subject to change without notice.

The original K2OAW counter.

\title{
Latest Counter Update
}

When I first wrote the article "A Modern VHF Frequency Counter" back in early 1972, I didn't expect anywhere near the enthusiastic response it received. Within a short time I got letters from almost every state as well as a number of foreign countries asking for printed circuit board layouts and further information. In addition to the two printed circuit suppliers listed in the original article, several groups of amateurs in various states have gone into business selling boards at hamfests and club meetings. In short, there are hundreds, and perhaps even thousands, of these counters already in existence.

So now, perhaps it is time to look back at the original design and talk about some modifications and improvements, as well as a few hints and solutions to common problems. But, there is an old Bulgarian proverb (or maybe it's Transylvanian or something) which says - "If it works OK, don't louse it up." In other words, the original design is still sound, and if you are satisfied with its performance, don't change it. With that warning, here goes.

\section*{Where to get Information}

The original article appeared in three parts: Part I, May 1972 issue of 73 Magazine, carried the basic description and parts list. Part II, July 1972 issue, carried the logic diagrams. Part III, September 1972 issue, had the printed circuit board layouts
and parts location drawings. The entire article has since appeared in a Tab book; RF and Digital Test Equipment You Can Build.

In addition, 73 Magazine in November 1972 had some corrections, and an article by W9CGI in 73 Magazine for June 1973 had a variety of suggestions on possible modifications. The June 1972 issue of 73 Magazine had an article on a separate VHF frequency scaler using the same Fairchild IC as the entire counter, but using a slightly different circuit. And the March 1974 issue had an article by W4CUG on increasing the speed of the counter.

At the present time, printed circuit board layouts are available from me if an SASE is enclosed. Etched boards seem to be available from many sources, including the following: Westrock Repeater Association, P.O.Box 403, Bedford, N.Y., 10506; and D. L. McClaren W8URX, 19721 Maplewood Avenue, Cleveland, OH 44135 . The former is our local repeater association which will put to good use any slight profits it might make on the boards.

\section*{Low-Frequency Input Sensitivity}

My original prototype had an input sensitivity of roughly 200 mV or so on the low-frequency input, but many readers reported being unable to get any where close to this figure. We have since built several counters, and all except one had a sensitivity of less than \(400-500 \mathrm{mV}\); but that one bad
one needed almost 2 V to operate properly.
The original design used a 40673 MOSFET in a direct-coupled circuit which had only one isolation capacitor - at thevery input, to avoid upsetting the MOSFET bias with any stray dc input voltage. It turned out to be a compromise in an effort to get a simple circuit, with high input impedance, which would work at very low audio frequencies. But direct-coupling from the MOSFET directly into IC1, the Schmidt trigger, forced the MOSFET to operate at very low drain voltage, which is not a very good idea. With the addition of four components, as shown in Fig. 1, it is possible to capacitor-couple the MOSFET to IC1; this allows the MOSFET to operate in a more linear portion of its range and provide more gain. Using a \(0.1 \mu \mathrm{f}\) disk capacitor for coupling, our unit performed down to about 100 Hz with an input sensitivity of roughly 50 or 100 mV . The two 1 N 914 diodes are included to protect the input of IC1 from excessive voltage deviations; theoretically they should be included, although we have operated our unit without them with no damage to the IC. The \(2200 \Omega\) resistor should be selected, if needed, to make the input voltage into IC1 approximately 1.2 V dc with no ac input.

The printed circuit design has no room for these added parts, so you will have to modify it slightly by cutting the copper conductor going from the drain of the MOSFET to pin 4 of IC1. Connect the capacitor across the break in this conductor, and connect the \(2200 \Omega\) resistor between pin 4 and pin 7 (ground). Measure the dc voltage at the input to \(I C 1\), and if it is much different from 1.2 V or so, substitute a slightly different resistor value - lower to drop the voltage, higher to increase it. All of these components, as well as the diodes, if

Fig. 1. Adding the starred components to the low-frequency input circuit (Fig. 3 in the original article) yields somewhat improved input sensitivity.

WB2CHW's version of the counter.
you use them, should be mounted on the bottom side of the board.

\section*{VHF Scaler Operation}

Some readers have had trouble with the scaler portion of the counter. The Fairchild 95 H 90 scaler IC costs \(\$ 16\), and so swapping ICs is not a popular troubleshooting method here! There have been a number of reasons for problems, the main one being that a sizable percentage of 95 H 90 's have been defective right off the production line. Apparently Fairchild had some production problems at the beginning; but rumors have it now that the presently available ICs are better, and so we should see fewer and fewer troubles as time goes on.

The first thing you need is a way of testing the 95 H 90 . This is not easy, since you have to test it under operating conditions and that means building another scaler. If you know someone else who has built the counter, perhaps you can interchange ICs. Another alternative is to build the VHF scaler written up in the June 1972 issue of 73 Magazine. To make sure you don't have other problems with the layout, be certain to use the same printed circuit pattern given in the article; you can make your own or obtain the small board from one of the board suppliers listed earlier. If your IC doesn't work in the simpler scaler circuit, then it's almost a certain bet that the IC itself is bad. (Two comments about the June 1972 scaler. First, make sure to use a good stiff 6 V battery - a lantern battery is best. Don't try to use some AA cells, as the IC takes a lot of current. Second - and this is a long story that I won't repeat - the resistor labelled .18 K in the article is supposed to be \(180 \Omega\).)

WA9FCM's version.

And one built by K5PQK.

And by Don Hoos.
An interesting sidelight is that many readers wrote me to say that the 2 N 5771 specified in the scaler doesn't exist. Though it is listed in the Allied catalog and should be available from any Fairchild distributor, somehow it seems hard to get. Fortunately there is nothing magic about it, and many silicon PNP switching transistors will work just as well as long as they go up to high enough frequencies - for example a HEP52 or HEP715.

We have also found that the 95 H 90 IC in the scaler is very temperature and voltage sensitive. In normal operation it runs quite warm, almost hot. You can put your finger on it, but sometimes it is not very pleasant to keep it there for long. Hence, if you adjust the bias pot in the scaler while the unit is cold, it will not work well after everything warms up. The best solution is to cement a small aluminum heatsink to both scaler ICs and let everything heat up before adjusting the bias pot for best sensitivity. Mour.ang the bias pot on the outside of the case, or at least making sure you have a small access hole in the case that you can stick a screwdriver through to adjust it is also very
helpful. But if you mount the pot off the board, make sure to use very short leads, and bypass the pot at the board end with a 0.01 \(\mu \mathrm{f}\) disk capacitor.

The scaler ICs are designed for use with negative power supply voltages, with pins 4 and 5 grounded, and pin 12 connected to \(-5.2 \mathrm{~V} \pm 5 \%\). In practice, most users reverse the connections and then use a +5.2 V supply, since this makes it compatible with TTL ICs which need 5 V . Since the allowable voltage range is then 5\% above or below 5.2 V , the IC is supposed to work at 5 V . But that is not always true - we have run across a number of ICs that needed at least 5.1 V , and sometimes even 5.2 or 5.3 V . Some people have found that a slightly lower voltage, on the order of 4.9 or so, works better, but that is rare. In any case, if you find your IC is good but it won't work at 5 V , try a few tenths more or less. (Note that the scaler in the June 1972 issue of 73 Magazine used 5.3 V .) But be careful - the ECL ICs will easily stand up to 5.5 V (the catalog says 6 , but don't try it) but the TTL ICs are doomed above 5.25 or so (not always, but you've got thirty some ICs on that board so be careful). Adjusting voltage is not very easy with the LM309K regulator, but the alternate power supply in Fig. 18, of the original article is easily adjusted up and down, and will allow you to find the best operating point for the 95 H 90 . If you have to go above 5.1 V , it might be a better idea to build a separate supply just for the scaler ICs, and keep the rest of the ICs at 5 V .

\section*{Power Supplies}

If you used the LM309K regulated supply, you have already discovered that one of the diodes in the circuit was shorted. But whichever power supply you used, a "crowbar" circuit is a good idea. It is simply a 1 A fuse in the 5 V power line, followed by a 5.6 V hefty Zener to ground. If for any reason the regulator should fail, the Zener blows the fuse. As to other problems - one reader got an LM309K that oscillated - the counter did very strange things as a result. The problem had something to do with parts placement; we finally got it to stop by removing the \(0.1 \mu \mathrm{f}\) disk capacitor at the output of the power supply. Still haven't figured out why.

Occasionally, the LM309K does not regulate - its output voltage drops below 5 V . Assuming that you don't have a short which draws excessive current, the reason is probably that the output voltage from the rectifier is too low. A 6.3 V filament transformer in the power supply provides an input into the regulator of about 9 V , which is just above the minimum that the LM309K needs. Occasionally we get just the right combination of low transformer voltage along with a slightly weak regulator, and then it just stops regulating. The solution is to try a different LM309K or a larger 6.3 V transformer. The best solution would be to use an 8 V transformer, but these are hard to get. Don't do what one reader did, though, running into this problem, he simply switched to a 12.6 V transformer, which gave him almost 18 V into the regulator. Even though the LM309K was mounted on a gargantuan heat sink, I burned my finger on it when I accidentally touched it. It worked, though.

The final problem is with the adjustable power supply in Fig. 18, of the original article. About three or four readers found that it did absolutely nothing when the scaler ICs were plugged in. As long as the 95 H 90 was unplugged, everything worked fine. But plug in this IC, and the 5 V line went to 0 V . Absolutely dead. Shorted IC??? No!

WB2AAQ finally found the solution with his power supply, and his solution has worked for others as well. The problem is caused by the fairly high current drain of the 95 H 90 , combined with a high input offset in the 741 op amp used in the regulator. With the heavy load on the 5 V line, the output voltage from the supply starts rising rather slowly. As soon as the voltage reaches a few tenths of a volt, the 741 looks at it and decides that the output voltage is too big and promptly turns everything off again. WB2AAQ's solution was a very simple one, connect a 1 megohm resistor from ground to one of the 741 IC pins - pick whichever one makes the thing work.

\section*{Reference Oscillator Stability}

Most counters built seem to have a very stable timing reference oscillator. For in-

Four views of WB2UKP's version.
stance, W4ZUS found it held within 5 cycles at 10 MHz for several hours (and suggested a tubular trimmer for adjustment, as the lead screw gives a vernier effect for adjustment); K7DTS/1 found it held within 20 cycles. Others decided that an oven would give

Fig. 2. Connecting the International Crystal OE-10 Oscillator to the crystal oscillator (see Fig. 7. of the orignial article).
better accuracy (WAØABI suggested that Gateway Electronics in St. Louis had a number of Collins 10 MHz crystals in 28 V ovens for \(\$ 2.50\)). But there were a few readers who found that the crystal reference oscillator drifted very badly during warmup, though it seemed to settle down after 15 minutes or so.

The problem here seemed to be a crystal which had marginal activity, so that even small changes in operating parameters would result in a great change in frequency. A possible solution would be to get a good quality crystal, such as the HA series crystal from International. But for just a few dollars more there is an excellent solution to the whole problem which works so well that I'm sorry I didn't think of it earlier.

For \(\$ 19\) you can order from International Crystal an OE-10 oscillator assembly, which is a complete oscillator, with crystal. If you specify 5 V operation, they will even put it on frequency for you and give you a listing of drift against temperature. The unit I got was certified at 10.000026 MHz at \(-10^{\circ} \mathrm{C}\) \(\left(14^{\circ} \mathrm{F}\right), 10.000004 \mathrm{MHz}\) at \(+25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)\), 9.999958 MHz at \(+60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)\), which is roughly .5 Hz drift per degree Fahrenheit. The rated temperature stability over the range from -10 to \(+60^{\circ} \mathrm{C}\) with respect to "room temperature" of \(25^{\circ} \mathrm{C}\) is given as \(0.0005 \%\), while the tolerance as shipped is within \(0.0001 \%\) at \(25^{\circ} \mathrm{C}\). All of this in a metal can roughly an inch square! No need to resort to ovens; in fact I didn't even bother to readjust it after receipt, since it seemed as close as I could use. And connecting it to the counter is done with three wires, as shown in Fig. 2. It is only necessary to lift one end of a \(220 \Omega\) resistor off the board, and connect to it. Although the 33pf and 14 pf capacitors and the crystal could be removed from the board as they will no longer be needed, I decided to leave them
just in case I wanted to switch oscillators in the future.

\section*{Control Circuit Operation}

Two types of erratic operation of the control circuits have been observed by readers. In one case, observed by two or three persons, the reset circuit sometimes operates sluggishly or not at all; this is remedied by increasing the value of the 100pf capacitor connected to pin 3 of IC32a (See Fig. 10, of the original article) to a larger value such as 200 or 500 pf.

Another interesting malfunction was found and solved by W2CLL; I have since run across about three or four other counters with the same problem. In Bob's unit, when in the Hz position, the counter would provide the correct reading for one second, followed by a second of 00000 , rather than showing the correct reading for a full two seconds before the next update. This was caused by an extra strobe pulse sneaking in at a time it shouldn't.

As shown in Fig. 11, of the original article, the \(S\) and RC (or CR signal, as it is called on Fig. 10), should be exact opposites of each other. But this isn't so, since the RC signal has to travel through a few more flip flops than the S signal in the Hz position. As a result, the S signal gets to IC32d sooner than it should, and forces IC33b to quickly set and reset at a time when it should stay reset; this generates an extra strobe pulse at the wrong time. I must apologize for this little mistake in the original design, but fortunately it only happens with just the right combination of ICs; hence only a handful of units actually have had the problem. The solution is very simple - slow down the \(S\) signal by putting a 470 pf capacitor from IC31d pin 11 to ground. Actually, anything that slows down the S signal a little will work, including a small capacitor from any one of the pins of IC33b to ground.

\section*{Readout Selection}

When I wrote the original article, I correctly predicted that the price of LED 7 -segment displays would drop by the time the article appeared in print. It is now possible to get LEDS for as little as \(\$ 3\) a

\section*{FAST SCAN AMATEUR TELEVISION}

NOW you can enjoy FSTV at reasonable cost. NOW available - a COMPLETE FSTV equipment line.*
* U.S. made with parts available from your local electronic parts distributor.

For detailed technical information and pricing-write to:

APTRONDept AMTV P.O. Box II2 A, R.R. 2 Bloomington, Indiana, 47401
piece, which is less than the comparable incandescent readouts. Hence a number of the counters have been built with LED readout. But this has led to two problems.

First, the Numitrons generally sold for \(\$ 4\) or so are priced very close to their list price, hence you are probably getting a new unit that has passed all the inspection steps. On the other hand, the \(\$ 4\) or so LED is probably a reject or at least has a questionable origin. That means you may get a dud. Watching out for words in small print like "no chance to test them" etc., is a help, but even that doesn't work. I paid \(\$ 7.95\) each for my Litronix LEDs in the original counter; so far three of the five have gone bad, and all in the same way - the element has shorted out to the decimal point, with the result that the decimal point lights instead of the e. And on top of it all, it has been difficult to get replacements cheaply, since until recently you couldn't tell whether you would get the Litronix, an Opcoa, or perhaps a Monsanto unit when you ordered the \(\$ 4\) special. Since the numbers look a bit different, the only way to be safe was to get a new set of all five.

The second problem is that LED readouts come in basically two types - those with common anodes, and those with common cathodes. The 7447 decoder/drivers used in this counter require the common anode LED, and will not work with common cathode LEDs. The common cathode units can be driven with a 7448 decoder/driver, although the 7448 was not designed for that purpose. Use the circuit of Fig. 3 if you choose to use common-cathode LEDs. Since the pin numbers on the 7447 and the 7448 are the same, no changes need be made on the main pc board. The display will be a little dimmer than a common-anode LED with the 7447 but don't reduce the values of the 680 -ohm resistors as this may damage the 7448 driver. (Another LED readout, containing an array of dots, isn't seven segment and therefore would require large changes in the counter board - don't use it unless you are willing to change the layout.) Since most of the LED advertisements compare the LEDs sold with the Monsanto MAN series, Table 1 gives some information on these units.

Fig. 3. Connection of a common-cathode LED readout to a 7448 decoder-driver.

Several readers have asked how to interface Nixie tubes with the counter; although this is not recommended, a layout for Nixie tubes (using unknown Nixies with wire leads) is available from me for an SASE.

A number of readers have asked how to add three more readout indicators to the counter. This modification is not recommended to anyone who has to ask how to do it. First of all, the drive requirements for strobe and reset pulses are marginal, the power supply is marginal and the extra three indicators don't really tell you anything you didn't know before. In fact, the extra indicators will only read when in the Hz position anyway, since the counter is not fast enough to read out in more than 5 digits in the kHz position. Hence you are automatically stuck waiting two seconds for a reading, when in the kHz position you could have had the same reading in a tenth of a second. Finally, it requires major changes to the printed circuit board, and hence seems more effort than it is worth.

\section*{Other Modifications}

Several readers have asked for a modification to extend the range to at least 450 MHz . As the cheapest IC to do the job right now costs \(\$ 55\), I have not even thought about it twice. Plessey makes a flip flop that goes above 1000 MHz , but costs over \(\$ 100\); all of you readers out there are invited to try your luck with these - not me. It should be possible to build a flip flop that goes to 450 MHz out of discrete components (tunnel diodes, perhaps), but that appears to be a difficult job.

Several readers have suggested that the first decade divider in the counting circuits

\title{
now available ...TPLVHF-UHF power amplifiers
}

TPL brings you the finest amateur RF amplifiers for VHF FM available today. Only state-of-the-art techniques in circuit and semi conductor technology make an amplifier of this quality possible.
The amplifying transistors are of the balanced emitter silicon power type. Each one is individually checked for power output and reliability during mismatch conditions. They are operated well within the factory's suggested limitations for added reliability and life. Most circuitry is of micro-strip technique for stability and broadband characteristics. Antenna switching is accomplished
through the use of a specially selected RF relay . . . activated by only one watt of RF power through an RF sensing circuit. During receive, the antenna by-passes the amplifier and is fed through the relay to the transceiver. Also of note is a reverse voltage protection diode which protects the power transistors from destruction in the event the amplifier is connected to the wrong polarity. TPL amplifiers are simple to install and fool-proof to operate. With proper care, they will provide a lifetime of dependable service.

DID YOU KNOW...
TPL is the largest manufacturer of accessory solid state RF power amplifiers in the world. TPL commercial amplifiers are used and recommended by every major manufacturer of commercial communication equipment.
TPL's engineering staff contributed to the development of RF power transistors from their earliest inception.
TPL offers the broadest selection of RF power amplifiers.
TPL offers the highest quality RF power amplifier available.
TPL guarantees its amplifiers against defective parts and workmanship for a full year.
TPL power amplifiers and repeater amplifiers are now available at your local dealer.
(IC5 and IC6) be replaced by a faster IC, such as perhaps a Schottky 74S73. This seems like a fairly good idea, except that I haven't done it yet. This method should extend the low-range to perhaps 80 MHz ; a simple ECL flip flop would then double the range to 160 MHz without the need for a \(\$ 16\) scaler IC, enough to cover the 2 m band. But the scheme has two disadvantages - it doesn't cover 220 MHz , which the 95 H 90 does, and it also requires the redesign of the MOSFET/Schmidt trigger input circuit, since the 7413 is not available in a Schottky version. Further, to get a direct frequency readout, it requires some additional switching in the time chain dividers to give an extra division by 2 , which lengthens the readout time in the HZ position to 4 seconds. This idea is presented to those readers who wish to make the modification, but as before, it is not recommended by me for the simple reason that it seems more effort than it is worth.

A simpler modification is to replace IC4 and IC5 with their Schottky equivalents, and then try several ICs as IC3 and IC6, picking the fastest. This can greatly improve the frequency range via the low frequency input. See the article by W4CUG in the March 1974 issue of 73 Magazine.

Finally, in his article in the June 1973 issue of 73 Magazine, W9CGI suggests several changes to improve the counter. The one given as Fig. 1, in his article is not recommended, as it violates TTL design rules. But the one in his Fig. 3, has merit, if we connect the left end of the 10 K resistor to IC33a pin 15, rather than IC29 pin 11. When the counter is in the Hz position the added indicator will blink on for one second, and off for one second. It then indicates that the counter is counting when the light is on. This is a very worthwhile addition, since it enables you to make slight circuit adjustments when the light is off, and then use the next count interval to give you the next reading. I have used this technique (without the light, though) for adjusting 2 m FM transmitters on frequency. The fine adjustment is done in the Hz mode, at which time you have one second for making slight adjustments, followed by one second of frequency indication. This trick enables you
to make one adjustment every two seconds, with no false readings in between.

To close these comments, let me again repeat the comment made at the beginning, "If it works OK, don't louse it up." If you already have a counter which works, and works to your satisfaction, then leave well enough alone. The original design was basically sound, and there is no reason to fiddle with a counter which works well. Instead, pride yourself on having a §ood reliable piece of equipment, which you have built yourself.
- Un, \(_{6}\) W

TABLE I Characteristics of MAN LED Readouts MAN-1 - Red, \(69 \mathrm{~mm}\left(0.27^{\prime \prime}\right)\) high numbers, common anode, DIP case, uses 7447 driver.
MAN-1A - Similar to MAN-1, but darker - has red epoxy case.
MAN-1B - Similar to MAN-1, but different decimal point connection.
MAN-1BA - Similar to MAN-1B but red epoxy case.
MAN-1001 - Similar to MAN-1 but only displays + , - or 1.
MAN1001A - Similar to MAN1001 but red epoxy case.
MAN1002 - Similar to MAN-1 but intended for hexadecimal display; can be used in counter same as MAN-1 but don't try to use decimal point.
MAN1002A - Similar to MAN1002 but red epoxy case.
MAN-2 - Alphanumeric display consisting of dots. Don't use.
MAN-2A - Similar to MAN-2 but has red epoxy case.
MAN-3 - Red, common cathode, 29 mm (\(0.115^{\prime \prime}\)) high numbers, flat case with different pin connections from MAN-1, uses 7448.
MAN-3A - Similar to MAN-3 but has red epoxy case.
MAN-3M - Similar to MAN-3A but has different pin arrangement.
MAN-4 - Red, common cathode, needs 7448, \(48 \mathrm{~mm}\left(0.19^{\prime \prime}\right)\) high letters, DIP case but different pin connections.
MAN-5 - Green, otherwise similar to MAN-1.
MAN-6A - Red and 1.42 cm (\(0.6^{\prime \prime}\)) high numbers, a wide DIP-style case, but otherwise similar to MAN-1A.
MAN-66A - Similar to MAN-6A.
MAN-8 - Yellow, otherwise similar to MAN-1.
MAN-10 - Similar to MAN-1, requires slightly less current.
MAN4001 - Similar to MAN-4 but only displays + , - or 1 .

\section*{ANNOUNCING}

\section*{BELTEK W3470}

THE NEWEST PORTABLE TWO METER FM RIG SPECS ABOVE AVERAGE

AUDIO LAND has a complete ICOM line in stock for

\section*{immediate delivery}

Also in stock - BELTEK W5570 (uses TR-72 xtals for transmit and receive)
AUDIO LAND MEN OF MUSIC INC 36633 S. Gratiot
Mt. Clemens Michigan 48043 313-791-1400
Attention: Amateur Sales Dept.

\title{
Who Needs a 5V Supply? \\ K2OAW counter builders do, for one.
}

TThe K2OAW counter published in 73 during the summer of 1972 has created a great deal of interest in counter construction. I know personally of a half dozen already completed and perhaps another dozen in various stages of construction. Every time the subject comes up there seems to be considerable interest in the modified power supply I use on my counter. The changes are nothing unusual but they do make for a simpler, more compact unit.

At the outset it should be known that my counter includes a surplus Collins crystal. oven for the time base which required a source of heater voltage in addition to the normal requirements of the counter proper. The counter requires 5 V regulated at slightly over 1 A and \(20-30 \mathrm{~V}\) at a few mA for the input amplifier. The oven in use requires 28 V at 1 A according to the nameplate. I used an 18 VCT transformer at 2A to supply all of the above. The entire winding is used to heat the oven, while this is less than the stated voltage the oven starts cycling in approximately four minutes. . . which is satisfactory. The winding is full-wave center-tap rectified and applied to Fairchild (or equivalent) 7805 IC regulators to provide the 5 V for the LEDs and logic. It would be safer to provide separate regulators for the two functions but my counter has worked nicely for over a year with a single 7805. LM309K regulators would work as well if they are more readily available. I personally prefer the 7805 due to the relative ease of mount-
ing the TO-220 case as compared to the TO-3 of the '309K. The 20 V for the 40673 input amplifier is provided by a voltage doubler working off half of the winding. The series capacitor is added to the main counter PC board immediately in front of the existing \(1000 \mu \mathrm{~F}\) electrolytic. Jumper wire under the board connects the capacitor to pads originally intended for the bridge rectifier. Only two diodes are now required. The 5.6V Zener was added to the output to act as a crowbar to insure the primary fuse will blow if a regulator were to fail.
...WA 9 ABI

\section*{How To Win}

\section*{A Big Contest}

To win an Indy 500 or Grand Prix one would need more than average luck. You must have a good car that is super tuned and be in good shape yourself. To make it in the Top Ten of WW contest one must have a rabbit's foot (or whatever), a rig that's working smoothly and be able to do the 48 hour stint 'in a breeze.'

Many hams who make it to the immortal plane of the fortunate few, don't have a \(\$ 10,000\) set up or a 10 kW linear in the ceiling. Nor do they have 10 -elements stacked up 30.5 m (\(100^{\prime}\)). Their rig and antennas are mainly standard commercial products often running at less than the full gallon. How then do they tote up such fantastic scores? Well, if it's not a 'freak' QTH, then it must be the operator who has that something extra.

Contest caperers come in two types. There's the casual 'goer' who's only in it for a few new countries or prefixes; knows he can't figure in a place but just wants to help swing the scene along a little. The other is a 'fair dinkum' trier whose mind is fixed on a tangible reward such as wallpaper, a medal or plaque etc.

Those who finally make it to the Top Ten are:
1. Under fifty years of age. There are exceptions but OT's by reason of advancing years are handicapped out of a two day 'sweat.'
2. Are fast, efficient and have a smooth operating technique.
3. Able to go non-stop all the way without
brain 'fag.' This is where the 'extra' comes into play and the men begin to show out from the boys. Human stayers are like racehorses, born rather than trained. But many who do have this stamina and ruin it by their approach and 'modus operandi.'

It's easy enough to stay awake for a weekend but to remain alert all this time while riveted to the rig and having y our head pounded by QRM is a different matter altogether. Concentration is intense and the amount of mental energy expended is staggering. No wonder fatigue finishes off so many.

To excel, one must be fit. To assume that because amateur radio contesting is a sitdown struggle good physical shape doesn't count is a bad mistake. Those with good muscle tone 'stay' long and well. Like the rig he owns, each person knows best how to tune himself up. But six weeks jogging before a big 'scrap' should bring him to the rig on the gong, fit enough to eat it rather than work it. These ops are already half way there.

No boxer goes the distance without those vital between round rests - and they're just as important in a 48 hour contest. Those who cannot pace themselves fail. A short break away from the rig once every hour is a must. Resist the temptation to stay even if the whole band is calling. Get up and walk around for three or four minutes until your circulation is restored to full bore. Then return to the fray with concentration renewed and muscles relaxed.

If sleepiness is your problem, maybe it's best not to make the operating chair too comfortable. However, remember, physical discomfort saps concentration. So the idea is to sit 'loose.' A foot rest, a fairly low desk on which the arms hang slack at ease, a chair with an adjustable back support and all controls within effortless reach. All of this will add \(5 \%\) to the total score.

All right, so you and the rig are GO. But don't forget that Lady Luck still holds the trump card. Without her favors you're an also ran. There are two sorts of luck and you'll need all that's going of both. It is vital to get away to a good start; fast flowing QSOs and not too much QRM. One must be up with the field at the half way mark to have any chance. Unlike many competitions, it is almost impossible to come from behind at the end and win. Also in any WW 'scrap' ionospheric conditions vary considerably between hemispheres and continents. It may happen that from your QTH all circuits on all bands to Europere out. Such a loss in DX and activity may be too much to lose.

Relaxation should be the aim for a day or so before a big contest. But many hams, excited at the prospects and urge to do better, go crazy and attempt impossible tasks. Some have the compulsion to change their sky-hooks and find right on starting time that the SWR is like their blood pressure - sky high. Others drive long distances to an S9 Eldorado and by the time the antennas are up, the gear assembled and the snags out, they're ready for bed not a contest. Some decide on last minute rig modifications. Anything from building a new final to attempts to sharpen i-f selectivity. The bell goes and half the equipment is still in pieces on the table. When minor adjustments can have disastrous consequences. I once went out to tighten a slightly slack leg of my \(80 / 40 \mathrm{~m}\) inverted Vee. It broke off right at the apex. When I attempted to lower the aerial I found that the pulley wheel at the top of the mast was rusted. Profanity in several tongues proved useless, so that was that. Moral: HAVE EVERYTHING TESTED AND READY DAYS BEFORE ANY BIG EVENT. EVEN IF SOME SMALL THING PROVES TO BE

AMISS ON COUNTDOWN, LEAVE IT IF YOUCAN.

A weekend international contest is a hard road and it takes an old dog who knows all the tricks (ethical ones), to win. Psychological pressure plays a part. You must appear to be 'movin' it along' at all costs. If the mode is A1 send as fast as conditions allow. Sound slightly aggressive. Don't struggle with QRM, change frequencies. Never be turned off by a high scoring competitor. He may be a phoney, the results sometimes show this to be the case.

If the rules of a contest make it permissible to commence with any three number digit between 001 and 100, it is often wise to let a few minutes of the 'scrap' get under way and then kick off with a fairly high number around 070 . The idea is to keep the true score to yourself and confuse others. Study the form of previous contests and be 'teed' up on who the opposition might be and the likely scores. Check the lono charts for MUF times and best, use of all the bands. If you are a brass pounder vary the BFO tone regularly to ease brain 'fag.'

Keep a spare transceiver on hand, even if only a QRP job. Unless you are dead sure the race is lost never drop out. At all costs finish well; it might just nudge you into a place.

There are those cool contesting 'cats' who claim to use a keeper of the log. This extra hand and two ears is worth, they say, an added \(10 \%\) in QSOs. Adjudicators might consider this a form of cheating but it's a breach impossible to police. This Man Friday help may work o.k. on phone where the digits given are an oral exercise but in my experience on CW it is NO GO combination. The pace is so hot and the QRM so thick, mistakes continually occur.

Hams, like all others, are drawn to an activity that throws up a challenge. And contesting is truly a stiff test of skill and stamina. There are many WW 'meets' each year and the fields in all continue to grow. There are the old familiar calls and the new. It's great to make it in the Top Ten but better still is the satisfaction that comes by taking on all comers.

\title{
THE NEW ITC AR-2000 RECEIVER. IT'S SO SELECTIVE IT DOESN'T KNOW WHAT INTERFERENCE IS.
}

The AR-2000 is a completely solid-state, dual-channel communications receiver with 0.15 uV sensitivity (10 dB \(\mathrm{S}+\mathrm{N} / \mathrm{N}\)) and selectivity that renders it virtually interference-proof (more selective than you ever thought a receiver could be). Blocking, intermodulation, adjacentchannel and crossmodulation rejection characteristics are better than any other receiver on the market and are typically beyond the scope of measurement.

This plus: modular construction; digital frequency readout; all bands (160 m 10 m) in 1 MHz ranges; two independent channels for dual receive, transceive-plusreceive or split-frequency operation; adjustable IF Passband (to within 100 Hz);

16-pole filter for over 200 dB skirt selectivity (standard 2.1 kHz BW , shape-factor 1.4:1); adjustable-Q/adjustable-frequency Notch and Peak Filters; adjustablethreshold noise-blanker; Receiver-Incre-mental-Tuning; and many other features found in no other receiver. Introductory price: \(\$ 1,250\) with two-year warranty.*

The AT- 2000 matching transmitter is completely solid-state, provides adjustable output power from 1 W to 175 W , requires no tuning, can be remotely operated by the AR-2000, has a built-in RF Speech Processor, VOX, Sidetone and Heavy-Duty Power Supply. Introductory price: \(\$ 945\) with two-year warranty.*
*Warranted to be free from defects in materials and workmanship.
Factory or authorized dealer repairs at no cost to owner for two years from date of purchase.

\title{
The ITC AR-2000 Receiver and AT-2000 Transmitterperformance that challenges your imagination. INTERNATIONAL TELECOMMUNICATIONS CORP. \\ P.O. Box 4235 , Torrance, Calif. 90510 • (213) 375-9879
}

\title{
Digital Wind Direction Indicator
}

Impress your friends - aggravate the XYL.

With the appearance of inexpensive and reliable magnetic reed switches on the surplus market, a digital wind direction indicator becomes quite easy to construct.

Magnetic reed switches are activated in the proximity of a magnetic field of sufficient intensity. Inexpensive ceramic magnets are readily available as magnetic memo holders, etc. These ceramic magnets, when placed near the reed switch, will cause it to "make" or close its contacts. The reed switches used in this wind direction indicator were purchased from Radio Shack in a pack of 10 for a little over \(\$ 1.00\).

By mounting magnetic reed switches in a circle and rotating a magnet about the inside of the circle, the switches will close as the magnet passes near them.

The rotating magnet system lends itself perfectly for construction of a wind direction indicator. If an "arrow" capable of

Fig. 1. Wind direction rotor assembly.
following wind direction is used to drive the rotating ceramic magnet, appropriate switches would be closed thereby supplying wind direction data.

Our rooftop indicating device was constructed from a burned out muffin fan (rotron fan). The inside fan blades were ground off leaving only the rotating center piece. The ceramic magnet was bolted to the outer edge of this center section. With the use of a muffin fan your 'bearing' surfaces are already made up and this saves considerable design work. The wind "arrow" was constructed from \(1 / 4\) inch copper tubing and tin can metal stock (see Fig. 1). This is attached to the center rotor with a metal plate and bolts. No doubt, other magnet rotating wind arrow devices can be created, however, the muffin fan assembly lends itself perfectly. After the arrow section is completed, a plastic protective spray should be applied to prevent weather corrosion, etc.

The magnetic reed switches are positioned at equal \(45^{\circ}\) intervals in a piece of \(1 / 4\) inch plastic attached to the outer shell of the

Fig. 2. Mounting of reed switches.

Fig. 3. Indicator to mast attachment.
muffin fan. The plastic was drilled so as to admit the reed switches and they were held in place by epoxy cement. It is necessary to plan the position of the switches before mounting them permanently so as to insure that they will be activated by proximity of the rotating magnet. (See Fig. 2.)

In order to attach the muffin fan assembly to an existing rooftop mast a bracket must also be devised. One-half inch steel conduit was bent so that stainless steel clamps could hold it to a main mast and it would extend out at a \(90^{\circ}\) angle. Two cross pieces of \(1 / 2\) inch conduit were then brazed to the main \(1 / 2\) inch stock so that bolts inserted through the muffin fan frame could hold the entire assembly in place. (See Fig. 3.)

Transmitting the reed switch information from the rooftop indicator to an inside
readout device would normally require quite a cable (9 wires). With binary or digital techniques, common four wire television rotor cable will convey all the necessary data.

In binary notation, eight different wind directions are represented as \(0-7\). Therefore, \(0=\mathrm{NW}, 1=\mathrm{N}, 2=\mathrm{NE}, 3=\mathrm{E}, 4=\mathrm{SE}, 5=\mathrm{S}\), \(6=S W\) and \(7=W\). Considering that 0 requires no reed switch, only seven switches are required in the rooftop indicator with one blank position (0 or NW). If you will observe Fig. 7, it illustrates how ground and +5 VDC coming down the \(\mathrm{A}, \mathrm{B}\) and C rotor wires represent actual numbers or indicators

Fig. 4. 5 V power supply. \(D_{1}-D_{4}-I N 4002\) Silicon Diodes. \(T_{1}-117 \mathrm{AC}\) to 6.3 AC at 1 amp . filament transformer. \(C_{1}-3000 \mu \mathrm{~F}, 25 \mathrm{~V}\) elec. capacitor. \(C_{2}-100 \mu \mathrm{~F}, 25 \mathrm{~V}\) elec. capacitor. \(U_{1}-\) LM309K voltage regulator (5VDC).
when translated by the digital decoders (Fig. 5). The fourth (spare) rotor wire is at ground potential.

The SN7442 decoder (Fig. 5) translates the binary data back to decimal indications The SN 7404 inverters "turn on" the driver

Fig. 5. Decoder and readout. U1-U2 - SN7404 Integrated Circuit. U3 - SN7442 integrated circuit. Q1-Q8 - \(2 N 3641\) NPN transistors. R1-R8 - 330 ohm, \(1 / 4\) watt resistors. R9-R16-1000 ohm, \(1 / 4\) watt resistors. L1 - L8 - Red LED indicators (most surplus houses).
transistors which in proper sequence illuminate the LED direction indicators.

To convert the 7 reed switches (and absence of a reed switch or blank position) to binary data, a diode matrix becomes necessary. (See Fig. 6.) Almost any silicon diode, such as the 1N914 or 1N4148, can be pressed into service in this matrix as the voltages and current required are quite low.

Fig. 6. Diode matrix. \(D_{1}-D_{12}=\) IN 914 or IN 4148 silicon diodes. \(M_{1}-M_{7}=\) magnetic reed switches. (Radio Shack - 10 for \(\$ 1.19\).)

Our particular diode matrix has constructed on a small printed circuit board and installed inside the muffin fan outer assembly on the rooftop indicator unit.

The bottom section of the rooftop indicator can be sealed against the elements by installing a "bottom" piece of plastic. Silicon sealing compound or epoxy cement will work well to seal the joints between plastic and the muffin fan base. The top
\begin{tabular}{|c|c|c|c|c|}
\hline C
4 & B
2 & A
1 & \({ }_{\text {a }}^{\text {Aumaten }}\) & inoicators \\
\hline 0 & 0 & 0 & 0 & N \\
\hline 0 & 0 & 1 & 1 & NE \\
\hline 0 & 1 & 0 & 2 & E \\
\hline 0 & 1 & 1 & 3 & SE \\
\hline 1 & 0 & 0 & 4 & S \\
\hline 1 & 0 & 1 & 5 & SW \\
\hline 1 & 1 & 0 & 6 & W \\
\hline & 1 & 1 & 7 & NW \\
\hline
\end{tabular}

Fig. 7. \(B C D\) logic table. \(0=\) ground. \(1=+5 V D C\).
section of a plastic gallon jug will work well to make a top protective cover, however, the reed switches are sealed in glass which protects them from weather conditions. The diode matrix was sealed inside a small plastic parts box to protect it from the weather.

The LED readouts on the inside wind indicator can be arranged in a circle with appropriate wind directions applied with decals of the "press type." Our indicator box was constructed of clear plastic with a white plastic front which contained the circle of indicator LEDs.

This entire unit is quite simple to construct and is reasonably inexpensive, considering the cost of surplus market integrated circuits. Creativity is essential as well as a well stocked junk box or local surplus electronics store.

The digital wind direction indicator is another device which will aid in cluttering up your ham shack, assist you in spending money, aggravate your XYL due to construction time and impress your friends when viewing this spectacular creation.
. . .W2AOO

\section*{Emergency Ferrite Beads}

In cases of TVI, a ferrite bead slipped over the base, collector, grid or plate lead of the offending stage can be a lifesaver. The compact choke is also utilized in top-quality laboratory oscilloscopes and spectrum analyzers to stop oscillations which sometimes go unrecognized as the cause of excessive power dissipation in a device.

Recently in the lab, a sudden need arose for ferrite beads and none were in stock. An effective solution was reached by using the threaded ferrite tuning slugs from small VHF inductors. One useful type has the hex hole throughout to accept the alignment tool.

If VHF frequencies are to be suppressed, select a slug from a surplus coil which has 3 to 5 turns, to insure that the ferrite material is appropriate for that frequency range.
...W4ATE

\title{
THE SMART HAMS ARE CATCHING ON
} EエIMI PRODUCTS

\title{
00 Give You the foie
}

THE BIG STICK

5EL 20 mtr. mono bander KLM 13.9-14.4-5

W8KPY EME Array for 2 mtrs 23.8 dBd gain
8 KLM 16EL 2 MTR ANTENNAS (KLM 144-148-16)

\section*{10 WATTS IN}

2 mtr Amplifier PA 10-140B

\section*{140 WATTS OUT}

Write for complete catalog or check with KLM's growing list of distinguished dealers.

\section*{IKILMI \\ 1600 Decker • San Martin, California 95046 408) 683-4240}

NEW DEALERS Bratty Communicatione 2198 Colvin Blvd. Tonawands NY 14150 Idonticorporation 16 East 52nd Street Now York City NY 10022
J. H. Electronics 254 Captains Drive
Babylon NY 11704
D. B. Griffin and Assoc Ltd. So. 5189 Bussendorfer Road Hamburg NY 14075 OHIO
Challenger Electronics
1700 Central Avenue
Middletown OH 45042
Communications World
4788 State Road
Cleveland OH 44109
Queen City Electronics
1583 McMakin Avenue Cincinnati OH 45231
Kelly Scheimberg Kelly Scheimberg
7379 Calmerest Street Dayton OH 45424 OKLAHOMA Cals Radio 3rd \& Davis P. O. Drawer F Tipron OK 73570 Larry M. Dillard WB5CWB 2624 SW 69 Street Oklahoma City OK PENNSYLVANIA
Hamtronics
4033 Brownville Road
Trevose PA 19047
TEXAS
J. P. AshCraft

5641 Dyer Street
Dallas TX 75206
Trimble Electronics
1918 Mary Ellen
Pampa TX 79065
Kennedy Associates 2618 Rigsby Avenue Sen Antonio TX 78222 OTHERS
Stereo City Inc.
481 Highland Avenue
Augusta GA 30904
Preston Electronics 611 Highland Drive Houma LA 70360 Ray Liby
2112 So. Burdick
Kalamazoo MI 49001
Multitone Electronics Inc. One Cornell Parkway One Cornel Parkway
Springfield NJ 07081 Juniper Photo Electronics 2648 SW 25th Street Redmond OR 97756 FOREIGN
Ing. Hans Schulze Ltd P.O. Box 4155

San Jose, Costa Rica
Gemini Electronics Ltd P. O. Box 5889

Auckland, New Zealand
Electronica Fernandez 208 Eleanor Roosevelt Street Hato Rey, Puerto Rica 00918
West Indies Sales Co.
606 Calle Aboy
San Juan, Puerto Rico 00907
Omnicom
Hinterrothwog 15
Switzerland

\title{
Build a \(2 m\) Frequency Synthesizer
}

\section*{Complete construction details. \\ Part II}

Part I (published last month) of this series gave a general description of the FS-220 frequency synthesized HT-220. It included a block diagram and just a hint of what the rig contains. In Part II I will give you a detailed description of the circuitry and how it all works together.

\section*{Reference Oscillator}

The reference oscillator for the FS-220 is an AT-cut series resonant 10 MHz crystal in virtually the identical circuit used by K2OAW in his frequency counter and frequency synthesizer ("Frequency Synthesizer for 2 m FM, Part II," 73, October, 1972). Reference his article for this and other circuits to come.

\section*{10 MHz Divider Chain}

The 100 kHz square wave for the clock generator and the 1.111 kHz reference for the phase detector are derived from the 10 MHz crystal oscillator through a four stage divider shown in Fig. 2.

\section*{:. Phase Detector}

The phase detector presently in use in my rig is the one described by K2OAW (October, 1972, 73). A \(0.47 \mu \mathrm{f}\) capacitor
was used for creating the triangular wave with the 1.111 kHz reference. I didn't have an MFE3002 MOSFET, so I substituted a 2N4351. Although the base connections are different it works well and is a few pennies cheaper. Everything else is the same as given by K2OAW. I also tried other phase detectors, including the MC4044P (Motorola). I was able to reduce the reference signal feed-thru to an acceptable level using one stage of active low-pass filtering. This discreet component detector is, however, more desirable since it uses fewer components in the long run.

\section*{Unlock Detector}

I used the unlock detector from K2OAW's synthesizer also, since the one which was originally designed for the IC detector is not fully compatible with the sample-and-hold type of phase detector. I did not use the LED lock indicator as suggested by K2OAW. Instead, I connected the blanking lead from the 5-digit Minitron readout in the FS-220 to the output of the unlock detector. I also used this point to prevent the HT-220 relay from energizing. With these connections, the transmitter will

Fig. 2. Reference divider chain. Pins 2, 3, 6, 7, and 10 of IC12-ICl 4 are grounded. Pin 10 of IC15 is grounded. All IC's have pin 5 connected to 5 Volts.
not key and the digital display is blanked should an unlock condition be detected.

\section*{Voltage-Controlled Oscillator}

The VCO consists of a Motorola MC1648P, using the essential ideas from K2OAW's article. Some changes were desirable. The varactor diode used at D1 was from a five-pack found at Radio Shack. A variable capacitor is used at C1. When the control line on the base of Q1 goes high (+3 to +5 V) C1 is connected across the tank circuit, causing the VCO to tune the 14.000 -14.443 MHz range. With the control line low, the VCO tunes \(16.000-16.663 \mathrm{MHz}\). C1 was adjusted to provide about the same control voltage from the phase detector when working simplex on 146.52 MHz . The tuning range is actually a bit wider than required to insure that the VCO remains in lock at all times.

The dc control voltage must be extremely free from noise to prevent frequency modulation of the VCO. With all of the TTL logic in this rig, a great deal of care was necessary to keep the noise down. I found that a good part of the background noise on the VCO was entering through the switching transistor via the control line. Filtering this line greatly reduced background hiss and assorted weird grumblings.

The output of the VCO drives both the digital mixer and a switched buffer amplifier between the VCO and the frequency multipliers.

\section*{Programmable Divider}

The techniques employed in this divider have been well published in the amateur magazines within the last year or so. The number N by which the counters are to divide is presented in BCD format to the individual. 74192 programmable up-down counters. There is no fancy footwork required to shift to the receiver i-f frequency since in my HT-220 the i-f was an even megahertz. Circuitry must be provided to take care of the propagation delay in the ICs, however. K2OAW gave a good account of the techniques used for \(\div \mathrm{N}\) counters.

During receive conditions, the \(T / R\) logic sets pin 1 of IC 19 to +5 V and grounds pin 10. This presets IC 19 to divide by three.

Fig. 3. Programmable Divider Chain (\(\div N\)). IC15, IC20, IC21, and IC22 initiate reloading 2 counts from 0000 to overcome propagation delay.

Fig. 4. Wiring of the Program-Operate switch which connects TT-pad switches to either the BCD encoder or the pad.

The MHz switch sets IC 18 to the proper divide number. In the 146 MHz portion of 2 m , pins 15,1 , and 10 are grounded and pin 9 is at +5 V , giving a preset count of 8 . The remaining parts of the number N are set into IC 16 and IC 17 by either the memory or the scanner. In transmit, pin 1 of IC 19 goes low and pin 10 goes high presetting IC 19 to 5. The CHANNEL A MHZ switch then sets IC 18 to the desired megahertz.

If the VCO input to the divider chain was low enough in frequency no other circuitry would be required. Above 4 MHz or so, the propagation delay through the four dividers becomes considerable. When this happens an extra cycle or two may slip by before the chain reloads for the next count down. The result would be division by 3601 or 3602 when N is set to 3600 . To prevent this, the loading of the number N is begun two cycles before the end of the count down. For 146.22 transmit the proper N is 5622 . Each cycle from the VCO causes the number to drop by one. Eventually IC 17 , IC 18, and IC 19 will reach a count of zero. Then, when IC 16 counts down to 2 (0002 in the divider), all inputs to IC 20 (pins 1, 2, 4, 5) are high. This causes pin 6 of IC 20 to go low. That point is also the data input to IC 22, a D-type flip-flop. On the next VCO cycle, pin 5 of IC 22 goes low, grounding the LOAD inputs of all 74192 dividers (pin 11).

This forces the original count (5622) in to the divider chain. At the same time that pin 5 of IC 22 goes low pin 6 of the flip-flop goes high. On the next VCO cycle IC 22 sets (pin 5 high, pin 6 low). The output of the divider (IC 22, pin 6) therefore goes high for one half cycle of the VCO frequency once every 5622 counts (or N counts). This output is difficult to see unless you have an oscilloscope with at least a 10 MHz response since its width is typically 125 nanoseconds or so and it occurs only once in about a millisecond.

\section*{TT Pad Switching}

Fig. 4 shows the wiring of the OPERATE--PROGRAM switch. It is largely a matter of disconnecting the seven switches from the pad and connecting them to the encoder. Tone decoder ICs could be used here but at much greater expense.

I have shown the actual color-coding found on my standard pad. One of the auxiliary switches, normally closed, is used along with the button switches. Only six of the switches are actually used. The *, 0 , and \# are not encoded. Since a zero equals 0 V on all lines, there was no need to encode this button. The special symbols have no meaning in the programming routine and are not used. They all will store in memory as 0 . I have labelled the switches on the pad for
 towers that are designed and engineered to do specific jobs and that is why we have the FOLDOVER TOWER . . . designed for the amateur. When you need to "get at" your antenna just turn/ the handle and there it is. Like other ROHN big communication towers, they're hot dip galvanized after fabrication to provide a maintenance free, long lived and attractive installation. ROHN towers are known and used throughout the world . . . for almost a quarter century . . in most every type of operation. You'll be in good company. Why not check with your distributor today?
ease in identification. The columin switches are labelled A, B and C. The row switches are labelled 1, 2, 3 and 4 . For example, pushing a 1 causes switches A and 1 to close (and opens the auxiliary switch). The auxiliary switch is labelled \(R\) because it is used to reset the bounceless pushbutton flip-flops.

The switch used to connect the pad to the BCD encoder was a multiple-wafer 12 PDT rotary switch. Contacts are provided for applying +12 V to the pad for normal operation. The transmitter is also disabled by the switch during programming operations. Audio from the pad is applied in parallel with the mike through the attenuator network shown.

\section*{BCD Encoder}

The awesome looking layout in Fig. 5 is the BCD encoder. I have shown the TT pad wired directly to the encoder for simplicity and clarity. IC 1 - IC 3 are used as bounceless pushbuttons to eliminate false data caused by the mechanical bouncing of the pad switches. IC 4 through IC 10 detect which two switches on the pad are closed and set the proper BCD output lines low.

The output lines are inverted. That is, when a 2 is pushed the BCD equivalent in 0010. The output of the encoder is not 0010, but 1101. This is indicated by the bars over the symbols. Another inversion takes place in the system before the number gets stored.

Note that there are also outputs from the A, B and C switch encoders. These lines are also inverted. For every button pushed, one of these three lines must go low. This flag is used to tell the clock generator that a TT pad button has been pushed; the BCD outputs tell the memory which button it was.

\section*{Clock Generator}

The clock generator, shown in Fig. 6, is one of the more interesting circuits. It provides any preset number of pulses as desired.

The clock generator is started when one of the TT pad buttons is pushed while in the PROGRAM mode. The A, B and C inverted outputs from the BCD encoder go to IC 25a. When any one of them drops low, pin 6 of IC 25a goes high and remains high so long as the button is depressed. On the high to low

Fig. 5. \(B C D\) Encoder. IC numbers are shown on each logic element. The bars over the numbers and letters indicate inverted logic states. The Operate-Program switch is not shown here.

Rear view showing the connectors for power, antenna and microphone. The two LM309 regulators were mounted after scraping away enough paint to get good thermal contact with the chassis.
transition, a one-shot multivibrator IC 33 triggers for 25 milliseconds, storing the number in a quad latch, IC 34. At the same time, one-shot multivibrator IC 35 triggers for 150-200 milliseconds. Its output goes high for that length of time. At the end of the 150 ms pin 6 of IC 35 goes low. One of the places this signal goes is to another data selector made up of IC 30c, IC 29b, c and d. In the PROGRAM mode, this selector connects the output of IC 35 to the MODE inputs of the 7495 shift registers in the memory. When IC 35 goes high, then low, it selects right shift (parallel input) in the 7495

ICs. In the operate mode, the selector connects the MODE line to the output of IC 32a which determines left or right shifts as explained later. The output of IC 35 also goes to a second data selector consisting of IC \(14 \mathrm{~b}, \mathrm{c}\) and d . In the PROGRAM mode this selector causes the \(\mathrm{P} / \mathrm{S}\) converter to load the BCD number from IC 34 as IC 35 makes its high to low transition. Later in the sequence the selector connects the \(\mathrm{P} / \mathrm{S}\) converter to the clock generator (which shifts the BCD number into the first memory slot. In the operate mode this data selector connects the P/S converter mode control directly to the clock generator.

So far all of the control lines have been explained, but nothing has been said about the clock generator itself. The output of IC 35 is also connected to inverter IC 26a. Its output is differentiated by an RC network, producing first a negative pulse and then a positive pulse. On the input of the positive pulse pin 4 of IC 23b goes low for the duration of the pulse. The negative transition of IC 23 b causes the clock control flip-flop IC 24a to preset (Q output pin 15 goes high and remains high). This initiates (at long last) the clock generator sequence. Flip-flop IC 24 b along with IC 31a make up a "ones-detector." This part of the circuit was found in "Designing with TTL Inte-

Fig. 6. Clock Generator. This circuit produces pulses for shifting the memory and inhibiting the transmitter during programming.

Fig. 7. Digital Mixer. A separate mixer and filter is provided for transmit and receive. IC37 is a switch to select the proper mixer output.
grated Circuits," one of Texas Instruments Electronics Series. A 100 kHz square wave feeds the clock input of IC 24 b . This signal will appear at pin 11 of IC 24 b so long as the J input, pin 9, is high. This arrangement allows integral numbers of cycles to pass through the "ones-detector." The output of IC 24b, pin 11, goes to the memory as the shift clock signal. It also feeds a programmable divider, IC 28. In the PROGRAM mode, this divider is preset to count from 3 down to 0 . When it hits 0 , the borrow output (pin 13) goes low, clearing the control flip flop IC 24a. That in turn shuts off IC 24 . Since IC 24 b will not shut down in the middle of a cycle, four complete cycles of the 100 kHz signal go out to the memory and P/S converter. Those four cycles cause the loading of one BCD number into the memory and the shifting of the others. In the OPERATE mode, the divider is preset to count from 7 down to 0 , giving an output from the clock generator of 8 pulses. This particular circuit can be used by itself as a N -pulse generator. The number of 74192 (or 74193) programmable dividers can be increased to give any number of output pulses on a one-time basis.

The circuit is self-loading. That is, the number of pulses to be generated is loaded into the 74192 each time IC 24a resets (at the end of each shift). The gating line from pin 15 of IC 24 a also goes to a NOR gate, IC 23d. Pin 10 of IC 23d goes low whenever the clock generator is causing a memory shift.

This low signal is used in inhibit the transmitter.

\section*{Digital Mixer}

The VCO output frequency is just a little too high for reliable counting in my programmable divider, so I used a heterodyning method to lower the input frequency to the 74192 chain. As shown in Fig. 7, the mixer itself consists of a 7486 exclusive OR gate, IC 36. The output of the exclusive OR with two signals on the input includes the sum and difference frequencies, plus many harmonics. To prevent confusion of the \(\doteqdot \mathrm{N}\), separate mixers were used for transmitting and receiving. Bandpass filters are used to pass only the desired range of frequencies, IC \(37 \mathrm{a}, \mathrm{b}\) and c select the filter output. Q2 and Q3 are used to overcome the losses in the filters.

\section*{Memory and P/S Converter}

The \(\mathrm{P} / \mathrm{S}\) converter and the memory were assembled using 7495 left/right shift registers. As shown in Fig. 8, seven of these ICs are used. The first, IC 38, is used as the \(\mathrm{P} / \mathrm{S}\) converter. The BCD number from the TT pad enters the P/S converter through IC 34 , a 7475 quad latch. The data is temporarily stored in IC 34 when IC 33 triggers. Pin 6 of IC 33, a 74121, is normally low. When a TT pad button is pushed pin 6 goes high for 25 milliseconds or so. This causes the data to enter IC 34. When pin 6 goes low again the latch holds the data that was

\section*{cleq9 holiday SPECIALS \\ }

FIRST. The 2 meter leader . . . the Clegg FM-27B. The only transceiver that covers the entire range of \(146-148 \mathrm{MHz}\). . and needs no additional crystals. The reliable rig that costs you a lot less in the long run. Get one and be a leader.

SECOND. The world of 220. . . away from the 2 meter crowd with the Clegg FM-21. This transceiver has a unique triple-duty crystal fatore. . . it uses just one crystal in any channel. The specs are tough to beat. . . so is the price. . extend your range! Join the world of 220.

Amateur Net of FM-21 . . \$379.95
AND NOW . . . the Clegg HT-146. Wait 'til you get your hands on this all-new hand-held 2 -meter transceiver. Designed to give you reliable commercial quality performance at low cost. All solid-state with a host of features including a unique battery saver design. See your Clog Dealer, call or write us now, or fill out the coupon below for detailed data sheet on what we're handing you.

HURRY. . . . TO YOUR LOCAL
LEG DEALER TODAY FOR SPECIAL HOLIDAY PRICES at Super savings values. FOR A HAPPY HOLIDAY

Fig. 8. P/S Converter and memory.
present at its inputs when the negative transition occurred. The output from IC 34 is taken from the \(\overline{\mathrm{Q}}\) pins, providing the inversion necessary to give true BCD coding of the decimal number into the memory. At this point in the chain the BCD numbers will have the coding found in Table 1 (Oct. 1974).

The data enters the \(P / S\) converter at the
parallel inputs. The 7495 can be used for several functions. When pin 6 is high (Mode control), parallel-in, parallel-out operations may be performed. The data present at pins 2, 3, 4 and 5 are transferred to the outputs (pins 13, 12, 11 and 10) on each pulse of the CLOCK 2 input (pin 8). Shift left can be implemented in this mode by connecting

Fig. 9. 10 kHz Latch. IC47, IC48, and IC49 for a data selector to connect either the memory or the scanner to the \(\div \mathrm{N}\).
each output to the parallel-input of the preceeding flip flop (pin 10 to pin 4 , pin 11 to pin 3, etc.). Serial data would be entered at pin 5. Shift-right operations are performed with the mode control pin 6 low. With each CLOCK 1 pulse data is transferred from one flip flop to the next flip flop down the line. Serial data is entered at pin 1 in this mode. IC 38 is used for parallel-in, shift-right operations only (parallel in to serial out). It accepts the data from the quad latch in parallel format, then shifts right on each of the four pulses from the clock generator. This moves one BCD number serially into IC 39 , the first memory slot. IC 39 through IC 44 are wired for both left and right shifting operations. In the PROGRAM mode pin 6 of these six ICs is held low during the four clock generator pulses. The serial data from the P/S converter is loaded into each slot. In the OPERATE mode the mode control pin 6 changes depending upon the position of the CHAN REV switch. Normally, it is low for shifting right into the transmit frequency, and high for shifting left into the receive frequency. An exception to this is in SIMPLEX mode. Once set for either A or B channel simplex operation, the mode control signal is inhibited (does not change).

The output from memory is taken from

This side view clearly shows the HT-220 circuit board with the buffer/multipliers to the right. All circuit boards and other critical circuitry were mounted in shielded boxes.
the parallel outputs of IC 41 and IC 42. It should be obvious that with this shift register form of storage extra slots are necessary to save the data not currently being read out. That is the reason for 24 bits of storage with only 16 bits of data.

\section*{Scanner}

The scanning circuitry is identified by two labels - the 10 kHz latch and the 100 kHz latch. The two parts are very much the same. The 10 kHz latch is shown in Fig. 9. Three sections of a hex inverter, IC 45, are used as an oscillator with constants fixed for a frequency of roughly 10 Hz . This oscillator

Fig. 10. 100 kHz Latch. Circuitry is the same as the 10 kHz latch with the exception of IC51.

Fig. 11. T/R Logic. Transmitter keying, channel reversing, simplex, and memory control are controlled with this circuitry.
drives IC 46 , a 7490 . IC 46 and its companion IC 51 (74192) constitute a \(\div 100\) or \(\div 50\) chain. IC 46 is wired for BCD counting. Its outputs follow exactly the sequence found in Table I and are used in place of the memory outputs for scanning in 10 kHz steps. IC 47 , IC 48 , and IC 49 form another data selector. The operation of only one section will be described since the concept remains the same for all such selectors in this rig.

The 10-1 line (BCD 1 portion of the 10 kHz section) is switched by IC 47 a , IC 47 c , and IC 48 c . When the SCAN switch is set to OFF pin 13 of IC 47 c is high and pin 2 of IC 47a is low. Since IC 47 is a quad NAND gate pin 3 will remain high regardless of the state of pin 1 (because pin 3 is low). Pin 11 of IC 47 c will be low when pin 12 is high and vice versa. The total action just described can be summed up by saying that a NAND gate becomes a simple inverter if one of its inputs

Fig. 12. 1 MHz Switching. This circuit provides the front-panel selection of the 1 MHz range setting for proper display during receive.

\section*{Kegency brings you the best in 220 MHz transceivers} model|hR-220

American Made Quality at Import Price

\section*{Full 12 Channels with} 10 Watts Power Out

Compactly designed for dash mount, this little transceiver gives you big signal power on the go . . . at low current drain. 3 watts audio equipped with a noise operated squelch system provides clear reception and excellent sensitivity of \(0.4 \mu \mathrm{v}\). High-Low power switch. American Made and Regency reliable, the HR-220's solid state design brings you tough, top quality circuitry at the low price of only

Amateur Net
Keqency electronics, inc.
7707 RECORDS STREET
INDIANAPOLIS, INDIANA 46226

\section*{An FM Model For Every Purpose . . .}

HRT-2
5 Channel Hand-Held 8 Channel Transcan 2 Meter FM Transceiver 2 Meter FM Transceiver

\section*{AR-2}

2 Meter FM
Power Amplifier
is held high, and becomes inactive if either of its inputs is held low. IC 48c acts as an inverter all the time. Pin 12 of IC 48c remains high with the scan off, causing the output of the selector to follow the input at pin 12 of IC 47c. No inversion occurs through the selector. When the scan is turned on the output of the selector at pin 11 of IC 48c follows the input of IC 47a. That input is the \(10-1\) line from the 7490 \(B C D\) counter.

This data selector can be very handy in other applications since its switching time is limited only by the propagation delay within the ICs (in nanoseconds). The particular one used here is an 8 PDT switch. Using NAND gates to synthesize the selector was less expensive than buying a single IC data selector.

The output from the data selector goes to the quad latch, IC 50. Its clock inputs (pins 4 and 13) are normally held high and the outputs follow the inputs. The clock inputs drop low, freezing the data in the latch, whenever the squelch opens or the transceiver is in the PROGRAM mode.

Fig. 10 shows the 100 kHz latch. The data selector and latch are the same as just described. The counter in this case is a programmable up down counter, IC 51. It is wired to count up from the preset input. The setting of the SCAN switch determines where it begins to count. It is preset to 0 for an entire megahertz scan and to 5 for just the top half of a megahertz. It increases by one with every tenth count of the oscillator.

\section*{T/R Logic}

The transmit receive switching is reasonably simple. The PTT line in Fig. 11, is isolated from the \(T / R\) logic by an inverter IC 30d. The inverter will cause the HT-220 relay to close on transmit through IC 31b and IC 27b if the Unlock Detector output and the Transmit Inhibit lines are both high. If PLL lock is not achieved pin 5 of IC 31 goes low, preventing transmitter keying. The same is true when the clock generator is running (pin 3 of IC 31 drops low). The "XMIT LINE" signal is inverted in IC 30a and becomes the "RCV LINE." These two lines provide logical " 0 " signals during transmit and receive respectively. Keying an

The HT-220 board and the buffer/ multipliers are mounted in the box in the foreground. The two other boxes house all other circuit boards. The open box at the upper right holds the reference oscillator, phase detector, VCO and digital mixer.
external relay is possible using IC 30b and Q5.

Memory shifting during transmit and receive and during channel reversing is accomplished primarily with a J-K flip flop, IC 32a. IC 31c is in the line to the J-K flip flop for no other reason except to put it to use. Power requirements are reduced just a bit by connecting unused inputs to used inputs or to +5 V on TTL chips. The J-K flip flop is clocked by the 1.111 kHz output of the \(\div 9000\) chain. In the NORM position of the CHAN REV switch the \(J\) input is high and the K input is low. This forces the Q output high on the next clock pulse. With Q high (pin 15) the memory is set for a shift-left. When the PTT button is pushed the J input goes low and the \(K\) input goes high. On the next clock pulse this J-K data input causes the Q output to drop low and stay there regardless of the clock input. The mode control to the memory is therefore low, commanding a shift-right operation. The negative transition of the Q output is differentiated and inverted in IC 26e, IC 23a and IC 26 d . The output of IC 26 d is a short pulse (positive going). Since it is connected to IC 23b (Fig. 6), this pulse causes the clock generator to start feeding pulses to the memory. When the PTT button is released, J goes high (K goes low), programming a shift-left in the memory. Because of the wiring of the differentiator and inverter any change in the mode line causes the clock generator to start. Therefore, the memory

\section*{The 6 Meter Radio With Power To Spare}

\section*{model HR-6}

\section*{25 Watt, 12 Channel Transceiver With Solid State Performance}

Here's the power to get you
out on the 6 meter band without
use of black box power hogs use of black box power hogs n your car trunk. Work repeaters or work skip on your choice of 12 channels, with independent switching for transmit and receive. That gives you 144 frequency combinations across the entire band . . . 52-54

MHz . This compact package delivers \(0.35 \mu \mathrm{v}\) sensitivity and 3 watts audio output for great
listening. And the price is as compact as the radio ...

\title{
\({ }^{\text {onl }} 239^{00}\)
}

Amateur Net
Kegency ELECTRONICS, INC.
7707 RECORDS STREET INDIANAPOLIS, INDIANA 46226

\author{
An FM Model For Every Purpose... Every Purse
}

The individual circuit boards plug into sockets in the shielded enclosures. Troubleshooting and circuit testing is simplified using a board extender. The board shown extended is the BCD Encoder board.
shifts left when the PTT switch is opened.
Channel reversing is simply a matter of convincing IC 32a that the PTT switch has been pushed when it hasn't. This is done by reversing the data into the J-K inputs. The contact bounce in the reversing switch causes many, many shifts to occur, but since each shift requires only 80 microseconds this is not noticeable. I have never observed a lost bit or incorrect shift due to this bouncing.

Simplex operation is obtained by holding

IC 32a in either the set or preset condition. If the SIMPLEX switch is moved so that the Clear input (pin 3) is grounded, the Q output drops low and remains so until the Clear input is high once again. That is, it remains low regardless of the clock and J-K inputs. The Q output is set permanently to a 1 if the Preset input is grounded. In this way, the memory cannot shift when the PTT switch is closed and opened and simplex operation is achieved.

\section*{1 MHz Switching}

The 1 MHz portion of the \(\div \mathrm{N}\) programming is selected by two panel mounted switches. Although ordinary rotary switches and a diode matrix may be used for this (thumb wheel, too), I was fortunate to find in surplus some rotary switches with BCD output. Each switch had four micro-switches ganged together and operated from a camming surface to give \(B C D\) encoding of the rotary motion. These are shown in the wiring diagram in Fig. 12. The CHANNEL A MHZ switch is selected during transmit and the CHANNEL B MHZ switch is used during receiving. This circuitry also subtracts 2 from the CHANNEL B MHZ switch setting. This is necessary since an 8 must be set on the switch to receive 146 MHz signals and it is desirable to display a 6 , not the 8 .

A computer-type circuit could have been used to subtract 2 from the receive setting. Full adders such as the 7483 could be used and were tried. I saved some circuitry and

Fig. 13. Digital Display. All Minitrons have pins 2, 5, 10, 12, and 13 connected to 7 Vdc. Pin 9 is grounded on the center Minitron to provide a decimal point.

\section*{WEIRNU NOVEMBER SALE}

TL SPECALS
930 Dual 4 Gate/Exp
932 Dual 4 Buffer
933 Dual 4 Extender
935 Hex Inverter/E
936 Hex Inverter
936 Hex Inverter
944 Dual Buffer
945 RS Clocked FF
946 Quad 2 Gate
948 RS Clocked FF
949 Quad 2 Gate
958 Ouad Power Gate
961 Dual 4 Gate/Exp
962 Triple 3 Gate
963 Triple 3 Gate
9093 Dual JK FF
9094 Dual JK FF
9097 Dual JK FF
9099 Dual JK FF

Memories
MM 52601024 bit RAM (2nd generation 1103) 5.00 p1101 256 bit RAM 1103 a- 1024 bit RAM
748964 bit RAM
\(8223-256\) bit bipolar Field PROM
\(8225 \quad 64\) bit RAM
74200 Tri-State 256 bit RAM
DM8599 Tri-State 64 bit RAM
p2102 1024 bit static RAM
26021024 bit Static RAM

NOTES:

Request orders
We sell many items not listed, \& can obtain many not kept in stock. If you need any odd or hard to find ICs, odds are we can get them. Please write.
a. At Lastl A tested 1103! Our newly proven program allows us to offer the only mail order available, fully tested and guaranteed 1103 in the world!
b. Occasionally, we become backordered in a particular item while overstocked in its H,L, or S equivalent. To alleviate this difficulty, we will follow the policy of free functional substitution when necessary, unless you indicate that a substitution is unsatisfactor in your application!

TERMS: Payment with order. Credit available for rated firms upon in16.00 quiry. All ICs, unless otherwise noted, are fully tested and guaranteed.
\begin{tabular}{l}
\begin{tabular}{|l|l|}
\hline WEIRNU & -spec sheets 25d each \\
Box 1307 & -our complete catalog \(\$ 2.00\), free \\
Colton, CA 92324 \\
ph \#(714) 888-2467 \\
(ask for FANNIE1)
\end{tabular} \\
\begin{tabular}{l}
with order of \(\$ 100.00\) \\
-Calif, residents add \(6 \%\) sales tax \\
-add \(\$ 1\) postage on orders under \(\$ 10\)
\end{tabular} \\
\hline
\end{tabular}
expense, however, by noting that this is a very special case. I had to subtract 2 only from the numbers 6, 7, 8 and 9. Table II lists the settings of the CHANNEL B switch for each step in the 2 m band. Also listed are the BCD numbers that I wanted to display. Note that in the 1 -columns of both numbers each bit is the same. I made no changes to the \(1000-1\) line (1000 kHz 1 line). Note also that the 2 -columns are just the inverse of each other. For this line I simply inverted the output from the CHANNEL B switch during receive. The 4 -column of the desired display is always a " 1 " and the 8 -column is always a " 0 ." This was easy to implement by permanently wiring the display input for a " 1 " on the 1000-4 line and a " 0 " on the 1000-8 line. IC 56 and IC 57, both 7400 NAND gates, create this very special "subtract 2" circuit. This one will not work for numbers other than \(6,7,8\) and 9 .

\section*{Digital Display}

The five digit display uses five Minitron seven-segment read-outs with three 7447 seven-segment decoder-drivers. Fig. 13 is the schematic of the display. The power for the Minitrons was taken from the 12-15 VDC source through a zener regulator circuit. With only 5 V on the Minitrons, the display could not be read in sunlight. 7 V makes the display easily readable and does not exceed the maximum of 9 V . The lifetime of the filaments must be derated but I have no information regarding this. The 14 of \(14 \mathrm{X} . \mathrm{XX}\) is permanently wired into the display, reducing the number of 7447 's required. The three 7447 ICs that are used are blanked when an out-of-lock condition occurs.

Most of the circuitry was done on printed circuit boards. Six of the boards are shown here. Starting at the top, left to right, the boards are the \(T / R\) board, 10 kHz latch, 100 kHz latch, Memory, Clock Generator and BCD Encoder.

Frequency
144.00
145.00
146.00
147.00
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{CHANNEL B
MHZ} & \multicolumn{4}{|l|}{Displayed BCD Number} \\
\hline 8 & 4 & 2 & 1 & 8 & 4 & 2 & 1 \\
\hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
\hline 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\
\hline 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{Table II}

\section*{Squelch Circuitry}

The squelch hold circuitry is very simple. A 741 op amp is used as a voltage comparator. Its ouput swings rapidly between 0 and +12 V as the squelch voltage from the 220 crosses a preset threshold. This point is adjusted by the setting of the 1 K pot, R1. Normally, the signal from the 220 is near OV. Under that condition, the output of IC 61 will be high \((+12)\) because the inverting input is greater than the non-inverting input. R2 and R3 form a voltage divider to keep

Fig. 14. Squelch Hold. R1 sets the threshold sensitivity.

Fig 15. Power Supply.
the input to the TTL chips less than 7 V . With the multiple inversions in IC 27 e - IC 30 f , the output of this squelch hold circuit is high (+3) when the HT-220 receiver is squelched. Since this output is the clock for IC 50 and IC 55, the latches do not hold the frequency. When a carrier is encountered the latches freeze the data. IC 27d, IC 63 c and IC 63a form a one-shot multivibrator which is triggered by the disappearance of the carrier. It holds the latches in the "frozen" state for about three seconds after a carrier drops out. This allows you to listen to both sides of a conversation even though one side may be slow picking up the mike. This 3 second delay must be eliminated when not scanning, otherwise the time required to go from receive to transmit would be 3 seconds. This inhibiting mode is accomplished by setting the threshold in the 741 op amp much higher when not scanning. The squelch signal from the 220 can never reach it. A second input to the inverting input is activated when not scanning (raised to +5 V).

Fig. 16. Buffer/Multiplier.

\section*{Power Supply}

The transceiver was designed to operate from 12-15 VDC. The HT-220 board works better near the high end of this range, although I have experimented with it and can go as low as 11 V with mine. The +5 V for the IC packages is supplied by two LM-309K regulators mounted on the rear of the cabinet. The TTL load is evenly split between the two. A separate LM309H was used for the VCO and was mounted on the board with the oscillator. To keep ignition noise out of the rig and to provide more stable operation, the +12 regulator from K2OAW's article was also used. Fig. 15 shows the power system.

Fig. 17. HT-220 Connections. These connections are just one method for mating the synthesizer to the HT-220.

\section*{Buffer/Multiplier}

The output of the VCO is buffered first by IC 62, a quad-NAND gate. One section is used to drive the digital mixer. Two more sections are used as switched amplifiers to drive the transmit buffer and the receive tripler. A 2 N 3512 was used as a buffer to drive the first tripler stage of the HT-220 transmitter. The 14 MHz output is tripled in an MPF102 stage before going into the receiver oscillator stage of the 220 . These stages are right out of the Bandbook and are shown in Fig. 16.

This light weight, "take anywhere" transceiver has the "Regency-type" interior componentery to give you what others are looking for in portable communications. You get a heavyweight 2.2 watt signal . . . or if you want, flip the HI/LO switch to 1 watt and the receiver gives you
0.7 uv sensitivity and 0.5 watts audio. Both transmitter and receiver employ band-pass circuitry so that power and sensitivity are maintained across the entire band. Get one to go. . . . only

Amateur Net
Keqency electronics, inc. 7707 Records Street Indianapolis, Indiana 46226
An FM Model For Every Purpose . . . Every Purse

HR-2MS
8 Channel Transcan 2 Meter FM Transceiver 2 Meter FM Transceiver Power Amplifier

\section*{HT-220 Modifications}

My method of feeding the 220 board may not be the best or only way but it works well. If you are contemplating a rig like this one, I recommend that you acquire both a transmit and receive crystal for the HT-220 and get it tuned up and working to your satisfaction. I modified the original board for 2 m operation with information from another article ("The 220 Amateur FM Rig," rpt. . .,September, 1971). In addition to the padding and audio modifications, I made some of my own changes. The transmit oscillator circuit was removed entirely and the input was connected directly to the base of the first tripler. The receiver oscillator was changed by disconnecting the "rubbering" circuit and bypassing the emitter of the transistor with a \(.001 \mu \mathrm{f}\) disc capacitor. The 42 MHz input was connected to the base of the original oscillator. The coupling capacitor from the audio IC was connected to a shielded line and run to the VCO board. The squelch signal was taken from the base of Q12, the first audio amplifier. I was optimistic and mounted an S-meter on the FS-220, but up to this time I have not succeeded in coming up with a suitable means of driving it from the 220. A discriminator meter was easily wired in, however. Fig. 17, shows the connections made to the HT-220. A schematic is not given since so many different versions of this little rig exist.

\section*{Mechanical Work}

The cabinet for the FS-220 was formed from a piece of aluminum 3 mm thick. Starting with a piece 59.2 cm by 24.3 cm and bending as in Fig. 18, gave a cabinet size 21.6 cm wide, 12.7 cm high, and about 33 cm deep. The top cover was bent from another piece of 1.6 cm stock. The holes in the main chassis were punched before bending. Before painting, the chassis was etched in a lye bath and coated with zinc chromate. Several spray coats of blue enamel and some white lettering finished the job.

I said in the first part of this series that this was not a construction article. I meant that I did not think anyone would copy it
bolt for bolt. With all parts purchased new, rather than relying on surplus and several years worth of junkbox material, the cost of this transceiver would be high. It is certainly not necessary to have all plug-in boards enclosed in Vector EFP modules as I have done. Furthermore, my method of construction makes for much wasted space, but that is the way I wanted it on a prototype such as this.

\section*{Results}

This rig has been operational for several months. It is a real joy to have around. I have discovered repeaters in the south-west Ohio area that I never knew existed. On trips the FS-220 has provided many hours of enjoyment without worry about being "crystalled up" as I have so often heard mentioned. I don't carry my repeater direc-
\begin{tabular}{clll}
IC \# & Type & IC \# & Type \\
1 & 7400 & 34 & 7475 \\
2 & 7400 & 35 & 74121 \\
3 & 7400 & 36 & 7486 \\
4 & 7402 & 37 & 7400 \\
5 & 7402 & 38 & 7495 \\
6 & 7402 & 39 & 7495 \\
7 & 7402 & 40 & 7495 \\
8 & 7402 & 41 & 7495 \\
9 & 7404 & 42 & 7495 \\
10 & 7404 & 43 & 7495 \\
11 & 7404 & 44 & 7495 \\
12 & 7490 & 45 & 7404 \\
13 & 7490 & 46 & 7476 \\
14 & 7490 & 47 & 7400 \\
15 & 7490 & 48 & 7400 \\
16 & 74192 & 49 & 7400 \\
17 & 74192 & 50 & 7475 \\
18 & 74192 & 51 & 74192 \\
19 & 74192 & 52 & 7400 \\
20 & 7420 & 53 & 7400 \\
21 & 7410 & 54 & 7400 \\
22 & 7474 & 55 & 7475 \\
23 & 7402 & 56 & 7400 \\
24 & 7476 & 57 & 7400 \\
25 & 7410 & 58 & 7447 \\
26 & 7404 & 59 & 7447 \\
27 & 7404 & 60 & 7447 \\
28 & 74192 & 61 & 741 \\
29 & 7400 & 62 & 7400 \\
30 & 7404 & 63 & 7402 \\
31 & 7400 & 64 & \(L M 309 K\) \\
32 & 7476 & & \(4 M 309 K\) \\
33 & 74121 & &
\end{tabular}

Table III
Integrated Circuit Types

\section*{Fafinean HR-212}

American Made Quality at Import Price

\section*{The Incomparable 12 Channel 2 Meter FM Transceiver}

Here's an outstanding value that delivers 20 Watts of 2 meter

FM power. The únique front panel mode switch enables predetermined or independent paired frequency operation. LOCK mode provides full 12 channel transceive on frequency pairings normally used in your area. UNLOCK mode permits up to

144 possible frequency combinations. The receiver gives \(0.4 \mu \mathrm{v}\) sensitivity and 3 watts audio output. All of this for only

Amateur Net

An FM Model For Every Purpose... Every Purse

HR-6
HR-220
HR-2MS
12 Channel-25 Watts 12 Channels-10 Watts 8 Channel Transcan
6 Meter FM Transceiver 220 MHZ FM Transceiver 2 Meter FM Transceiver

Fig. 18. The more important mechanical features are shown here to illustrate the technique used to construct the chassis (not to scale).
tory with me anymore. The scanner quickly tells me where the activity is.

All is not rosey, however. There are some draw backs to this rig (and similar synthesizers). If a repeater is encountered that is off frequency, you may be the only one who can't use it. So often the users "rubber" their crystals to match the repeater and then it doesn't matter what the frequency is, right? Good grief!

I have already considered modifications to this ultimate rig to improve it or make it more versatile. The VCO has some residual noise on it . The 1.111 kHz reference is still in there, but from reports it is apparently below the level of the alternator whine on many mobiles. I don't have my reference crystal in an oven and the warm-up time is too long on cold winter mornings (10 minutes). The next step is a read--only-memory (ROM), possibly reprogrammable, for all the standard FM frequencies. Scanning would then be faster and more efficient.

My thanks to the Dayton area FMers for tolerating the testing phase on this rig. Thanks also to WA8LSR for the photographic work on this article. Then there are
the wife and kids, who put up with yet another construction project and occasionally left bits of food and drink at the top of the cellar stairs.
... W8KBC

\section*{RF HOT DOG}

Using a neon to indicate the presence of rf is well known, and some amateurs are known to keep a neon near a tank, tuner, or end-fed antenna, watching it glow as they tune up. Unfortunately, a neon bulb by itself does not work well with weak rf.

The glowing nose of the "Hot Dog" is enormously sensitised by applying enough ac to get it started. In Fig. 1, each resistor is 3.3 \(\mathrm{M} \Omega\). Electrically, both could be in one lead, or they could be at the neon end of the flexible cord. Having them at the plug end and taping them up inside gives a neater and safer piece of equipment for obvious reasons.

Fig. 1. This is all you need for a sensitive rf indicator.

The neon was a small one from a worn out soldering iron. Any neon will work, though the type with two small, nearly parallel inside electrodes (NE-2) seems best. The piece of insulated tube is only to cover joints and form a handle. Operation ought to be tried before finally sealing up the resistors. The idea is to use very high values, so that the neon barely glows with no rf nearby. The resistors need not be of the same value, and would be expected to be from 2 to \(5 \mathrm{M} \Omega\) each.

The Hot Dog sniffs out rf like an ordinary neon, but responds to weak rf, either by a change in glow, or movement of the glow. It allows tuneup of weak or low-impedance if circuits as well as showing rf hot spots and rf leaks in shielding.
. . .G3OGR

\section*{ANNDUNCING}

THE NEW MODEL HCV-70FSVFK SLOW SCAN TO FAST SCAN VIEWFINDER MODIFICATION KIT FOR ROBOT*70 \& 70A SLOW SCAN TELEVISION MONITORS

Also available for HCV-2A monitors. Covered by U.S. Patent \#DD-033468.

NOW - HERE AT LAST - From the Designer of the TEEC HCV-1B SSTV Camera and the HCV-2A SSTV Monitor and other Slow Scan TV Equipment (WB4HCV) comes another quality SSTV product...

This kit, when properly installed in the ROBOT* Model 70 \& 70A SSTV Monitor, will allow Fast Scan (Sampling rate of Model 80 \& 80A or the HCV-1 B Camera) viewing on the same CRT display you now watch slow scan on, by a simple flip of a front panel switch. Viewing the scene in real time allows for quick, easy set-up of scene. Allows for razor sharp focus. Displays movement and a picture brighter than the normal p-7 slow scan picture. Allows slow scan to be transmitted while viewing the picture on fast scan.

Easy to assemble kit of parts and full step by step instructions. Nothing else to buy. Save \(\$ 195\) by ordering your HCV-70FSVFK Fast Scan Viewfinder Kit today, instead of a separate monitor to take up more space. You will not only save \(\$ 195\) but you will have the advantage of having both monitoring features in a single cabinet. Picture quality similar to model \(60 \& 61\) viewfinders.

Note: Should be attempted by experienced kit builders only. Can be supplied factory installed for \(\$ 30.00\) additional plus shipping. Turn around time about 3 days after receipt of monitor at factory. Write for details.
ALLOW 2-3 WEEK DELIVERY ON ORDERS WITH PERSONAL CHECKS, 3-4 DAYS ON CERTIFIED CHECKS, MONEY ORDERS, ETC.
PRICE COMPLETE POST PAID IN U.S.A.

LATE BULLETIN: The HCV-3KB Slow Scan TV Keyboard will be available by late January 1975. Write for information on reserving yours now. Also - The new improved HCV-1B SSTV Camera and the HCV-2A SSTV Monitor are scheduled to again be available by December 15, 1974. \(\mathrm{HCV}-2 \mathrm{~B}\) is to have a built-in fast scan viewfinder and \(\mathrm{HCV}-1 \mathrm{C}\) will have an auto/manual ALC (automatic light contral); grey scale generator and more. Write James Thomas, WB4HCV, for full information at:

\title{
S(mmner Electronics \& Ens. Co.inc.
}

\author{
P.O. BOX 572 \\ HENDERSONVILLE, TENNESSEE 37075 \\ TELEPHONE: 615-824-3235
}

\title{
Experiment in Terror
}

\author{
Mama, check the allocation chart, I'm tuning up!
}
"CQ CQ CQ DE WA9VLK WA9VLK K"
"WA9VLK DE W1IK K"
"W1IK DE WA9VLK - TNX FER CALL OM UR 579 AT KANKAKEE ILL KANKAKEE ILL ES NAME VERN VERN - SRI FIST SO SLOPPY, THOUGHT I WOULD COME DOWN TO NOVICE SEG HI. W1IK DE WA9VLK."
"WA9VLK DE W1IK - GE VERN NAME BILL BILL UR 559 RUTLAND VT RUTLAND VT WHAT U MEAN NOVICE BANDS? NOVICES DWN HUNDRED KC - THIS IS EXTRA CW SEG NW - WX CLDY 34 DEGREES ES RIG EIGHTY WATTS TO DIPOLE - WATSA? WA9VLK DE W1IK."
"BK DE WA6ZDO."
"WA6ZDO DE WA9VLK - GE OM - NAME VERN VERN UR 599 KANKAKEE ILL KANKAKEE ILL BK'
"BK TNX VERN UR 599 DALLAS DALLAS BILL IS 579 - NAME HR TOM TOM. UR OK VERN...THIS SEGMENT WS CHANGED BK TO GENERAL LAST THURSDAY BK"'

"BK - WELL TOM, LAST HRD HR WAS THIS WAS NOVICE BAND - OVER TO VT, W1IK DE WA9VLK K"
"WA9VLK DE WIIK - U OMS SHOULD READ MORE - ADVANCED AND UP GOT THIS SEGMENT YESTERDAY - GENERALS ARE 150 KC DOWN. ADVANCED AND EXTRA GOT UPPER 200..."
"BK DE W3BYK"
"W3BYK DE W1IK HW?"
"W1IK DE W3BYK - LISTENING ES HRD U ALL DISCUSSING BAND CHANGES - NEW RULES THIS MORNING GAVE TECHS THIS SEGMENT - EXTRAS ARE UP 150, NOVICES GO 200 DOWN AND GENERALS ARE 250 DOWN HW? - W1IK DE W3BYK K"'
"W3BYK DE W1IK - SRI OM FONE QRM PSE TRY AGN BK"
"Break from WA2EWF",
"WA2EWF DE W3BYK - BETTER QSY OFF TECH CW SEGMENT BK"
"O.K. . . (slurp, cough, hack) W3BYK from WA2EWF . . . helllllllloooooooooo, o.k. ... there we go ... name here's baker ocean baker runnin' kay-dubya in Brooklyn. Just ah - heard you guys down on see-dubya, man, this segment is now extra phone since yesterday so you boys better get off the "For Extras Only" net frequency and get a current copy of QSD magazine. So back to Kankakee and Stern . . . WA9VLK down on cw from WA2EWF."
"WA2EWF DE WA9VLK - SURE DO WISH I KNEW WHO HAS THE SEGMENT NOW - WL 73 ES TNX - WA9VLK SK'"
"WA9VLK DE W1IK 73 ALL CU AGN - W1IK SK"
"BK 73 OMS W3BYK CL"
"Well . . good luck all the way around, 73 - QR-Zed the FEO net from WA2EWF."
"WA2EWF DE WAGZDO 73 ES HPE TO GET IT STRAIGHT GE DE WAGZDO SK"
"KGX 2237 mobile to base . . ."
.WA9VLK.

Dave Hembling VE7DKR 1379 Columbia Street
Penticton, B.C. V2A 3X7

\title{
A Wind-Proof 20m Beam
}

Fig. 1. Beam construction.

At my QTH due to regular windspeeds in excess of 110 mph , it was impossible to maintain a regular size 20 m beam on the tower without it becoming damaged or broken.

So, if I wanted to operate on 20 m with a rotating beam, I had to design a "windproof" version capable of withstanding such high windspeeds.

The local weather office windspeed gauges only read to a maximum of 110 mph and according to weather station records over the past dozen years or so, the maximum of 110 mph has been regularly recorded at least 3 or 4 times each year. Based on discussions I have had regarding wind problems experienced in other areas of the world (such as Hawaii), I am not the first ham to face severe wind problems in relation to the erection of a beam for 20 m .

Fig. 2. End view of element mounting to 4' fir pieces.

After numerous disasters with quads and full size beams I developed a windproof minibeam which has been unharmed now for a year and a half. Based somewhat on an ARRL minibeam (The ARRL Antenna Book, ARRL, Newington CT, 1964, pp. 275-276), the present windproof version takes advantage of several additional features not utilized in the model which inspired it.

\section*{Physical Construction}

A "double barrel shotgun" style boom was made from two 45.72 m (\(121 / 2\) foot) lengths of \(5.08 \mathrm{~cm}\left(2^{\prime \prime}\right)\) aluminum irrigation tubing, see Fig. 1. Three pieces of 5.24 cm \(\left(21 / 2^{\prime \prime}\right) \times 5.24 \mathrm{~cm}\left(21^{\prime \prime}\right)\) aluminum right angle stock, 30.48 cm (\(12^{\prime \prime}\) long), were attached to the two booms with U-bolts, with the outside of the booms spaced 17.78 cm (\(7^{\prime \prime}\)) apart. Each of the three elements, which has a coil in the centre, is mounted on 5.08 cm (\(2^{\prime \prime}\)) fir stairway hand rail measuring \(10.16 \mathrm{~cm}\left(4^{\prime}\right)\) in length. The aluminum elements are made from 2.54 cm (\(1^{\prime \prime}\)) and 2.22 cm (\(7 / 8^{\prime \prime}\)) O.D. aluminum tubing, left over after my Gotham beam fell down from the tower one windy night.

Special mounting channel fastened to the double boom with hose clamps.

The elements, although of different lengths when tuned, are each made exactly the same initially, except for the coils. Two 1.83 m (6 ') lengths of 2.54 cm (1') O.D. tubing are mounted on the fir hand rail with a 12.7 cm (\(5^{\prime \prime}\)) space between their inner ends. The outer ends of the 2.54 cm (1 ') tubing are split about \(3.18 \mathrm{~cm}\left(11 / 4^{\prime \prime}\right)\) and the \(2.22 \mathrm{~cm}\left(7 / 8^{\prime \prime}\right)\) O.D. tubing can later be inserted and held at the desired length with hose clamps.

Fig. 3. Hard rubber coil spring spreaders.
The two 2.54 cm (1") tubing lengths, 1.83 m (6) each, are mounted to the fir with rubber stand-offs, made from hard black rubber auto coil spring spreaders cut in half so as to leave one side flat and the other with a round groove into which the elements fit, see Fig. 2. The original rubber spreaders cost \(40 \phi\) each at the local hardware store, and 6 are needed, see Fig. 3. The fir sections are mounted to the right-angle aluminum pieces in two ways. The driven element section is mounted differently than the other two elements. The right-angle piece is bolted to the two booms with \(5.08 \mathrm{~cm} x\) .95 cm (\(2^{\prime \prime} \times 3 / 8^{\prime \prime}\)) U-bolts; then the fir section is bolted to the opposite surface of the angle with two chromed \(.95 \mathrm{~cm}\left(3 / 8^{\prime \prime}\right)\) bolts.

Driven element as viewed from below.
The aluminum angle stock is U -bolted to the ends of the two booms so that the opposite angle surface forms covers over the ends of the boom tubings. The fir sections are bolted onto the same surfaces as the U-bolts (for the two end elements only).

The mast used was a 5.08 cm (\(2^{\prime \prime}\)) diameter 1.83 m (\(6^{\prime}\)) length of water pipe threaded and screwed into a flange plate. The threaded joint was then welded. Then the round flange plate was bolted to a piece of (homebrew) channel made by welding

Fig. 4. Mast to boom mount. Beam is removed from the mast by removing the four \(1-1 / 2 \mathrm{x}\) \(5 / 16\) bolts used to secure flange plate to home-brewed fixture illustrated here.
two 35.56 cm (\(14^{\prime \prime}\)) lengths of \(3.81 \mathrm{~cm} x\) \(3.81 \mathrm{~cm} \times .48 \mathrm{~cm}\left(1 \frac{1}{2}{ }^{\prime \prime} \times 11 / 2^{\prime \prime} \times 3 / 16^{\prime \prime}\right)\) angle iron to a \(17.78 \mathrm{~cm} \times 30.48 \mathrm{~cm}\) (\(7^{\prime \prime} \times 12^{\prime \prime}\)) piece of \(.32 \mathrm{~cm}\left(1 / 8^{\prime \prime}\right)\) sheet iron.

The angle iron protrudes 2.54 cm (\(1^{\prime \prime}\)) beyond the ends of the sheet iron and can be hose-clamped to the double boom with four large hose clamps, see Fig. 4.

The beam is easily removed from mast and tower by removing the four \(3.81 \mathrm{~cm} \times\) \(.79 \mathrm{~cm}\left(11 / 2^{\prime \prime} \times 5 / 16^{\prime \prime}\right)\) bolts on the flange plate. The complete beam is easily raised and lowered from the 12.19 m (\(40^{\prime}\)) tower by means of a rope, with one man at the top of the tower and one below. The beam weighs only about 20 pounds complete, less mast and flange plate. It is rotated with a husky homebrew \(1 / 4\) RPM homebrew rotor, enabling utilization in high winds. Probably the HAM-M or ROTO BRAKE models would be ideal for use in high winds also. In low wind areas a heavy TV type rotor would be adequate.

\section*{Electronics}

Loading coils are used at the mid-points in each of the three sets of elements. The idea in this beam is to use an inductance to effectively "shorten" the total element lengths. Although each element could be extended out and clamped with only 15.24 cm or 20.32 cm (6 or 8 inches) of overlap to give element lengths of 7 m (23 feet) or so, only the reflector comes near that length. Element lengths used on my version are given below. Actually, the element lengths utilized are not critical, so long as the appropriate element length/coil resonance combination is utilized. Ordinary 2.54 cm (1 ") diameter B\&W coil stock was

Director element, showing rubber mounting of each half element, with clamps and bicycle inner tube over the loading coil.
used with a 30.48 cm (12") length of bicycle inner tube later cut and placed over the coils (on Director and Reflector only) and tied tightly around \(2.54 \mathrm{~cm}\left(1{ }^{\prime \prime}\right)\) aluminum ends, for weather protection of the coils. The D.E. coil is made of much larger and heavier 5.08 cm (\(2^{\prime \prime}\)) B\&W coil stock, which when soldered is self supporting and left open to weather.

The Reflector and Director loading coils were both made from 2.54 cm (1") B\&W coil stock, close spaced \#20 wire, so as to resonate the Reflector 500 kHz below center frequency desired and the Director 500 kHz above center frequency desired.

The reflector coil consists of 13 turns of 2.54 cm (\(1^{\prime \prime}\)) diameter B\&W coil stock 2.22 cm (\(7 / 8^{\prime \prime}\) long) with each half of the element 3.25 m (\(10^{\prime} 8^{\prime \prime}\)). A space of 12.7 cm (\(5^{\prime \prime}\)) is left between the two halves of the element, for a total reflector element plus coil "wingspread" of 6.63 m (21 ' 9 ").

The director coil consists of 16 turns of 2.54 cm (\(1^{\prime \prime}\)) diameter B\&W coil stock 2.54 cm (1" long), with each half of the element measuring \(2.27 \mathrm{~m}\left(7^{\prime} 5^{1} / 2^{\prime \prime}\right)\). A space of \(12.7 \mathrm{~cm}\left(5^{\prime \prime}\right)\) is left between the two halves of the element, for a total director element plus coil "wingspread" of 4.67 m (15'4').

The driven-element coil consists of \(81 / 2\) turns \#14 on 5.08 cm (2 ') diameter 1.9 cm (3/4" long) of B\&W stock with each half of the element measuring 2.86 m (\(1121 / 2^{\prime \prime}\)). A space of \(12.7 \mathrm{~cm}\left(5^{\prime \prime}\right)\) is left between the two halves of the element, for a total drivenelement plus coil "wingspread" of 5.84 m (19'2').

\section*{Feeding and Tuning:}

The driven element is fed through an "inductive gamma match" with the coax shield going to exact coil centre and the inner coax conductor tapped \(11 / 2\) turns from center.

The RG 8/U feedline to the transceiver should be a multiple of a \(1 / 2\) wavelength of coax. For example, at 14.1 MHz it would be \(14.02 \mathrm{~m}\left(46^{\prime}\right)\), one wavelength, 21.03 m (\(69^{\prime}\)), \(1 \frac{1}{2}\) wavelengths, or \(28.04 \mathrm{~m}\left(92^{\prime}\right), 2\) wavelengths, long. The coax is experimentally connected to various tap configurations, once the basic D.E. coil is installed, to obtain best SWR.

Each of the elements is again grid dipped by loosely coupling the dipper to each center coil, once the beam is assembled. The beam should be as high above ground for this adjustment as possible. I did these adjustments on my house rooftop, with the beam sitting on top of the \(91.44 \mathrm{~cm}\left(3^{\prime}\right)\) chimney (on a rare windless day).

\section*{Basic Materials Needed:}

2 lengths of 5.08 cm (2") O.D. aluminum irrigation tubing 3.81 m (\(12^{\prime} 6^{\prime \prime}\)) long
6 lengths 2.54 cm (1") O.D. aluminum tubing 1.83 m (\(6^{\prime}\)) long
6 lengths 2.22 cm (7/8") O.D. aluminum tubing 1.83 m (6 ') long
6 hose clamps for 2.54 cm (1") diameter (element adjusting)
4 hose clamps for \(6.35 \mathrm{~cm}\left(2^{1} 2^{\prime \prime}\right)\) diameter (mast to beam holding)
12 hose clamps for .7 .62 cm (\(3^{\prime \prime}\)) diameter 2.54 cm (1 ") element pieces to fir hand rail 6 corks suitable to plug ends of 2.22 cm (7/8') aluminum tubing (apply varnish afterward to seal)
Flange plate plus pipe for insertion onto rotor
3 pieces \(6.35 \mathrm{~cm} \times 6.35 \mathrm{~cm} \times .48 \mathrm{~cm}\left(21 / 2^{\prime \prime} \times\right.\) \(21 / 2^{\prime \prime} \times 3 / 16^{\prime \prime}\)) aluminum right-angle stock, each 30.48 cm (12') long
2 lengths of \(3.81 \mathrm{~cm} \times 3.81 \mathrm{~cm} \times .48 \mathrm{~cm}\left(11 / 2^{\prime \prime}\right.\) \(x 11 / 2^{\prime \prime} \times 3 / 16^{\prime \prime}\)) angle iron 35.56 cm (\(14^{\prime \prime}\) long each)
1 piece \(17.78 \mathrm{~cm} \times 30.48 \mathrm{~cm} \times .32 \mathrm{~cm}\) (\(7^{\prime \prime} \times\) \(12^{\prime \prime} \times 1 / 8^{\prime \prime}\)) iron plate coil stock as described in text.
. . . VE7DKR

\section*{TONES and How To Touch Them}

As repeaters become more and more sophisticated, the main method of control seems to have standardized around the Touchtone pad. These devices are available from commercial outlets and the friendly 'Phone man. Cost varies and depends upon the source: they can be free or up to \(\$ 25\) for the sixteen button computer console model.

Following are several circuits for using the pads:

Fig. 1. Button locations and the corresponding audio frequencies produced.

Fig. 2. Mike's WA4HQW circuit. Adjust 1 k pot for clean non-distorted tones. Then adjust 1 meg pot for correct amount of audio to transceiver. HINT: Mike's pad worked with a 330 ohm fixed resistor for the 1 k pot.

Fig. 3. Blue and orange-black = ground; black and red-green = together; green = output.

Fig. 4. There are two different wiring configurations for the pads. Pads made by Automatic Electric have one color code and pads by Western Electric, ITT, Northern Electric and Stromberg Carlson have a second code. (The Repeater Journal, Using the TouchTone Pad by WA4WTX.)

Fig. 5. There are two ways to connect the pads to the transmitter audio input.

Fig. 6. In most cases the pad introduces noise into the transmitter if left connected. This noise is usually in the form of vibrator hash or transistor,

\section*{DATA SIGNAL}

\section*{the latest in station accessories}

\section*{AUDIO AUTOMATIC GAIN CONTROL AMPLIFIER}

Is your tone decoder having problems due to input signal variations? If so, eliminate these and other problems caused by weak, strong or vary. ing input signals. The AAGC-1 will take signal levels between 50 mV to 5 Volts and feed a clean rock stable signal to any decoder for perfect operation. Give your decoder a chance to decode properly with our AAGC-1 amplifier.
\[
\begin{array}{r}
\text { Shipping Weight } 3 \mathrm{oz} . \begin{array}{l}
\$ 14.95 \mathrm{kit} \\
\$ 19.95 \\
\text { wired }
\end{array}
\end{array}
\]

\section*{DELUXE RECEIVER PREAMPS}

Specially made for both OLD and NEW receivers. The smallest and most powerful single and dual stage preamps available. Bring in the weakest signals with a Data Preamp. Now with improved FET's for greater performance.
\begin{tabular}{|c|c|c|c|c|c|}
\hline BAND & STAGES & GAIN & \begin{tabular}{c}
NOISE \\
FIGURE
\end{tabular} & \begin{tabular}{c}
KIT \\
PRICE
\end{tabular} & \begin{tabular}{c}
WIRED \\
PRICE
\end{tabular} \\
\hline 10 meter & Single & 25 dB & 2 dB & \(\$ 15.50\) & \(\$ 18.50\) \\
\hline 6 meter & Single & 25 dB & 2 dB & \(\$ 15.50\) & \(\$ 18.50\) \\
\hline 2 meter & Single & 20 dB & 2.5 dB & \(\$ 15.50\) & \(\$ 18.50\) \\
\hline 2 meter & Double & 40 dB & 2.5 dB & \(\$ 30.50\) & \(\$ 36.50\) \\
\hline 220 MHz & Single & 17 dB & 2.5 dB & \(\$ 15.50\) & \(\$ 18.50\) \\
\hline 220 MHz & Double & 35 dB & 2.5 dB & \(\$ 30.50\) & \(\$ 36.50\) \\
\hline
\end{tabular}

\section*{CRICKET 1 ELECTRONIC KEYER}

A popularly-priced IC keyer with more features for your dollar. Cricket \(I\) is small in size and designed for the beginner as well as the most advanced operator. It provides fatigue-free sending and its clean, crisp CW allows for easy copying at all speeds. Turned on its side, the Cricket can be used as a straight key for manual keying. Right or left hand operation. AC/DC.

Shipping Weight 3 lbs. \(\$ 49.95\)
OTHER EXCITING PRODUCTS INCLUDE
TOUCHTONE TO ROTARY CONVERTER TOUCHTONE TO TOUCHTONE CONVERTER TOUCHTONE PADS
AUTOMATIC DIALER
ANTI-FALSING TOUCHTONE DECODER
AGC AMPLIFIER

Write today for complete details
Data Signal, Inc.
Successor to Data Engineering, Inc.
2212 Palmyra Road
Albany, Ga. 31701
912-435-1764
whine. A DPDT switch can be used to switch the pad into the audio circuit and key the transmitter. With the appropriate connectors and a minibox, the pad connects into the mike circuit with no modifications to the radio.

Fig. 7. For use with a walkie talkie, a small speaker can be used for the load resistor and a 9 V battery can be used. Since no current is drawn until a button is pressed, a switch is not needed. Battery life is good as the pad draws less than 15 mA . Voltages from 4 to 48 can be used on the pad and the frequency will not change. However, 12 V is recommended.

Fig. 8. Information on phone pad hookup for cabon mike input rigs has been published in the April issue of 73. The following circuit works very nicely for high impedance mike input rigs such as most of the all transistorized Japanese ones. (By Alan Tasker WAlNYZ from the WAlKHB Newsletter.
... K1NUN

\section*{TOOL AND TIME SAVER}

How many times have you needed a special tool for a piece of equipment only to discover that it had long since vanished into the limbo normally found in the average hamshack? A small magnet with a fuse clip or TO-5 heatsink attached, mounted in as out of the way location inside the rig will hold an alignment tool plus several Allen or Bristol wrenches. The magnet may be from an old speaker or if you really want to go first class you can buy one for 10 or 20 cents from the local 5 and 10 store, or the local outlet of an electronic chain store which will remain nameless. Epoxy the clip in place, install the tools the next time you run across them and never again spend half a day looking for the @ \(\dagger \$ \%\) ! things.

\title{
The Double -Stub
}

\section*{Matching System}

Looking through the standard reference materials on antennas, the amateur notices a number of interesting antenna configurations that would be fun to try, assuming enough space is available. Commercially built beams and homèbrew dipoles are fairly easy antennas to use since the impedance match presents no problem. Most of these can be directly connected to the transmitter output (using coax, of course, unless you can get the rig up there), and you're on the air. The more complex arrays, giving considerable gain and directivity, often do not have a direct \(50 \Omega\) match, requiring some sort of impedance matching device to make everything perk along at peak efficiency.

There is considerable literature on common matching devices. The coax balun, for instance, gives a 4:1 step up. Toroids can be wired for all sorts of combinations using the transformer-turn-ratio theory. \(1 / 4 \lambda\) transmission line segments act like impedance transformers. \(\mathrm{Pi}, \mathrm{L}\) and T networks can be constructed from coils and capacitors. These projects can be done easily.

The transmission line stub method is also used with great success for matching impedances. Great quantities of information are available on how and where the stub method works. There is another method, the double-stub method, that isn't used too often but is surprisingly efficient and simple. At lower frequencies the single matching stub gets quite long; it isn't such a good idea to have these drag on the ground, especially if you're using open-wire line. The doublestub method reduces the length required. These are actually more convenient to adjust once the initial setup is made. A single stub has to be slid back and forth on the transmission line while the shorting bar has to be slid up and down until the proper match is found. The double stub sets by formula and measurement, and then the final adjustments are fairly easy.

In effect, the double-stub system is a transformer, a \(1 / 2 \lambda\) long, extending from closed stub to closed stub. One line begins at one stub, the other ends at the other, with the line in between a "common" winding. The "match" picks the proper impedance off the line at the appropriate point. Obviously, since there is a \(1 / 2 \lambda\) between the stubs, they cannot be adjusted independently - the adjustment of one affects the other and both have to be moved simultaneously the same distance and direction to
maintain the \(1 / 2 \lambda\) separation.
Assume you have built an exotic system, such as a Lazy \(H\) or 8 JK as described in popular literature. These, along with others, have a tremendously high impedance at the feed point and you want to match to \(300 \Omega\) open line, converting to \(75 \Omega\) coax thru a balun. We're using open wire line since it is so much easier for the following steps than using coax would be. We can, of course, apply the same principles to coax and get the same results, but you'll see why open wire will be the choice.

It is fairly easy to get open wire line. A 152.4 m (\(500^{\prime}\)) roll is not particularly expensive, but be sure to use transmitting type. \(300 \Omega\) is the most convenient and easiest to get; \(600 \Omega\) is still made but is fairly expensive. Of course, you can make some spacers or get some of the commercial spacers and make your own line of whatever impedance you may want. Sufficient data exists in standard reference books to come up with about any thing you would want.

First, feed the antenna with the openwire line and go back a convenient distance. You may want to use a precise length, coming to an exact \(1 / 2 \lambda\) point, for minimum SWR (tuned line), but if you do the next steps properly, you should get the SWR to 1.1:1 or better.

Next, find a voltage point on the line. Since the line and the antenna are not matched, you will have considerable SWR. Couple a neon bulb to a few turns of wire and move it back and forth on the line while applying a little power (watch those finals!) and when the bulb glows, you're at a voltage point. To make sure, you can go back toward the transmitter and the voltage peak should repeat every electrical \(1 / 2 \lambda\). Remember in verifying to consider the velocity factor of the line. A voltage maximum corresponds to a current minimum, and reactance will be zero at this point. This is where we attach the first stub.

Remember, the distance between the shorting stubs is to be a \(1 / 2 \lambda\). We could attach the second stub almost anywhere down the line toward the transmitter short of \(180^{\circ}\) (if the stubs were at exact \(1 / 2 \lambda\) points, we would lose our transformer action). However, the experts find that for maximum efficiency,
we want to go back precisely \(135^{\circ}\). Calculate this at the design frequency remembering to multiply in the velocity factor. There are several fairly complicated formulas involving square roots and cosines, but we are not trying to get involved in higher math in this article. Take our word that \(135^{\circ}\) is the right place! Attach your second stub at this \(135^{\circ}\) point, and then short the line on the stubs \(180^{\circ}\) apart. You have a tolerance of \(\pm 0.5 \lambda\). Slide both stubs together the same direction in relation to the transmitter to maintain the \(180^{\circ}\) spacing until you have the proper match. That's it! The stub toward the antenna tunes out the reactance while the stub toward the transmitter is for the proper impedance match.

There are some more formulas that give the active lengths of thy stubs. There are variables, of course; for a start try between \(20^{\circ}\) and \(25^{\circ}\) down from the transmission line on the stub for the shorting bar (remember it's important to maintain the \(180^{\circ}\) between the stubs) and start tweaking from there.
. . .WA6CPP

\section*{HEAT SINKS FROM SCRAP}

Nearly everyone who works in an office or industrial plant has seen the semipermanent walls and partitions which have become so popular due to the ease with which they may be installed, added to and moved. One of the most popular types consists of panels of laminated plaster-board and various types of aluminum extrusions. These extrusions are provided to attach the panels to the floor, to each other, to seal the top and bottom, make corners, etc., etc.

Several of these extrusions are excellent for making no cost heat sinks for power transistors, diodes, SCR's, and triacs. The spacing of the fins allows the installation of even the largest semiconductors. The next time you see such an installation being made, scrounge some scraps of each type. Any length over about one inch is usable. After a few minutes picking over the scrap pile you will never again be called upon to plunk down cold cash for a heat sink.
. . .William Turner WA \(\emptyset\) ABI

\title{
How You Can Teach Novices
}

\author{
It's easy with the new teaching aids.
}

Amateur radio is one of the few technical hobbies that is regulated by the government. Because every radio amateur must show a minimum ability in morse code and theory, it is also one of the few hobbies where the beginner will face an almost impossible task unless help is offered by experienced amateurs.

Having taught code and theory courses for several years, I have found them to be helpful and a rewarding experience for both the beginner and teacher. Many hams have the time and knowledge, but lack the final push to start the course. Hopefully the suggestions in this article will provide that push.

The first step is to find a sponsor. This can be the local radio club, a Red Cross Chapter, or RACES. But the sponsor should be the type that would not be willing to take the credit and give the work to the teacher. Generally mentioning that the students will become a source of members for the sponsoring organization will produce results.

The second step is for the teacher to decide how many days he can devote to teaching the course. I found that teaching two days each week is the best way to go. I
try as close as possible to cover the same material each night. This allows students to switch from one night to the other night should they be unable to drop by on their regular night. Some weeks the course has an imbalance, but generally each night will average out to an equal number of students. I could tell that the students were getting more out of each session as the weeks progressed, because they were not falling behind due to missing as much as they would have done if I taught on only one night.

Once the nights have been established, then it is important to select the classroom. I have taught in county relief offices, civil defense rooms, rural electric co-operatives and board meeting rooms. The ideal classroom should have a large blackboard, a movie screen, electrical outlets, desks or tables and chairs and good lighting. It should be in a low crime area, there should be parking nearby and someone should be there to let the class in and to lock up. I generally reserve the room from 7:00 to 10:00 in the evening. I try to start out promptly at 7:30 with 30 minutes of code practice, and if I am teaching novices, to end with another 30
minutes of code practice. The official departure time is 9:30, however, there is almost always an interesting discussion going on that seems to last until 10:00. Reserving the room for 30 minutes before the class starts allows time for ragchewing and sometimes I have held a help session for those who are having a difficult time with the morse code.

I mentioned the time, because some locations that would make ideal classrooms close at 9:00 and this can complicate their schedule and yours.

Some public and private schools will open their doors to non-profit groups. Some libraries have free meeting rooms. Some YMCA, YMHA or YWCA organizations will welcome your class as an addition to their programs. Also some churches have a policy of allowing community groups to use their facilities. The important thing to stress is that the students are generally adults and that you will use their rooms without damage. Check also on a smoking policy. If smoking is allowed, then be sure that ashtrays are available and that they are used. It will win your group with the janitor if you "police" the area after the class is over to avoid leaving soda bottles or cigarette butts on the floor.

Once the room has been reserved, the time picked and the teacher is ready, the next step is the selection of textbooks. I started out teaching with the ARRL publication group "Gateway to Amateur Radio." When the FCC upgraded their test requirements it became difficult to memorize the questions and answers. I then switched to the Ameco "Radio Amateur Theory Course" with improved results. The student could use the same book for both Novice and General license tests. However, the FCC has once again upgraded their tests when they introduced incentive licensing. At present the prospective amateur cannot hope to memorize any textbook and hope to pass. Now the prospective amateur must know and understand the basics of radio theory. Searching for an improved text, I came upon the publications by 73 Magazine. 73 recommends the use of their 5 and 6 wpm code tapes as well as their Novice Theory Cassette Course and their Novice Theory book.

They develop the theory with a minimum of mathematics. And they deal with the study questions furnished by the FCC by amplifying them into easy to deal with questions and then they show how to solve the problems. The illustrations are easy to read and understand. If I had to find fault, then I would point out that a student wishing to go from novice to general needs to purchase two books. However, both texts are excellent study guides and would be welcome in any amateur's reference library.

I have found that while it can be done, it is difficult to run a code and theory course for both Novices and Generals in the same room the same time. The Novices are left behind by the General theory and code, while the General class students become bored with relearning the basics of theory and code. The General class code and theory course has to be played by ear. The teacher will have to tailor the class to the needs of the class. I have yet to find two classes that act or react in the same manner. I would recommend that the "General Class Study Guide" by 73 Magazine be strongly considered as the text for the class. If the teacher feels ambitious, he may want to also consider the addition of the "Advanced Class Study Guide." (As well as 73's 13 and 20 wpm code cassette.)

The best combination of texts for the Novice class course, I have found to be the "Novice Class Study Guide," and "CW" both published by 73 Magazine. To keep the class current on the FCC rules and regulations, I would suggest 73 's reprint of the amateur section of the rules and regulations. The class sometimes tends to become sidetracked with questions on antennas and on operating procedures. Including a copy of ARRL's "Understanding Amateur Radio" will take care of most of the questions that the class might come up with during your theory sessions.

One final word before we begin our search for students to fill the class. The teacher has enough problems without being forced to donate a code practice oscillator as well as his time. If he has one and is willing to bring it to class then I say fine. But I have been in the position of having to purchase an
oscillator with cash from my own pocket and that should be the responsibility of the sponsoring group.

The search for students begins with a press release. The press release should be given to the press, but in addition, copies should be given to the club bulletin editor, other local amateur clubs, CB organizations, Boy Scout Troops, Girl Scout Troops, Red Cross Chapters and anyone else that you might think of that would be interested in having an amateur radio license. Word of mouth is a powerful means of communication. Nuns comprised \(20 \%\) of one of my classes one time. Now I automatically let them know before each course. Wives or husbands of hams are good student material, also. I try for families by requiring that there be at least one set of books per family. And I have had many husband/wife combinations.

\section*{The First Night}

The first night should begin with a welcome speech and introduction by the teacher. Before they start with their questions, pass out their books to them, collect the money and announce that you will be glad to answer any and all questions after the code session is over. Begin with the letters E,I,S,H,A,W,J. (The reason for this order will be explained later.) These are among the easiest letters in the code. Take it easy and at the end of the code session compliment them on how well they are doing. Your praise and their newly learned code ability will encourage them. Many of their questions will be in two catagories: how much does it cost and how far can they get with just dots and dashes?

You should answer their questions to the best of your ability, and the ones that you would rather not answer (antennas, SSB, etc.) at that time you can delay by telling them that you will be glad to answer their questions, but you feel that they would better understand your answer in a few weeks.

After a 15 minute question session teach them Ohm's Law and the Power formula. Stress and explain that the reason that they must learn to use these equations is that they are not only required knowledge by the
 TION Call ADIRONDACK RADIO SUPPLY TODAY FOR ALL YOUR YAESU EQUIPMENT. . OVERNIGHT UPS DELIVERY TO THE NORTHEAST. CALL 518 842-8350. MASTER CHARGE AND BANK AMERICARD ACCEPTED

\section*{ADIRONDACK RADIO SUPPLY, INC. 185 West Main Street, Amsterdam NY 12010 Phone: (518) 842-8350 \\ Serving the radio amateur since 1936}

FCC, but they are used almost every time a Novice operates. Keep the units basic. Leave the introduction of Mega-, kilo-, milla- and micro- for the next lesson.

When they leave, they should understand how to use the equations and what the units mean. Assign them the first two chapters in their Novice class study guides to be read for next week. Finish the first class session with a short and simple code test to see if they have learned their letters. Most students will know them and that leaves them with a good feeling and will tend to encourage them to return the next week.

\section*{The Second Night}

Congratulate them on showing up and begin the code session with a review. This has two purposes. Those who missed the first session will have a chance to catch up. And it begins the session out on a positive note for those who were there the week before. After a brief review, introduce the letters \(F, V, L, P, R, U\). Stress them as well as the letters learned the week before.

Review Ohm's law and the Power formula with them. Then introduce the concept of Mega-, Kilo-, milli \({ }^{\text {- }}\) and micro-. Work some problems out with them using the new concepts. At this point, I try to have an active amateur with a General class or higher license in to speak to them and answer their questions. The questions should be allowed to continue until it is time for the code session. They should be assigned chapter 3 for next week. Finish with a good code session.

\section*{The Third Night}

Review the previously learned letters and then introduce \(\mathrm{T}, \mathrm{M}, \mathrm{O}, \mathrm{N}, \mathrm{D}, \mathrm{B}, \mathrm{G}\). The theory session should begin with the concept of frequency and wavelength. Let them know where their bands will be. For a guest speaker, invite the local DXer to come and tell them the DX possibilities that they will have on their bands using 75W CW. Have him bring some of his cards and awards. This will give them a taste for wanting to really get their license and operate. Again finish with a review of the 20 letters that they have learned.

\section*{The Fourth Night}

Some of your students will be falling behind in their code. Surprise the class and do not introduce the remainder of the letters. Instead, make this class session a review period. Review the letters that you have already taught them and review the theory they have learned. Introduce the formula for the resonant frequency of dipoles. Do not have a guest lecturer for the fourth session. Make certain that you are not leaving anyone behind in a state of confusion. Finish with another code review. Skip chapter four and assign chapter five.

\section*{The Fifth Night}

Finish giving them the rest of the letters. I feel that the best practice is simple and straight text. Save the code groups for later. The important thing now is to stress accuracy and let their speed build. The guest lecturer should be an experienced Novice or former Novice. By now they will know enough to ask specific questions. The final code session should be straight text.again.

\section*{The Remaining Sessions}

Let the advanced students send to the class to build their sending ability and give the rest of the class experience in hearing fists other than the teachers. The theory sessions should revolve around the FCC regulations, and the guest lecturers should come from the local available talent.

Sometime toward the end of the alotted time, have each student fill out a 610 form. (But don't date them!!)

Give a mock written exam. Try to make it as close to the FCC multiple choice test as is possible. Go over the test with the class and make sure they understand any mistakes that they may have made. Stress always your satisfaction on how they are progressing.

\section*{The Final Session}

Give them their code test. Those who pass should date their 610 forms. You as the examiner should send in their forms to the FCC. Then you can both fret until the test returns and they have passed.

\section*{Hints}

The information given here is from my own experience. I have not seen two classes act or react in the same way. I have chosen the order of teaching the code given in the text, because it has cut the time to learn the code by \(50 \%\) over any other system. (If you have never used this system before, it is based on learning those letters that begin with dot and then those that begin with dash. Try it. It works.)

I do not teach the numbers. They are not required by the FCC for novices and I feel that the process is confusing enough without adding any more confusion. However, numbers and punctuation is not difficult to learn and they can easily pick it up in one session after they have passed their Novice code test.

Teaching a code and theory course will bring you the first of your grey hairs. But it will also bring you many little novice friends and a warm glow inside from having shared our hobby with others. I tried it once and got hooked. I hope that you will too.
... WB2PTD

\section*{How to win the fist fight... with CW equipment from HAL.}

\section*{The economical HAL 1550 keyer.}

The easy-to-use 1550 keyer is your answer if you're looking for an electronic keyer that lets you send accurate CW effortlessly. Send from 8 to 60 WPM with conventional, iambic, and dot memory operation. Operates with dual or single lever keys. The optional 1550/ID automatically sends "DE" followed by your station call. For fast, accurate CW, order the HAL 1550/ID or 1550 today.
Price: \(1550 /\) ID, \(\$ 95\); 1550 , \(\$ 75\); ppd USA. Air shipment, add \$3.

\section*{Send perfect CW every time with the MKB-1.}

A complete Morse keyboard. Code speed variable from 10-60 WPM with variable dot-tospace ratio (weight). All solid-state, featuring computer-grade components. Complete alphanumeric and punctuation keys, plus an optional "DE-call sign" key factory programmed for you. Includes built-in speaker/oscillator monitor.
Price: \(\$ 290\) Assembled, \(\$ 199\) Kit, ppd USA. Without ID, \$250 Assembled, \$170 Kit.
Air shipment, \(\$ 5\).
 Air

\section*{ID-1A repeater identifier. Commercial quality, low price.}

The HAL ID-1A brings the radio amateur a commercial-quality repeater identifier that complies with FCC ID requirements. It has a unique read-only-memory that you can easily reprogram yourself. Capacity of the ROM is 39 dots, dashes and spaces. TTL IC's assure immunity from noise and temperature. ID intervals available: \(3,6,12\) or 24 min . Specify call.
Price: \(\$ 115\), ppd USA. Air shipment, \(\$ 3\).

\section*{CW - and RTTY on one keyboard! The HAL DKB-2010.}

All solid-state. Type out CW at 8-60 WPM. Adjustable dot-to-space ratio (weight). Complete alphanumeric keys, plus 11 punctuation marks. Five standard two-character keys, 2 shift keys, break-for-tuning key, 2 three-character function keys, and a "DE-call sign" key. We'll program your call right into the DKB-2010. Plus complete RTTY capabilities. Built-in three-character buffer. Optional 64 or 128 key buffer also available.
Price: \(\$ 425\) Assembled, \(\$ 325\) Kit, ppd USA. 64 key buffer \(\$ 100,128\) key buffer \(\$ 150\). Air shipment, \$10.

HAL Communications Corp. Box 365, Urbana, Illinois 61801 Telephone: (217) 359-7373
\(\qquad\) for: \(\square\) DKB-2010 \(\square\) MKB-1 \(\square 1550 \square\) ID-1A Please specify \(\square\) Assembled \(\square\) Kit \(\square\) Options \(\qquad\)
Please send me more information on the following HAL products .
- DKB-2010
\(\square\) MKB-1
\(\square 1550 / 1550\) ID
\(\square I D-1 A\)
\(\square\) Complete HAL catalog

Name \(\qquad\) Address \(\qquad\) Call Sign \(\qquad\)
City/State/Zip
Illinois residents add \(5 \%\) sales tax.

\section*{A}

\section*{Digital}

Terry Mayhugh W6OTG

\section*{Computer!} 537 West Church Street Ridgecrest CA 93555

\section*{Part 1}

AIthough the average ham has to know very little about just how computers aetually work he certainly can (and does) take advantage of their capability. Not only might a computer have helped to design some of the equipment in his shack, but he may be using a few special purpose digital computers himself to display the receiver frequency or to send pre-programmed CW messages.

This article describes a special purpose hybrid computer which automatically computes the SWR in a \(50 \Omega\) coax feedline and numerically displays the answer. An operator using this device does not have to bother flipping switches to get forward and reverse readings while frantically trying to simultaneously tune his transmitter and/or transmatch, as he would on a typical SWR meter. This computer is called a hybrid because it is two computers in one - an analog computer and, if you will, a digital computer. The analog section does the actual SWR computation, and it is described in this article. If a meter type readout is desired this is all that need be built to have a computing SWR meter. Next month, the digital section consisting of an A/D converter and a display will be described.

The objective of the circuit design was to obtain the best accuracy available practically. Thus, some rather exotic op amps and metal film resistors were used in the final design. Some critical resistor values were precision matched during the alignment as described later, and this may be desirable to others constructing the complete instrument with the digital readout. Of course, if a panel meter readout is desired such accuracy isn't required and one could get away with using cheaper 741 type op amps. When you stop and think about it, who wants or needs to know his SWR so accurately? Actually, I don't think anyone does, but the circuitry is interesting and that will be reason enough for many to build the instrument.

\section*{Circuit Description}

\section*{Analog Section}

Fig. 1, is a schematic of the analog section. The computer receives two voltage outputs from the RF pickup, \(\mathrm{V}_{\mathrm{F}}\) and \(\mathrm{V}_{\mathrm{R}}\), and then mathematically computes the SWR using the formula:
\[
S W R=\frac{V_{F}+V_{R}}{V_{F}-V_{R}}
\]

Fig. 1. Schematic diagram of the analog computer portion of the SWR meter.

The heart of this section is a monolithic analog multiplier chip, the MC1594, used in an analog divider configuration. If the op amps and alignment techniques suggested are used, the accuracy of this portion of the computer will be limited by the accuracy of the divider chip which is less than \(1 \%\) over a much wider temperature range than the computer will ever see.

U 1 and U 2 serve as input buffers for \(\mathrm{V}_{\mathrm{F}}\) and \(V_{R}\), respectively. U3 is a unity gain summer-inverter and produces at its output the sum (\(-\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\)). Resistors R5, R6 and R10 should be chosen from \(1 \%\) metal film types to obtain the following ratios as accurately as possible:
\[
\frac{\mathrm{R} 10}{\mathrm{R} 5}=1 \quad \frac{\mathrm{R} 10}{\mathrm{R} 6}=1
\]

The values chosen for these resistors should lie between 1 K and 10 K for best results. Because I had several different metal films but not too many of any one value, I chose \(R 5=R 6=1 \mathrm{~K}\) and initially chose R10 a little larger than necessary and then trimmed it later by paralleling another value across it as described in the alignment section.

U4 is a simple precision X2 amp and values for R7, R8, R9 and R12 should be
chosen as follows:
\[
\frac{R 7}{R 9}=1 \quad \frac{R 12}{R 8}=3
\]

Again, I chose values for R7 and R9 but then trimmed R12 and R8 during alignment. U6 is a gain-of-10 summer-inverter and its feedback resistors are chosen as follows:\%
\[
\frac{\mathrm{R} 19}{\mathrm{R} 16}=10 \quad \frac{\mathrm{R} 19}{\mathrm{R} 17}=10
\]

A rectangular window is cut in the front panel for the display. A piece of transparent red plexiglass is epoxied in from behind for proper filtering for the LED display. The level indicator lamp is to the left of the window. The completed instrument was housed in a \(9^{\prime \prime} \times 3^{\prime \prime} \times 11\) " homebuilt housing (with cover). BNC connectors for inputs from the rf pickup are on the rear wall. Alignment pots are on the L-bracket at the left.

Fig. 2. X-Y recorder plot showing dynamic range of analog section exclusive of \(R F\) pickup as a function of \(V_{F}\).

The output of U 6 is (\(10 \mathrm{~V}_{\mathrm{F}}-10 \mathrm{~V}_{\mathrm{R}}\)), and this is fed to the divider as the denominator. The output of \(U 3\) is \(\left(-V_{F}-V_{R}\right)\) and is used as the numerator. U7 is placed in the negative feedback path of U8 to form an analog voltage divider with a scale factor of -10 . Therefore the output is \(\left(\mathrm{V}_{\mathrm{F}}+\mathrm{V}_{\mathrm{R}}\right) /\left(\mathrm{V}_{\mathrm{F}}\right.\) \(\left.-V_{R}\right)\).

For best linearity in the divider, R28 should be twice the value of R27. Decoupling networks are used on each IC as well as on the input ports of \(\mathrm{U} 1, \mathrm{U} 2\) and U 7 to keep the rf out of the computer circuitry. U5 is a comparator which monitors the input level and lights a panel lamp to tell the operator that he is operating within the dynamic range capability of the device. This is necessary since all analog division schemes have good accuracy only over limited dynamic ranges. Fig. 2., illustrates the dynamic range of the analog section.

Regulated \(\pm 15\) VDC supplies at 40 mA are needed to complete the construction. Modular supplies were used in the prototype, but

Fig. 3. Schematic of rf pickup. Diodes should be matched for best accuracy.
there are many designs available to the experimenter. A 5 V supply is also used in the comparator, and it will also be needed in the digital portion to be described next month.

The schematic for the rf pickup is shown in Fig. 3. It is built on an etched fiberglass circuit board and the pattern used is shown in Fig. 4. The entire assembly is enclosed in a Bud minibox fitted with SO-239 connectors for the feedline connections and BNC connectors for the dc outputs. A pair of matched IN21 diodes was selected using a curve tracer from a bag I purchased from a surplus distributor but the builder may use what he has available and match them as closely as he desires. Unfortunately, the overall instrument accuracy will be determined by this match. Others might be interested in coming up with a temperature compensating scheme to keep the match valid over a wide temperature range. Temperature compensation techniques have never interested me and the rf pickup circuitry that I used shows it.

Fig. 4. Foil pattern for rf pickup. Black shaded areas are the foil lanes.

\section*{Alignment}

Several alternatives are available for alignment depending on the accuracy and the type of readout desired. The following steps provide the most accurate alignment, but a DVM is required. The accuracy of the instrument can be no better than that of the DVM used. If a panel meter readout is desired a VTVM may be used for alignment and precise selection of the op amp feedback resistors is not necessary, although \(1 \%\) values should be used to obtain the required ratios. The alignment procedure is as follows:

\section*{NEWS AS IT HAPPENS}

That's just what HOTLINE gives you. Late breaking news is in your hand while it's still happening! Every other Friday, HOTLINE rushes you all the up-to-the-minute info that's so vital to the active ham. At only 30d an issue, it's one of the few real bargains still left! And a third of that's for postage! Just what does HOTLINE offer you?

LATEST breaking FCC news NEW petitions filed

IMMEDIATE job openings
\[
\begin{aligned}
& \text { HOT classified ads } \\
& \text { BRAND NEW product reports } \\
& \text { CURRENT DXpeditions }
\end{aligned}
\]
contest NEWS hamfest EVENTS government ACTIONS propagation FLASHES everything UPCOMING convention HAPPENINGS

The fact is HOTLINE gives you all the things you need to know when you need to know them. And that means RIGHT NOW, not two months from now. When we say "news" we mean it! HOTLINE is in the mail hours after the deadline closes, and often in your home the next day.
HOTLINE is by subscription ONLY. For \(\$ 8\) a year, it is delivered to you by first class mail marked "rush - time value." Our tests have shown that this class of mail often arrives sooner than even airmail! HOTLINE is published in professional newspage format and gives you many times the current information available anywhere else.

Get the news while it's still news. SUBSCRIBE TO HOTLINE TODAY!

\section*{\(\square\)}

Yes! RUSH ME HOTLINE TODAY. For only \(\$ 8\) a year! Bill me after I receive my first issue.

Mail today to 73 Magazine,
Peterborough NH
03458.

The digital board holds the display and is mounted at the front of the instrument. The analog components are mounted on the Vector board at the rear. The two black modules are the \(+/-15 \mathrm{~V}\) supplies. The transformer is for the 5 V supply.
1) Set controls \(R 1\) and \(R 3\) to their mid-range positions. Short the \(\mathrm{V}_{\mathrm{F}}\) and \(\mathrm{V}_{\mathrm{R}}\) inputs to ground and adjust R2 and R4 to give OVDC at the outputs of V1 and V2, respectively.
2) Apply approximately \(3 V D C\) to the \(V_{R}\) input and then adjust R3 for exactly .5VDC out of U2. Then measure the output of U4. Trim R8 and/or R12 until the output measures exactly 1 VDC .
3) Measure the output of U3. Trim R10 until this voltage is exactly -.5VDC. Do not change the value of R10 in the following steps.
4) Apply approximately \(3 V D C\) to the \(V_{F}\) input and then adjust R1 for exactly .5VDC out of U1. Again measure the output of U3 and trim R5 until the output measures exactly -1VDC.
5) Remove the \(V_{F}\) input and trim R17 and/or R19 to obtain exactly -10 VDC at
the output of U6. Do not change R19 in the following step.
6) Replace the \(V_{F}\) input and trim R16 until the output of U6 measures OVDC.

Open switches S1 and S2. The divider circuit will be aligned separately with externally applied voltages.
7) Set \(V_{A}=O\) (ground it) and adjust R33 until the output voltage \(\left(\mathrm{V}_{\mathrm{O}}\right)\) remains at some (not necessarily zero) constant value as \(\mathrm{V}_{\mathrm{B}}\) is varied between +1 V and +10 V .
8) Maintain \(\mathrm{V}_{\mathrm{A}}=0\) volts, set \(\mathrm{V}_{\mathrm{X}}=+10 \mathrm{~V}\) and adjust R32 until \(\mathrm{V}_{\mathrm{O}}=\mathrm{OV}\).
9) With \(\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}\) and adjust R34 until the output voltage remains at some (not necessarily -10 V) constant value as \(\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}\) is varied between +1 V and +10 V .
10) Maintain \(\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}\) and adjust R 24 until the average value of \(\mathrm{V}_{\mathrm{O}}\) is -10 V as \(\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}\) is varied between +1 V and +10 V .
11) Repeat steps 7 through 10 as necessary

\section*{Come Face to Face with the facts...}

IC-21A . . . 24 channel capability, with 7 channels supplied. It's MOSFET front end provides better than 0.4 uv sensitivity at 20 db quieting. 5 HELICAL FILTERS virtually eliminate intermodulation. Built in AC and DC power supplies. Modular construction, of course. Many other features make the IC-21 a great two meter transceiver. The IC-21A is capable of using our new digital VFO.

\section*{...and chooseICOM}

IC-22 \(\ldots 22\) channel capacity, with 5 supplied. Solid state T-R switching, and an extra large speaker. All the great quality features that label it as one of the truly fine ICOM transceivers. \(10 / 1\) watt power saving option. Trimmer caps on all 22 channels for both transmit and receive, plus a built in discriminator jack to let you get on and stay on frequency.
The IC-3PA is a regulated DC power supply for all the INOUE mobile transceivers. Use it with your IC-230 for base operation. It's completely regulated and gives you an indication of it's operating condition; normal, excessive current, or if the protection circuit is working. These are shown through the use of eye catching indicator lamps. There is also a built in speaker in the cabinet.

The rf pickup is housed in a \(2-1 / 4^{\prime \prime} \times 2-1 / 4^{\prime \prime} \times 5^{\prime \prime}\) Bud Minibox. Cartridge diodes were soldered dir ectly to the pc board.

Fig. 5. X-Y recorder plot showing accuracy of analog section exclusive of rf pickup.
to achieve optimum performance.
Close switches S1 and S2 and the analog computer is ready for use. Fig. 5, shows recorder plots of the performance. If a digital readout isn't desired all that remains is to connect a \(\mathrm{O}-10 \mathrm{VDC}\) meter at \(\mathrm{V}_{\mathrm{O}}\) and the rf pickup, and SWR's from \(1: 1\) to \(10: 1\) can be read directly. The outputs are clamped to keep the meter from going off scale at higher SWR's.

R1 and R3 will have to be adjusted one time for the particular transmitter power used. I set R1 so that with about 50 watts dc transmitter input, there was about .3VDC measured at the output of U1. With my SB-401 at full CW power and my particular rf pickup, the maximum value of \(\mathrm{V}_{\mathrm{F} 1 \mathrm{~N}}\) is about 3VDC. The level indicator will light with \(V_{F}\) greater than approximately .25 VDC so that the input is within the dynamic range of the instrument (as seen from Fig. 2).

The optional second half of the computer will be described next month. Even if you don't want to use it as a display for this instrument, it will make a great DVM for other uses around the shack. . . W6OTG

\section*{K-EMTERPRISES}

PRESCALER MODEL PD-301 \(\$ 55.50\) plus \(\$ 1.50\) postage
Model PD 301 is a 300 MHz prescaler designed to extend the range of your counter ten times. This prescaler has a built-in preamp with a sensitivity of 50 mV at \(150 \mathrm{MHz}, 100 \mathrm{mV}\) at \(260 \mathrm{MHz}, 175 \mathrm{mV}\) at 300 MHz . The 95 H 90 scaler is rated at 320 MHz . To insure enough drive for all counters, a post amp. was built-in. The preamp has a self contained power supply regulated at \(5.2 \mathrm{~V}+.08 \%\). (Input 50 Ohms , Output Hi Z)
All prescalers are shipped in a \(4^{\prime \prime}\) by \(4^{\prime \prime}\) by \(11^{\prime \prime}\) cabinet. All are wired and calibrated.

K-EMTERPRISES
1401 NORTH TUCKER SHAWNEE, OK 74801 405-273-1598

\section*{FREQUENCY STANDARD}

\section*{Only \$37.50 \\ (less bafferies) POSTPAID USA}
- Precision crysfal
- Fully guaranteed
- Markers af \(100,50,25,10\) or 5 kHz selected by front panel switch.
- Zero adjust sets to WWV. Exclusive circuit suppresses unwanted markers.
- Compact rugged design. Attractive, completely self contained.
- Send for free brochure.

\section*{promer Ficallyares BOX 455, ESCONDIDO, CA 92025}

ORDER - AND PAY
\(250 \ldots . . \$ 6(2.5 d\) ea)
\(500 \ldots . . \$ 10(2 d\) ea)
\(1000 \ldots . \$ 15(1.5 d \mathrm{e} \mathrm{ea})\)
\(2000 \ldots . . \$ 20(1 d \mathrm{ea})\)

These QSLs are printed on Fine Quality Glossy Card Stock and are as good or better than cards sold elsewhere for several times the price. We can offer this fantastic low price, because we "gang print" orders between other jobs in our own print shop which keeps the costs way down and we pass the savings on to you. If you haven't been OSLing as much as you'd like to because of the cost of cards, do you really have an excuse anymore? Get some cards and help improve the image of U.S. Amateurs.

Name \(\qquad\) Call \(\qquad\)
(First and last name is most friendly)
Address \(\qquad\)
(as brief as possible and still get through the mail)

Style
A \(\square\)
B

City \(\qquad\) State \(\qquad\) ZIP \(\qquad\) County (if desired on the card)

Awards to be listed on card

Foreign Orders: Add following amounts for shipping and handling. (Parcel Post)

\section*{250-\$1.75 \\ 1000-\$4.00 \\ 2000-\$6.25}

Check local Post Office for air rates . .

\section*{A Real Hot Front End for Six...}

This describes an excellent front-end circuit for a six meter receiver using microminiature transistors. It is intended to be a companion unit for a transmitter using the same devices, the GE D26G-1, which is a 2 N 918 chip in a tiny plastic case with a volume of less than \(1 / 16\) th inch cube.

The design of a complete rig may be taken up later, as it is a complicated affair with many choices such as a pocket set, helmet set, camera-case job, etc. Batteries are involved in such packaging, but this is not too bad a problem with the power requirements of microtransistors. Also to be considered are case size and disposition of tuning and switching knobs, speaker or phones, mic, antenna and cost.

I'm intrigued by cigarette pack-size rigs, Dick Tracy jobs, etc., but my common sense will probably call for a small cameracase type. You've got it on a strap over your shoulder, the battery is inside, you can tune the "dial," the antenna can stick out over your left shoulder, etc. So, later on for all that, and we take up here the basic circuit using small components, describing the rf, mixer, and oscillator always the main key to a receiver - and a tunable module \(11 / 4 \mathrm{in}\). square by \(1 / 2 \mathrm{in}\). thick.

As an example of what can be done today at a reasonable cost with microtransistors, Fig. 1 shows a schematic and Fig. 2 the layout of an oscillator module. This particular unit is a tunable local oscillator, at present padded from 51 to 55 MHz , for use with a 1.65 MHz i-f. Pushing the power up a little, it will put out 15 to 20 mW of
rf as a test transmitter. This bandspread will probably be adjusted later to cover 51.5 to 53.5 as an L.O. for 50 to 52 MHz signals.

Looking at this unit you see at once the outsize components which are the tuning capacitor and, to a lesser extent, the inductance. I have a possibility of a microcoil for around a dollar, of which more later. The Johnson type "U" 14 plate variable capacitor does for the moment. It came with a \(3 / 32 \mathrm{in}\). shaft, which was adapted to a \(1 / 4 \mathrm{in}\). shaft. Anyone knowing of a smaller suitable unit please let me know. A \(1 / 4 \mathrm{in}\). brass shaft was drilled out for the \(3 / 32 \mathrm{in}\). shaft and the end slotted with a jeweller's saw, and soldered. Depending on how many additional modules you use, and the exact final packaging shape, you can use a bigger or smaller knob and dial pointer.

At any rate, this oscillator module is right now only \(1 / 2 \mathrm{in}\). high by \(11 / 4 \mathrm{in}\). square, and can serve as a starting point for a tunable pocket-size 6 meter rig. You will

Fig. 1. Small oscillator module schematic. \(L 1=9\) turns No. 26 tapped at 1 turn from the low end and wound on a \(1 / 8 \mathrm{in}\). impregnated form. L2=1 turn or 2 turns for more output. Cl=14 plate Johnson type "U."
probably be safe in planning for each stage to be no larger than this little plank, as it has a functioning microtransistor, an inductance, a tuning capacitor, dc bias resistors, bypass capacitors, and padding capacitors. The device at present is the GE microtransistor D26G-1, with the usual Allen-Bradley \(1 / 10\) th watt 5 K and 1 K resistors in the base circuit, bypassed with a .01 "Slimcap" by Mucon, made by the Republic Electronics Corp., Paterson, N.J. They are really small, being only 60 mils O.D., but they do work!

The emitter has a \(500 \Omega 1 / 10\) th watter, which may go to \(1000 \Omega\) later because this unit is drawing about 7 mA at present, which is more than needed. During tuneup it was found that this is related to the position of the emitter feedback tap, which should be carefully adjusted so that it will not be too far up on L1 of Fig. 1. If this tap is placed up several turns on L1, there will be too much feedback and the current will be higher than needed. The final circuit shows one turn only. Check this point if you're in doubt.

A 50 pF capacitor from the emitter to the tap on L1 establishes the proper positive feedback, which is in phase with the collector. This makes the base out of phase with the collector, a necessary condition for oscillation.

L1 has 7 turns of No. 26 ssc, closewound on a \(1 / 8 \mathrm{in}\). form, with a tap at 1 turn. This produces a bandspread of about 4 MHz when using the parallel pad of C 2 , which is 55 pF in this unit. Naturally a different tuning capacitor for tuning may necessitate a change in L1 and C2 also. For more bandspread (less tuning range) go down on L1's inductance and up on C2's capacity. Do not use over 75 pF however, for a 6 meter L.O., as power will begin to drop, unless you use a bigger device and really need more padding.

Another component which is still "huge" is the rf output jack. The one shown is the smallest phono jack I know of, made by Teletronics, Yonkers, N.Y. Of course if you build the modules all together you can use the short open end of the small coax cable such as \(50 \Omega\)

RG-174/U to hold the open end of the pickup loop L2.

The device itself is mounted on three .021 pins, as described in the first part of this series, which also serve to hold most of the other components too as you can see in the layout, Fig. 2.

L1 started out with about 10 turns, and some padding, and ended up with C2 being a 50 pF and a 5 pF in parallel. These little 60 mil cylindrical capacitors are not given away I might add; they run to around \(\$ 1\) per capacitor, so please remember that I already have mentioned a rising cost with decreasing size.

I hope this completed and working module will give you some ideas of how to plan for a pocket rig. It's doing just that for me right now.

\section*{The Local Oscillator}

A natural thing to do when building a local oscillator to tune from 50 to 52 MHz signals, is to put in what looks like a high Q coil, and then bring it to the desired frequency with a small tuning capacitor. In the case of 50 MHz L.O. this capacity may be very small in order to spread the 2 , or 4 MHz desired over some 90 degrees of the dial. The results of the above procedure can be undesirable, as follows: (a) High harmonic content with consequent increased risk of harmonic detection. (b)

Fig. 2. Layout of the oscillator module. Note that L2 is over the cold end of L1.

Instability, where minute changes in circuit or device capacity can result in large and unwanted frequency changes. (c) Difficult padding and trimming due to the need for very small adjustments.

If, on the contrary, you start in with the idea of using maximum \(C\), you will be much better off, so let's see how much can be used. A trial was made with an airwound high Q coil, 7 turns of \(5 / 8 \mathrm{in}\). O.D., 10 turns per inch. It worked fine, but hit 50 MHz with a small C , not allowing enough bandspread. A second coil had 6 turns of bare tinned No. 20, 7/16th in. long, tapped at one turn. Much better, very stable, uses about 75 pF of padding, but which, with the 20 pF variable chosen for tuning, covers only 1.5 MHz , which is not enough tuning range. The range is easily extended though by using a slightly larger coil. Checking on the maximum capacity that could be used and still have a good oscillator, one turn and then 2 turns were chopped off L1, at which time the rf power started to drop off, which indicates that between 75 and 100 pF is about it for this device and the dc power allocated to it for 6 meters. You could design a higher C oscillator if you had to, but in this case
we're only looking for a good, general purpose L.O., not an extreme maximum C job.

Going to a 6 turn coil for L1, slightly closer wound, we find about 60 pF for 50 MHz , total capacity, and 2.5 tuning range with a 20 pF tuning capacity for C 1 . It is now a very good stable oscillator, with smooth power control and current adjustment with R1, so this looks like what we're after.

The choice of a 20 pF tuning capacitor was not just an arbitrary one. It is also the range of the Miller three-gang variable capacitor which may be used later.

Various values were tried for C10, of Fig. 3, the emitter feedback capacitor, and from 1000 pF down to near 40 the power increased and then dropped out below 25 . A 50 pF was found to be best, and was installed at that point.

The final circuit is shown in Fig. 3, and the breadboard test layout in Fig. 4.

\section*{The Front End}

At first, nothing seemed right with the exception of the oscillator and even that was undercoupled. This is far from an unusual thing though, with new rigs. You

Fig. 3. Complete schematic for six meter front end using microtransistors (GE D26G-1).

\title{
NEW CODE SYSTEM
}

Now you can learn the code in a fraction of the time it used to take!

- 5 WPM This is the beginning tape for people who do not know the code at all. It takes them through the 26 letters, 10 numbers and necessary punctuation, complete with practice every step of the way using the newest blitz teaching techniques. It is almost miraculous! In one hour many people - including kids of ten are able to master the code. The ease of learning gives confidence to beginners who might otherwise drop out.

14 WPM Code groups again, at a brisk 14 per so you will be at ease when you sit down in front of the steely eyed government inspector and he starts sending you plain language at only 13 per. You need this extra margin to overcome the panic which is universal in the test situations. When you've spent your money and time to take the test you'll thank heavens you had this back breaking tape.

\section*{A Great Present}

Code tapes make a great Christmas present what else could you give that will provide a life-long skill? When you know the code you stand just a little bit taller than everyone else.

\section*{four speeds available}

Plays on any cassette player so you can practice anywhere anytime!
- 6 WPM This is the practice tape for the Novice and Technician licenses. It is made up of one solid hour of code, sent at the official FCC standard (no other tape we've heard uses these standards, so many people flunk the code when they are suddenly - under pressure - faced with characters sent at 13 wpm and spaced for 5 wpm). This tape is not memorizable, unlike the zany 5 wpm tape, since the code groups are entirely random characters sent in groups of five. Practice this one during lunch, while in the car, anywhere and you'll be more than prepared for the easy FCC exam.
- 21 WPM Code is what gets you when you go for the Extra Class license. It is so embarrassing to panic out just because you didn't prepare yourself with this tape. Though this is only one word faster, the code groups are so difficult that you'll almost fall asleep copying the FCC stuff by comparison. Users report that they can't believe how easy 20 per really is with this fantastic one hour tape. No one who can copy these tapes can possibly fail the FCC test. Remove all fear of the code forever with these tapes.
onLy \(\$ 3.95!73\) is in the publishing business, not tapes, so these are priced much lower than anyone else could sell them. Have you ever seen one hour cassettes for under \(\$ 6\) ?

take some new devices (new to you anyway) and hook them up to coils and other components in a circuit that worked well (on another band) and what happens? Zilch is what happens!

At this time go get a new cup of coffee and install a good signal in the band, not too weak, but not overloading either, and prepare for some hours or days of hard work. See also information in the rf stage section for details of a useful signal generator setup for this sort of work.

Points needing improvement were as follows, referring to Fig. 3. The oscillator was close to the frequencies needed, but proved to be undercoupled to the mixer base circuit. The mixer was undercoupled to the rf collector coil L4 with C5 being too small, and its emitter resistor was too large and L4 was too small, needing almost 100 pF to hit 50 MHz .

Also, the rf stage was far from its best, with L2 being too small, likewise C2, and the base was undercoupled to the input coil L2. The antenna was also too loosely coupled, and even the rf collector tap was too far down on L4. You might think it's a wonder that I heard anything at all with it, and you'd be exactly right. I didn't!

With the signal generator hooked up, some of the more glaring deficiencies were corrected and things began to perk up. Finally, with action showing in the mixer tuning, the usual gang on Six down in Massachusetts started booming in after breakfast, and the little microminiature specks began to shape up. Most of the low sensitivity seemed due to the low value of inductance I had put in and the small base coupling capacitors.

Don't forget, l was only running a single i-f stage with the front end, and this counts for a lot because every time I put the 1.65 MHz output into the lab receiver things sounded very powerful. This is a common fault when building converters. One tends to neglect absolute sensitivity (overall power gain) when using a high-power i-f. The single stage i-f on 1.65 MHz really makes you peak things up in the converter, with the result that you have a lively, matched, selective unit.

One of the items neglected when I first
set up the converter was the fact that on ten meters I had been using a ten turn coil, but it had a powdered iron core inside and out which greatly increased the inductance. So, on Six, I pruned L2 and L4 carefully, for gain and selectivity, still keeping the highest possible C for padding in order to get the needed bandspread, and suppression of harmonic detection and birdies.

\section*{The Mixer Circuit}

Referring again to Fig. 3, the collector output coil tuned to 1.65 MHz by C 8 is a more or less standard coil and worked right away. Miller 9054 coils will do all right also at this point.

The emitter was securely bypassed to ground to prevent the mixer from taking off as an oscillator (it didn't), which can happen with a tuned collector, a partially open (not tied to ground) emitter, and base tightly coupled to ground at 1.65 MHz through a small link or tap at 50 MHz .

Table 1. Mixer base tap on L4 using a 9-turn coil, 5/8 in. diameter, for L4.
\begin{tabular}{ll}
Tap Turns & \begin{tabular}{l}
Relative \\
From Low End
\end{tabular} \\
Volts \\
2 & 10 \\
3 & 19 \\
4 & 17 \\
5 & 17 \\
6 & 14
\end{tabular}

Table 2. Capacity to rf base (C2 of Fig. 3).
\begin{tabular}{ll}
pF & Relative Volts \\
100 & 10 \\
1,000 & \(181 / 2\) \\
5,000 & 19
\end{tabular}

Table 3. RF base tap using 19 turn coil as L2 in Fig. 3.
\begin{tabular}{ll}
\begin{tabular}{ll}
Number of \\
Turns From \\
Ground
\end{tabular} & \begin{tabular}{l}
Relative \\
Volts
\end{tabular} \\
3 & 22 \\
4 & 26 \\
6 & 25 \\
9 & 20
\end{tabular}

Table 4. Number of turns in antenna link coil L1 of Fig. 3.
\begin{tabular}{ll}
\begin{tabular}{ll}
Number of \\
Turns \\
L1
\end{tabular} & Relative \\
2 & Volts \\
3 & 20 (some oscillation in RP stage) \\
4 & 23 \\
& \(241 / 2\) (very stable)
\end{tabular}

Best emitter bias resistor was found to be \(500 \Omega\) for the microtransistor D26G-1, with 5 K and 1 K supplying the base bias as usual. Voltages to ground while operating were as follows; collector \(101 / 2 \mathrm{~V}\), emitter 1.6 V , and the base 2 V .

A new L4 was installed, with the small diameter coil, \(1 / 8 \mathrm{in}\). I.D., bare tinned No. 20, \(13 / 8 \mathrm{in}\). long, with results as in Table 1. The parallel pad for L4 was now about 45 pF , which was a good value to start with. The tuning was sharp and clean, with no spurious or birdies, and already at 6:45 A.M. the mobile lads on Six were coming in from 60 miles away as I tuned up and down while checking the bandspread. That's one way to tune up a mixer and make it really work.

\section*{Tuning Up the RF Stage}

The signal used for this work (and the mixer also) was my faithful old signal generator, with a piece of wire 4 ft long, horizontal, attached to the "High" output, and tuned to 50.2 MHz .

This was placed about 75 ft away, indoors (houses are large in N.H.), and with the 4 element six meter beam used on the front end for tests, pointed about \(3 / 4\) away from the generator. Be sure and check that the signal is coming in via the beam, otherwise you may falsify the results. As
the rf stage input is one of the more difficult points, I always like to use the beam and \(50 \Omega\) cable for a life-like test. With the above setup the dc signal out of the single i-f stage diode was about \(1 / 10\) th of a volt, which is enough to tabulate gain with and yet not enough to overload any of the circuits.

The rf collector tap (see Fig. 3) was found to be best at the high end of L4, due no doubt to the relatively low impedance resulting from the high parallel capacity C4A and C4B. The rf base capacity was found to be best at a high value, the same as the mixer. Table 2 shows the trend.

Table 3 demonstrates the influence of the rf base tap on the tuned input coil L2. It is interesting to note the similarity of the mixer base and the rf base as far as matching impedance on tuned circuits. RCA in their detailed and well worked out application circuits section also attach considerable importance to this ratio of the base tap section of the coil to the remainder, so we're in good company.

Voltages while operating were as follows: collector 10.5, base 1.6, emitter 1.0 volt, relative to ground.

The \(50 \Omega\) antenna cable was tapped at 2 and 3 turns, with a drop noticed at 1 turn, and some self-oscillation due to the light loading. With 4 turns of link coupling it

Fig. 4. Layout detail. Please add \(5 k\) to \(12 \mathrm{~V}, .01\) to ground to point B of oscillator.
was very stable and tuned well as shown in Table 4. This is always nice because it takes up little space, is easily adjusted, and doesn't cost anything. You also avoid more trimmers, which are quite large compared to the transistors being used. You have to be sure it's working though. You don't always get the best match with such a link.

A final trim-up of the oscillator input link L5 placed its three turns of L4 from ground for the best sensitivity.

The lab receiver was then connected for a check, tuned to 1.65 MHz as an i-f and plugged into the mixer output. Absolutely everything on the band could be heard and separated in fine style.
Results
After all the pruning and peaking up shown in Cables 1 through 4, plus other little things, I now have one of the best and most economical receivers for Six I've ever used. Still running the single i-f stage on 1.65 MHz I can hear anything that moves on the band. There are some very small coils suitable for 1.65 i-f and filter work, but more on that later. The rf input tuning is particularly nice peaking right up on frequency with good symmetry in the resonant tuning curve. I still find something definitely advantageous and different about those little GE gems as compared to the larger transistors used in the past.

At any rate, you have here a good sensitive, selective, six meter front end, with pocket size possibility.

Have another laugh on me...just a small one, but it might hit you too some day. Tuning up a single transistor af oscillator to modulate a test signal, I ran into trouble and changed the Motorola transistor that was in it, one of those little black plastic ones. The second one didn't work either (I hasten to say that both those units were perfectly good) so I checked the collector volts which were 12 on the meter, the base volts which were 2 to 3 , also ok, but no emitter volts or current! Nothing I could do brought any current through the emitter or showed any bias volts. Finally, I just happened to look at those little silver colored tiny letters on the plastic case and found I was using a HEP56 instead of a 55. The 55's are my choice for a "Universal"
device, and I've put nearly 4 dozen of them into circuits in the last several months and they all worked well. Figures 5A and B show what was happening. I had been applying dc bias to the emitter instead of the base. So keep your eyes open and maybe it won't happen to you.

This six meter front end using microminiature transistors in a breadboard circuit with all small components and their best values determined, and working like a charm, is now ready for packaging, but small!

It is intended that two stages of 1.65 MHz i-f, with avc, will be tuned up using these little devices also, and packaged to match in size. As you can see by the module example, one stage including the variable capacity has been packaged \(1 / 2 \mathrm{in}\). thick by \(11 / 4 \mathrm{in}\). square, not counting the tuning knob. This indicates a possible pocket rig some \(11 / 2 \mathrm{in}\). high, \(11 / 2 \mathrm{in}\). wide, and 4 in . long. Battery, mic, speaker, and antenna yet to come. This is using 4 stages in the transmitter and about 8 in the receiver. Maybe it will take an overcoat pocket just now, but at least you can see where we're heading.
... K1CLL

\section*{AN EMERGENCY TRANSFORMER}

How many times have you discovered a dead transformer just as sked time neared? And then found it was the primary of the transformer that had opened.

This happened to me a few weeks ago, and not having another suitable power transformer handy, I solved the problem by bringing into use an old junkbox job with a hefty low voltage secondary. This was hitched to the heater winding of the main transformer - and so fed the tubes direct as well as supplying B-plus. The actual output of the junkbox transformer under load was a trifle too high, so a wirewound resistor was put in series with the primary, and adjusted until the heater voltage was just over 6.3 volts. Although this was only a temporary lashup to get me on the air, it's been going fine for several weeks now, with no sign of smoke. It would appear to work with any main transformer which has a definite open circuited primary - but not, of course, one with shorted turns.

G3KPO

\title{
BUILD A BASIC BRIDGE
}

0ccasionally the Novice or casual amateur requires the use of a capacitor checker while in the process of building or repairing his equipment. The frequency of this need is often such that the purchase of a kit or commercial checker could not be justified. Over the years many homebrew models have been presented in the various electronic magazines, but these are apt to be too expensive or too complicated to fill the need.

Presented here is a cheap, easy to construct checker which will measure capacitors from .0001 to \(1.0 \mu \mathrm{~F}\) in four ranges with about as much accuracy as the builder might desire. While not covering a wide range of capacitance, it will check \(90 \%\) or more of the capacitors found around the shack. The normal "entertainment" grade resistors, capacitor and poteniometer will do nicely . . . on the other hand, accuracy may be greatly increased if precision components are used and precision calibration undertaken.

The basic circuit is a bridge, one leg

Fig. 1. Transformer shown is \(500 \mathrm{ct}: 8 \Omega\)
being a switch selected range resistor, the second a \(250 \Omega\) variable element, the third leg a \(.5 \mu \mathrm{~F}\) "standard" capacitor, and the fourth, the unknown. When the ratio of the unknown to the standard equals the ratio of R1 to R2, R3, R4, or R5, the bridge is in balance and no audio output appears across the null detector terminals.

The bridge is supplied with audio voltage by a packaged "code practice oscillator" module (in this case a Cordover CPO-4) of the \(98 \phi\) variety fed through a \(79 \phi\) transistor output transformer running backwards for impedance matching purposes. A similar homebrew oscillator could be used if desired. The null detector may be as simple or complicated as you have available. A pair of earphones, an amplifier,

Fig. 2. Suggested method of calibration.
an ac VTVM, or a scope are usable. Phones are quite satisfactory and have the advantage of being readily available in the average shack.

Calibration consists of nulling the bridge with a known value capacitor across the unknown terminals and marking the scale at that point. Continue until the 1 through 10 positions have been located, changing or paralleling capacitors as necessary. It is not necessary to calibrate each range separately. The range resistors will insure that the scales are not too far from being exact multiples of the basic range. It will be noted that with the specified potentiometer the scale will cover only about \(180^{\circ}\) of shaft rotation. If desired, a \(150 \Omega\) pot could be used and the scale expanded to cover a full \(270^{\circ}\).

The unit as originally constructed used a rotary switch to control the oscillator battery. If you are the forgetful type, a normally open pushbutton may be substituted in the interest of conserving the battery.
...WA \(\emptyset\) ABI

COMMUNICATIONS INTEGRATED CIRCUITS

> 24 Hour COD-Phone Answering Service Our Data/Application Sheet Enclosed with Each Type Shipped

> Every Unit 100\% Parameter and Function Tested to our Guaranteed Limits on the same FAIRCHILD Computer-Type High Speed Tested Used by Major Semi Companies

\section*{RADIO TRANSMITTER ON A CHIP !}

IC TYPE DESCRIPTION
NA555
NA555-2
NA370
NA371
NA3018
NA3026
NA3086
NA3036
NA1595
NA8038
NA1596

Versatile Timer
Dual Timer AGC/Squelch/VOX Versatile rf/i-f 4-Trans. Array Dual Diff. Array 5-Trans. Array Dual Darlington Analog Multiplier VCO/Sine/Sq./Tri. Bal. Mixer/Mod.

CASE Price Ea.
8-DIP 0.99
16-DIP 1.55
10-TO5 1.20
10-T05 1.29
12-TO5 0.89
12-TO5 0.99
14-DIP 0.45
10-TO5 0.75
14-DIP 1.90
14-DIP 4.50
10-TO5 1.20
\begin{tabular}{llll}
NA376 & Voltage reg., pos. low stdby. & 8-DIP & 1.25 \\
NA723 & Voltage reg., pos/neg. & 10-TO5 & 0.99 \\
NA741 & Op. amp. & 8-DIP & 0.45 \\
NA1303 & Stereo preamp & 14-DIP & 0.99 \\
NA1304 & Stereo multiplex decoder & 14-DIP & 1.20 \\
NA2111 & FM i-f strip/quad. detector & 14-DIP & 2.25 \\
NA3075 & FM i-f strip/det/preamp & 14-DIP & 2.45
\end{tabular}

NA2000 100mW AM on 20 Meters
\(\$ 9.95\)
NA2001 250mW AM on 10 Meters
\$14.95
Both types usable at reduced output at 6 Meters and above. Requires external crystal \& 2 tuned circuits. With data/applications.

\section*{SPECIAL - TRANSISTOR BAGS}
\begin{tabular}{llll}
2NA2222 NPN Trans., bag of 12 & TO18 & 2.00 \\
2NA2907 PNP Trans., bag of 12 & TO18 & 2.00 \\
2NA3904 NPN Trans. Plastic, bag/20 TO92 & 3.00 \\
2NA3906 PNP Trans. Plastic, bag/20 TO92 & 3.00
\end{tabular}

\section*{TERMS}

Prepaid U.S. orders over \(\$ 10.00\), we ship.
Prepaid U.S. orders under \(\$ 10.00\), add \(\$ 1.00\). Prepaid foreign orders over \(\$ 10.00\), add postage. Prepaid foreign under \(\$ 10.00\), add \(\$ 1.00\) plus postage.
COD U.S. orders over \(\$ 10.00\), add \(\$ 1.50\).
COD U.S. orders under \(\$ 10.00\), add \(\$ 2.50\). No Foreign COD orders.
California residents add \(6 \%\) sales tax.

\section*{COD PHONE (408) 867-5900}

\author{
NASEM Box AI Cupertino CA 95014
}

Automatic recorded 24 hour COD telephone order service - supply full information concerning order and shipping instructions. Requested return calls - Collect only . . .

\section*{ANTENNAS}

Beams - Doublets - Quads Verticals - Cable \& Towers HyGain -- Newtronics - Mosley Cushcraft - Mini Products - Antenna Specialists - and more --
\begin{tabular}{|c|c|}
\hline & RADIO \& SUPP P.O. Box 7287 \\
\hline & Asheville NC 28801 \\
\hline \(\underline{\text { 2, }}\) & 704-154-9551 \\
\hline - & Est. 192 \\
\hline
\end{tabular}

\section*{C F P ENTERPRISES \\ 866 RIDGE ROAD, LANSING, N. Y. 14882}

Whether you extend the range of your VHF FM station with the new Ringo Ranger or rotate your house with full size HF Monobeam, it's hard to beat CUSHCRAFT for the very best in antennas.
Contact CFP today for the Cushcraft antenna of your choice. You'll be glad you did.

\section*{Office \& Salesroom Hours by Appointment Only}

24-Hour Phone: 607-533-4297
Send SASE for Monthly Listing of Used Equipment and Bargain Goodies
\#16 40\% Copper Weld wire annealed so it handles like soft Copper wire--Rated for better than full legal power AM/CW or SSB-Coaxial or Balanced 50 to 75 ohm feed line-VSWR under 1.5 to 1 at most heights-Stainless Steel hardwareDrop Proof Insulators-Terrific Performance-No coils or traps to break down or change under weather conditions-Comp. letely Assembled ready to put up-Guaranteed 1 year-ONE DESIGN DOES IT ALL; 75-10HD-ONLY \$12.00 A BAND!

\section*{Part 3}

The concluding part of this series covers the remaining functions such as the sidetone, transmitter keyer, power supply, and others necessary to complete the keyer.

\section*{Sidetone}

Fig. 14, is the schematic of the sidetone oscillator and buffer to drive the speaker. The spare gates from Fig. 5, and from Fig. 8, are used in the sidetone circuit. The oscillator is adjusted for approximately 1 kHz . Each time OUTPUT goes high the oscillator is turned on. I originally used CMOS buffers instead of Q1 and Q2 and the circuit had adequate volume but no reserve. Now there is plenty of drive for the speaker and although I haven't tried it, the volume control could be connected to the unregulated 16 V for even more output. Any NPN transistor from your junk box should work for Q1 and Q2.

\section*{Transmitter Keyer}

I currently have a Heath SB-101 transceiver which uses grid block keying, keying about -60 V at 1 to 2 mA to ground. I
decided to use an optical coupler to interface with the transmitter. (An optical coupler has a LED and a photo transistor in it. When current flows through the LED, it emits light. The light striking the base region of the photo transistor causes the transistor to turn on.) Since the voltage rating of the optical coupler transistor is only 30 V , I use it to drive a high voltage PNP transistor for keying the transmitter. The circuit provides about 1 mA of base drive to the keying transistor, Q3. I used a D cell flashlight battery to provide the negative voltage for turning on Q3. A negative voltage could be generated from the ac power supply, but I decided that I may want to operate the keyer from an external battery some day for portable operation and then it would have required two external batteries. Only 1 mA is drawn from the flashlight battery during key down conditions and the battery should last for shelf life.

A small amount of rf interference was noted the first time the keyer was connected to the transmitter. C1401 cured all of the problems but I added a few extra for

Fig. 14. Sidetone and transmitter keyer.
insurance. Install C1402 near Q3 and install C1403 at the panel jack that goes to the transmitter. I have found when digital circuits are operated near high power transmitter a handful of bypass capacitors installed on input/output lines is always worth the time and effort.

Other methods of keying the transmitter could be incorporated such as a reed relay, NPN transistor or whatever you desire. Gates U 30 E and F , connected as a pair, are capable of sinking about 8 to 10 mA to ground, or sourcing 1.5 to 2 mA of current. If you decide to drive a relay use a buffer transistor.

\section*{Display}

A four digit display (see Fig. 15) is used in the keyer and the numbers are displayed in octal or base 8 format. The first 3 address lines go to the units display. Address lines 4, 5 and 6 go to the tens display. Address lines 7,8 , and 9 go to the hundreds display and address line 10 goes to the thousands display. As the address counter counts up from zero, the address lines will advance in a binary mode. The units display will count
from 0 to 7. The next count is 8 , with address line 4 high and 1 through 3 low. Line 4 makes the tens display read 1 and lines 1,2 , and 3 make the units display read 0 . So we see 10 not 8 on the display. If you haven't worked with octal numbers before it may seem confusing at first, but it is a very convenient way of handling binary numbers. There are 1024 locations in memory or 0 to

Fig. 15. Display wiring.
1023 decimal. The display will read from 0 to 1777. Don't even try to convert back to decimal when jotting down a starting address from the display. If the display reads 1356 , write down 1356. If you group the address selection switches in groups of 3 with a little
separation between groups, each group of three is an octal digit. To obtain 1356 set the switches to:
\begin{tabular}{c|cc|cc|ccc}
1 & \multicolumn{2}{|c|}{3} & \multicolumn{2}{|c|}{5} & \multicolumn{2}{|c}{6} \\
\hline 1000 & 400 & 200 & 100 & 40 & 20 & 10 & 4 \\
0 & 9 & 0 & 0 & 0 & 9 & 0 & 0
\end{tabular} 080

The buffers on the address lines can drive about 3 TTL loads. Even with both PROMS installed that leaves enough drive for the displays. Any display, seven segment incandescent, LED (light emitting diode), or nixie type can be used with its appropriate decoder/driver provided the decoder/driver has TTL compatible inputs. There are many of these currently available on the market. Ten individual light bulbs could also be used provided some sort of transistor driver is incorporated. I use seven segment incandescent displays in my keyer.

\section*{Address Selection Switches}

Fig. 16, shows two options for wiring the address selection switches. Fig. 16a, is the simplest way and just requires 10 switches. Space them in 3 groups of 3 and a single one as mentioned before. Having seven sequences programmed in PROM I decided it would be nice to have a single rotary switch to select any one of the seven starting locations. Fig. 16b, shows how this was done. You must first decide on what you are going to program in PROM to determine the needed starting locations. Then you can set up the diode matrix for those locations.

\section*{CMOS-TTL Compatability}

CMOS logic can be operated over a voltage range of 3 to 15 V , unlike TTL which is \(5 \mathrm{~V} \pm 5 \%\) for commercial temperature range. The memories I have selected operate at 5 V and since the PROM is a TTL device, the entire keyer is operated at 5 V . TTL devices can be used in CMOS circuits provided a pull-up resistor is used on the output of any TTL device driving a CMOS device. This insures that logic 1 output levels are approximately 5 V instead of only 3.3 V , typically, which is adequate for a TTL logic 1 level. CMOS gate outputs switch logic levels when the input passes through a voltage level equal to approximately \(45 \%\) to

ST. LOUIS, MISSOURI 63130
(314) 427-6116

THUMBWHEEL SWITCHES
STANDARD SIZE \(0.5 \times 2.125 \times 1.78\)
10 position decimal \(\$ 3.00\)
10 position BCD \& compl. \(\$ 4.00\)
End Plates (per pair) \$1.45
MINIATURE SIZE \(-0.312 \times 1.3 \times 1.3\)
10 position decimal
10 pos. BCD 8 comp \(\$ 2.50\)
pos. BCD \& comp. \$4.00
10 pos. BCD only \(\$ 2.75\)
End Plates (per pair) \$1.00
Divider Plates \(\quad \$ 1.25\)
Blank Body
\$.30

All switches are black with white figures and snap-in front mounting.

TRIAC CONTROLLER - Triac adjustable light dimmer rated at 1200 watts \(-0-115\) volt. Ship. wt. 2 lbs .
\$3.50
2" SCOPE TUBE SHIELD - Manf. by Millen. Ship. wt. 1 lb .
\$3.95
PAMONA BOX \(-21 / 4 \times 11 / 8 \times 7 / 8\) Miniature box w/BNC plug \& jack good for attenuators \& other small projects. Ship. wt. \(1 / 2 \mathrm{lb}\). \(\$ 3.95\)

MINIATURE SWITCHES - DPDT Miniature Push-button switch \(\$ 1.50\) MINIATURE SWITCHES - SPGT Enclosed Miniature rotary SW. \(1 / 2^{\prime \prime}\) dia.
\(\$ 1.50\)
EQUIPMENT COOLING FAN - 115 V \(\mathrm{AC}-3^{\prime \prime}\) diameter \(-w /\) mounting bracket - 3 lbs.
\$3.50
S5 Minimum Order. Visit us when in St. Louis. Please include sufficient postage.

16b.
Fig. 16 a and b . Two methods for wiring address selection switches.
\(55 \%\) of the supply voltage for the CMOS gate, that is a low input should be less than \(45 \%\) of the supply voltage, and a high input should be greater than \(55 \%\) of the supply voltage. For safe designs a low input should be less than \(30 \%\) of the supply voltage or less than 1.5 V at a supply of 5 V . A high input should be greater than \(70 \%\) of the supply voltage or greater than 3.5 V at a supply of 5 V . The pull-up resistors on the output of the memories and the PROMS insure a good logic 1 input to the CMOS multiplexer.

\section*{Power Supply}

The CMOS logic in the keyer draws about 2 mA . The various pull-up/pull-down resistors draw several mA depending on the position its associated switch is in. The two RAMS draw 30 mA each, and each PROM draws 80 to 100 mA . The sidetone draws
about 20 mA at maximum volume. I used seven segment incandescent displays which draw a total of 700 mA . The total current requirements for the keyer is about 1 A , but this is largely dependent on the displays used. A switch could be installed in the display power lines to conserve power when operating from battery. The power supply Fig. 17, uses a 24 V filament transformer and a three terminal monolithic 5 V regulator. This type of supply has appeared many times in current publications.

\section*{Construction}

The keyer can be fabricated any way the builder desires. I built mine into a 15.24 x \(17.7 \times 25.4 \mathrm{~cm}\) box. Keep leads as short as possible and use a single point ground and a single point 5 V connection from the supply. Run a separate ground and 5 V line to each

Fig. 17. Power supply
card or group of ICs, and run a separate ground and 5 V line to whatever displays you choose. Use some \(.001 \mu \mathrm{~F}\) capacitors as bypasses from 5 V to ground on each card or group of ICs. A couple of 10 to \(50 \mu \mathrm{~F}\) capacitors sprinkled around will always make digital circuits quieter and never hurt.

If you counted the ICs on the two cards in the photographs you came up with 40. However, the schematic shows 42. CD4035, 4 bit shift registers can be used as quad D flip-flops, and 2 of these could replace 4 CD4013 dual D flip-flops. But since the Q and Q BAR outputs are not both available, other substitutions and rearrangements must be made. Because of the diffiuclty in splitting a complex device, such as the 4035 , over several schematics, and the confusion it might create, I decided it was best in the long run to add two chips to simplify things. Also, the sidetone was modified after the pictures were taken, so you won't find Q1 or Q2, either.

\section*{PROM Coding}

Figure 18 shows the coding in my PROM to call CQ. The sequence programmed is CQ CQ CQ DE WIGCA WIGCA W1GCA (re-

\title{
FREE IC With Every \$10 Order*
}
- REDUCE YOUR PROJECT COSTS
- MONEY-BACK GUARANTEE
- 24-HOUR SHIPMENT
- ALL TESTED AND GUARANTEED
- TRANSISTORS:

NPN:
2N3563 TYPE RF Amp \& OSC to 1 GHz (pl. 2N918) 6/51.00 2N3565 TYPE Gen. Purpose High Gain (T0. -106) \(2 N 3691\) TYPE GP Amp to 25 mA and 50 MHz 2 N3866 TYPE RF Pwr Amp \(1.2 \mathrm{~W} @ 100.600 \mathrm{MHz}\) 2N3903 TYPE GP Amp \& Sw to 100 mA and 30 MHz 2N3904 TYPE GP Amp \& Sw to 100 mA (TO-92) 2N3919 TYPE RF Pwr Amp 3.5 W @ 3.30 MHz
Assort. NPN GP TYPES, 2N3565, 2N3641, etc. (15) PNP

2N3638 TYPE Gen. Purpose Amp \& Sw 4/51.00
- FET's:
N.CHANNEL (LOW-NOISE):
\[
\text { 2N4416 TYPE RF Amplifier to } 450 \mathrm{MHz}(\mathrm{TO}-72) \quad 2 / \mathrm{S} 1.00
\]
\[
2 \text { N5486 TYPE RF Amp to } 450 \mathrm{MHz} \text { (plastic 2N4416) } 3 / \$ 1.00
\]
\[
\begin{aligned}
& \text { 2N5163 TYPE Gen. Purpose Amp \& Sw (T0-106) } 3 / \$ 1.00
\end{aligned}
\]

2 N4091 TYPE RF Amp \& Switch (T0-106)
ITE4868 TYPE Ulitra-Low Noise Audio Amp. Assort. RF \& GP FET's, 2N5163, 2N5486, etc. (8) P.CHANNEL

2N4360 TYPE Gen. Purpose Amp \& Sw (T0-106) \(3 / 81.00\)
M104 TYPE MOS FET (Diode protected) \(0.3 \mathrm{pF} \quad \$ 3.00\)
- LINEAR IC's:

555X Timer \(1 \mu \mathrm{~s}-1 \mathrm{hr}\), Dif. pinout from 555 (DIP)
709 Popular OP AMP (DIP/TO-5)
723 Voltage Requlator 3.30 V @ 1.250 mA (DIP/TO-5)
739 Dual Low-Noise Audio Preamp/OP AMP (DIP)
741 Frea. Compensated OP AMP (DIP/T0-5/MINIDIP)
2556 Dual 555 Timer 1 usec to 1 hour (DIP)
LM305 Positive Voltage Regulator (TO-5)
MC1458 Dual 741 OP AMP (MINI-DIP)
Assorted Linears-741/709/723, etc. (4)
- DIODES:

1N914 TYPE Gen. Purpose \(100 \mathrm{~V} / 10 \mathrm{~mA} \quad 10 / \$ 1.00\)
1 N3600 TYPE Hi Speed SW 75V \(/ 200 \mathrm{~mA} \quad 6 / \$ 1.00\)
1N4608 TYPE GP \& SW \(80 \mathrm{~V} / 400 \mathrm{~mA} \quad 6 / \$ 1.00\)
iN3893 TYPE RECTIFIER Stud Mount 400 V/12 A \(\quad 2 / \$ 1.00\)
1N749 ZENER 4.3 Volt \(400 \mathrm{~mW} \quad 3 / \$ 1.00\)
IN753 ZENER 6.2 Volt \(400 \mathrm{~mW} \quad 4 / \$ 1.00\)
IN755 ZENER 7.5 Volt \(400 \mathrm{~mW} \quad 4 / \$ 1.00\)
1N757 ZENER 9.1 Volt \(400 \mathrm{~mW} \quad 4 / \$ 1.00\)
1N758 ZENER 10 Volt \(400 \mathrm{~mW} \quad 4 / \$ 1.00\)
1N965 ZENER 15 Volt \(400 \mathrm{~mW} \quad 4 / \$ 1.00\)
1N968 ZENER 20 Volt \(400 \mathrm{~mW} \quad 4 / \$ 1.00\)
D5 VARACTOR \(5-50 \mathrm{~W}\) Output @ \(30.250 \mathrm{MHz} .7 .70 \mathrm{pF} \$ 5.00\)
F7 VARACTOR 1-3 W Output @ \(100.500 \mathrm{MHz}, 5-30 \mathrm{pF} \quad \$ 1.00\)
*MAIL NOW! With every order of \(\$ 10\) or more, postmarked prior to \(12 / 31 / 74\). FREE 739 or 749 Low-Noise Dual OP AMP included-\$1 VALUE.
ORDER TODAY All items subject to prior sale and prices subject to change without notice. DATA SHEETS included with all items.
WRITE FOR FREE CATALOG offering hundreds of semiconductors not listed here. Send \(10 ¢\) stamp.
TERMS: All orders prepaid. We pay postage. \$1.00 handing charge on orders under \(\$ 10\). Calif, residents add \(6 \%\) sales tax.

\section*{ADVA}

Tel. (415) 851-0455

\section*{OP-CODE BIT}
\begin{tabular}{lll}
A & B & CHARACTER \\
0 & 0 & Word Space - WS \\
1 & 0 & Dash \\
0 & 1 & Dot \\
1 & 1 & Letter Space - LS
\end{tabular}

\footnotetext{
WS/WS = Repeat
WS/LS = Stop
}

Fig.18. Example of PROM coding to send CQ .
peat)K (stop). This will serve as a guide if you decide to install PROMS in your keyer. The logic levels are the same as they have been all through the discussion of MOSKEY; a high \(=\operatorname{logic} 1=s 5 \mathrm{~V}\), a low \(=\) logic zero \(=\) \(0 V\). Unfortunately some PROM manufacturers use this logic definition on the address lines and inverted logic on the outputs; a logic \(1=0 \mathrm{~V}\), and a logic zero \(=5 \mathrm{~V}\). Be sure you understand it for whatever PROM you use. Murphy's Law says you have a \(50 \%\) chance of programming the PROM with the outputs inverted. I have seen PROMs programmed with the outputs inverted even after checking and double checking spec sheets. If by some fulfillment of Murphy's Law your PROM outputs are inverted, don't fret. You don't have to throw it away. A couple of inverters on the PROM outputs if using 256 x 4 's or on the first level mux outputs if using \(32 \times 8\) 's can correct it. But if you did it wrong the first time and add a second PROM, do it wrong the second time. Otherwise you'll have inverters on the first PROM and not on the second, etc., and it could get to be a confusing mess.

\section*{Operation}

When the wiring is all completed and double checked, turn on the power. Usually one dot and one dash will be outputted when the keyer is turned on. Capacitors C301, C302, C303 and C304 cause the dot and dash latches to get set when power is turned on. To operate the keyer as a normal IAMBIC keyer, just plug in your squeeze paddle (or regular paddle) and send. Don't become discouraged if you're trying squeeze keying for the first time and find it difficult. I practiced for about three hours before I felt confident enough to put it on the air, but then the results are fantastic. The ease of squeeze keying combined with letter and word spacing will give you a fist to be proud of.

To program the keyer select a starting address and press the PRESET button. The displays will read the address selected. Turn on the PROGRAM switch and send your favorite sequence on the key. When you have completed sending press the STOP STORE button to store away a stop in-

How would you like to see all your trips to Hamfests start paying for themselves?
How would you like to earn enough money to buy that new gear you've had your eye on?

\section*{It's really a lot easier than it sounds!}

73 Magazine is looking for dependable hams to represent us all across the United States and Canada. Our reps take magazine subscription orders, and sell our books, tapes and QSL cards. And for every subscription you get - for every book or pack of QSL's you sell, you get a WHOPPING big commission for yourself!

You can make over \(\$ 100\) at even a small gathering of hams. And while you're earning that "loot" you'l| be doing what you like to do best - Hamming it up! Why not sit down and jot off a note to us right now? You'll have all the facts (and those all important percentages) by return mail. And you'll become a member of our ever growing 73 team. If this sounds like it's for you, Welcome Aboard!

Mail inquiries to: David Behnke
Director of Marketing
73 Magazine
Peterborough, New Hampshire 03458
We're interested in all the following areas.
\begin{tabular}{lllll}
MIDWEST & NORTHEAST & SOUTHERN STATES & PACIFIC STATES \\
Indiana & Connecticut & Alabama & Alaska \\
lowa & Deleware & Arkansas & California \\
Kansas & Maine & Georgia & Hawaii \\
Minnesota & Maryland & Louisiana & Nevada \\
Missouri & Massachusetts & Mississippi & Washington \\
Nebraska & New Jersey & North Carolina ROCKY MOUNTAIN STATES \\
North Dakota & New York & South Carolina Colorado & \\
South Dakota & Pennsylvania (Eastern) & Tennessee & Idaho & ALL CANADIAN \\
Texas & Rhode Island & Virginia & Montana & PROVIN̦CES \\
Wisconsin & Vermont & & & Wyoming
\end{tabular}
struction. Turn off the PROGRAM switch. Press the PRESET button again to set the memory address counter back to the beginning of the sequence and press the START switch. The keyer will send your sequence and stop at the end of it.

Sequences can be loaded anywhere in memory. Write down the starting location of each so you can keep track of them and select the one you want at the right time. It's better to store them sequentially one after another so you don't accidentally program over something already stored away. Also if a sequence is being programmed near the end of memory and eventually gets to the last location of memory, the address counter will overflow back to location zero and the keyer will continue on. If something was already stored at the beginning of memory it will be written over and lost.

To use the repeat feature first decide what you want to send and which part you want to repeat. For example, to have the keyer send CQ DE W1GCA CQ DE W1GCA K (stop) program it as follows: Select a starting location, say 1000 . Press the PRESET switch and turn on the PROGRAM switch. Send CQ DE W1GCA. (Display reads 1046, right?) Press the REPEAT STORE switch and then send the letter K. Press the STOP STORE switch, and turn off the PROGRAM switch. (Display reads 1054). Press the PRESET switch to set the memory address counter back to location 1000. The address switches must be left at 1000 when sending the sequence for it to come out properly. Press the START switch and the keyer will send CQ DE W1GCA CQ DE W1GCA K (stop).

One other feature the keyer has, although I haven't found a very practical use for it yet, is to cascade two sequences. You can have the keyer send a message and by use of the repeat instruction have the keyer jump to another message. Start at location 0000 and program HI. The display reads 10 . Press the repeat store switch. Now select another address, for example, 50. Press the preset button and program in GANG. The display reads 66 . Press the stop store switch and take the keyer out of programming mode. Select 0000 on the address switches and
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Signal number} & \multirow[b]{2}{*}{Signal name} & \multicolumn{5}{|l|}{Uned an figure number} \\
\hline & & 3 & 5 & 8 & 13 & 14 \\
\hline 1 & clock & \(\times\) & \(\times\) & & & \\
\hline 2 & CLOCK2 BaR & \(\times\) & \(x\) & & & \\
\hline 3 & EOICLOCK? & \(x\) & & \(\times\) & & \\
\hline 4 & EOICLOCK BAR & x & & \(\times\) & \(\times\) & \\
\hline 5 & KEY OASH IN PROGHESS & \(x\) & & & x & \\
\hline 6 & KEY OOT IN PROGRESS & \(x\) & & & \(\times\) & \\
\hline 7 & KEV DOT + KEY DASH IN PROGRESS BAR & \(x\) & & \(\times\) & & \\
\hline 8 & MEMORY WS NEXT OP CODE & x & & \(\times\) & x & \\
\hline 9 & MEMORY LS NEXT & \(\times\) & \(\star\) & \(\times\) & & \\
\hline 10 & MEMORY DASH NEXT & \(\times\) & & \(\times\) & & \\
\hline 11 & KEY WS NEXT BAR & \(\times\) & & \(\times\) & & \\
\hline 12 & MEMOAY WS NEXT NEXT BAR & \(\times\) & & \(\times\) & & \\
\hline 13 & RUN & \(\times\) & x & & \(\times\) & \\
\hline 14 & KEY NEXT & x & & x & & \\
\hline 15 & WSEF + LSFF & x & & x & & \\
\hline 16 & EOI DELAYED BAR & \(x\) & & \(x\) & & \\
\hline 17 & OUTPUT & \(\times\) & & & & \(\times\) \\
\hline 18 & OUTPUT BAR & * & & & & \(\times\) \\
\hline 19 & WSFF & \(\times\) & \(\times\) & & \(\times\) & \\
\hline 20 & KEYMODE FF & \(\times\) & & \(\times\) & & \\
\hline 21 & clock 2 & & \(x\) & \(\times\) & & \\
\hline 22 & CLOCK BAR & & \(\times\) & & \(\times\) & \\
\hline 23 & STOP NEXT BAR & & \(\times\) & \(\times\) & & \\
\hline 24 & STOP, REPEAT STORE BAR & & & \(\times\) & \(\times\) & \\
\hline 25 & REPEAT SKIP-BAR & & & \(x\) & \(\times\) & \\
\hline 26 & RAM A INPUT & & & \(x\) & \(\times\) & \\
\hline 73 & HAM 8 INPUT & & & * & \(\times\) & \\
\hline 28 & PRESET & & & \(\times\) & \(\times\) & \\
\hline
\end{tabular}

Fig.19. Final assembly figure interconnection check list.
press the preset button. Now select 50 on the address switcher but do not press the preset button. Press the start switch and the keyer sends HI. Then it comes to the repeat instruction and presets the counter to the address selected by the switches, which normally should be the starting location for the message being sent, but in this case it isn't. Instead of repeating HI , the keyer goes to memory location 50 and continues on to send GANG, and then stops. You can only do it once though, because the REPEAT FF gets set and any further repeat instructions are ignored.

\section*{Conclusion}

The keyer has added a new dimension to CW operation and using it on the air has certainly been a pleasure. I find myself programming little short phrases into it to have at instant recall whenever I want to send them. All comments received on the air have been favorable as to the keyer's timing of characters and spacing of characters. I think it competes with W1AW's code practice machine!
. . . W3HPX

\section*{August 73 Scan Converter Update}

The following changes are to be made in the camera scan converter article which appeared in August, 1974 issue of 73 Magazine.

\section*{Significant Text Errors:}

Page 77 Right column Line 8: \(\approx \mathrm{MHz}\) should be \(\approx 5 \mathrm{MHz}\) Page 80 Line 29: TP14 should be TP13.

\section*{Parts List:}

C105, C301* should be .001 Silver Mica C107 should include \(4.7 \mathrm{mfd}, 10 \mathrm{v}\) tantalum C109* should be . 0033 Mylar (. 003 ok, though.)
C210, C202, C203 should read C201, C202, C203
C204, C205 should be 560 pf silver mica
C206*, C207* should be 47 pf silver mica
C209* should be a 800 pf silver mica
C302 is a .1 mfd Mylar
R1 is 200 K
R2, R4 are 100 K chassis mounted pots
R3 is 470 K
R101 is 1.5 K
R1114, R113, R126 should be R1114, R113, R306
R302, R306 should be only R302
Add: R308. . . \(390 \Omega\)

In addition:

Move TP11 from the present location to:

Scope Patterns:
The first dual trace pattern on page 78, showing TP21 and TP22 should read "trigger".

Misc.
In the "volts" box of the bypass table on page 83 , insert " -6 " in the blank box between +12 and -12 .

The following list of IC functions was edited out of the schematic. This list may be of use to your understanding of component functions.
IC101 - White and Black Compression
IC102, IC103 - Sync stripper
IC104 - D/A Converter
IC105 - LPAF and D/A Amplifier
IC106 - VCO

CALL BOOK \(\leftrightarrows\)
When you want an authoritative, up to date directory of licensed radio amateurs It's the CALLBOOK
Over 210,000 QTH's in the DX edition DX CALLBOOK for 1974 \$8.95

Over 285,000 QTH's in the U.S. edition U.S. CALLBOOK for 1974 \$9.95

See your favorite dealer or Send today to (Mail orders add \(\mathbf{5 0}\) der CALLBOOK for postage and handling)

WRITE FO
FREE BROCHURE

IC202 to IC209 - A/D Converter
IC212 - Memory
IC213 - Gray to Binary Converter
IC214 - Reverser
IC215 - Video/Gray Scalê Multiplexer
IC216 - 2 Phase Clock Driver
IC301, IC302 - Sync Separator
IC304 to IC306 - Vertical Counter
IC307, IC308 - Line Sample Selector
IC309 - 8-8.5 Seconds Gate
IC311 - Horz Sync Singleshot
IC312 - Vert Sync Singleshot

Several foreign hams have noted a picture foldover problem when operating from 50 Hz lines. A "fix" is being investigated and will be reported later.

\section*{Jacking the Galaxy Transceivers}

The earlier Galaxy III and V transceivers have no provision for using a pair of high-impedance headphones. These transceivers just happen to have a hole in the back panel for use with a remote vfo - you are supposed to run a length of coax through this hole to the phono jack that is mounted on the side of the vfo enclosure. Not many hams use a remote vfo with their transceiver, but more would like to use a set of high-impedance headphones instead of the speaker.

It just happens that a standard phone jack receptacle will fit into this hole very handily. A plate-to-voice coil audio output transformer will fit into the case of the Galaxy quite easily. I mounted mine under one of the screws holding down the cover of the vfo enclosure. The transformer's high impedance leads are connected to the newly-added phone jack and the low impedance leads are connected to the speaker jack that Galaxy provided on the back panel. You can use your high impedance headphones with the transceiver instead of the speaker, and when trading time comes, the jack and the transformer can be removed with no marks remaining to tell the dealer you had modified the transceiver.
. . .WB6PKA

\section*{}

Want to give a gift that . . .
Informs?
Stimulates?
Fascinates?
Entertains?
Permits "easy chair" shopping? GIVE 73 MAGAZINE!

We want to help you CUT THOSE HOLIDAY GIFT COSTS. The first subscription to 73 is just \(\$ 6.00\). That's a \(50 \%\) savings over the newsstand price, and \(\$ 2.00\) off our new subscription price of \(\$ 8.00\)

\(\qquad\)
ADDRESS
CITY

STATE per year (effective January 1, 1975). Each additional subscription will cost the unbelievably low price of ONLY \(\$ 5.00\). And that's a savings of \(58 \%\). Take advantage of this fantastic year end savings from 73 Magazine. SEND US NO MONEY WITH THIS ORDER. We know how expensive this time of year is for you and we don't want to add to the burden. So, don't worry about it now. We'll bill you later after
 the first of the year.

\section*{Beep-Beep-Beep-Beep, You're High}

Digital unit to automatically tell repeater users whether they are high or low in frequency. What self-respecting repeater group can pass up this bit of frosting?

Front and back layout of the board - one half size here.

\author{
Bill Fisher W2OC 2 Barnard Road Armonk NY 10504
}

0ne of the most common adjustments that operators on FM repeaters find necessary to make, at one time or another, is the crystal trimming adjustment required to set their transmitters "on frequency." Most hams prefer to use a frequency counter to accomplish this, but although these instruments are increasing in number in ham shacks every day, they are still not readily available to the majority of operators. The alternative method of frequency adjustment usually employed is to be "talked on" frequency by someone at the receiver site watching a discriminator meter. This assistance, unfortunately, is not necessarily available very often or at a convenient time. The frequency monitor to be described here was designed to enable an operator to set his transmitter on frequency without the need for either a frequency counter or outside assistance. Furthermore, once this adjustment is made, the frequency monitor will continue to provide a constant check on it and automatically indicate if, and when, further adjustment is required.

The frequency monitor is installed at the repeater, connected to the input frequency
receiver, where it continuously monitors the output of the discriminator. When it detects a received carrier which is removed from the center frequency by a given amount, it signals this to the digital circuitry and also indicates whether the carrier is above or below the center frequency. This information is temporarily stored by the monitor until the carrier is removed from the receiver input. At that time the information is then transmitted by the repeater input. At that time the information is then transmitted by

Fig. 1. Schematic of the high-low frequency monitor.
the repeater in Morse code in the form of a letter "H" or a letter " \(L\) " if the signal was high or low with reference to the center frequency. If, however, the received carrier at the repeater is within a frequency "window" (\(\pm 750 \mathrm{~Hz}\) from center), no Morse letter will be sent. The operator, therefore, merely has to adjust the crystal trimmer until he no longer hears an "H" or an "L" when he releases his push-to-talk button, indicating that he is within the "window." This frequency window is adjustable to whatever limits are desired, but the \(\pm 750 \mathrm{~Hz}\) spread used at WR2ACI, White Plains, N.Y., has been found to be a practical figure.

The frequency monitor is designed to have its output key the same audio oscillator used for the repeater I.D. It also requires two logic signals normally present in I.D./ control circuitry. They are: (1) a so-called
"carrier drop" signal which falls trom a high (\(>2.4\) v.) to a low (\(<0.8 \mathrm{v}\).) whenever a carrier is removed from the receiver input, and (2) a so-called "I.D. hold" signal which remains high during the I.D. Referring to Fig. 1, operation of the circuit is as follows: The output of the receiver discriminator is connected through R1 and R3 to the noninverting input of U1, a 5556 op amp. (Note: The point of connection at the receiver is the same one ordinarily used for a zero-center microammeter.) The discriminator output is amplified by U1 and appears at pin 6. This bi-polar (i.e. positive and negative) signal at pin 6 is then presented to U 2 , pins 1 and \(10 . \mathrm{U} 2\) is a 1489 which has four identical sections and is specifically designed to accept bi-polar signals and convert them to zero and +5 volt logic levels. Each section can be individually adjusted to

\title{
ANATOMY OF A GREAT 2-METER RADIO
}

Rear panel test jacks for complete Tx and Rx metering and discriminator output for crystal netting; Input for external tone burst and Touchtone \({ }^{\oplus}\); Provision for external speaker.
Conservative 10 Watt transmitter with an effective IDC circuit to maintain narrow band deviation (\(\pm 5 \mathrm{KHz}\)) for today's repeaters; Automatic current Control and final protection against high VSWR.
Provision for front panel selectable "Private Channel" tone coded squelch (CTCSS) on both receive and transmit.
Triple tuned receiver "Helical Resonators" for maximum intermodulation interference rejection.
Built-in speaker.
The heart of a quality radio-a commercial grade receiver featuring Front-end MOS-FETS and a highly selective 9 section ceramic I.F. filter -necessary for today's active 2 Meter band; Reserve audio for noisy environments.
Individual "Netting" capacitors on both Tx and Rx crystals; 12 channel provision with popular channels 94/94, 34/94, 16/76 and 52/52 included; Easy access to crystal deck through "snap-open" trap door. Touchtone -trademark of A.T.\&T. Co.

\section*{ASTROPOINT \(=\) TOTAL PERFORMANCE}

STANDARD's "ASTROPOINT" system gives the no compromise performance for the active amateur, unlike the claims made by the "cheapies." Don't be misled by gimmicks or gadgets-it's what's inside that counts. Reliable, solid state circuitry and Glass-Epoxy

PC boards used throughout, backed by our 6 month warranty. INSIST ON TOTAL PERFORMANCE-INSIST ON STANDARD.
The 826 MA comes complete with microphone, mounting brackets, 4 channels and line filter.

For detailed information on the 826MA, the complete Standard line and the name of your nearest dealer write:

\section*{Standard \\ communications}

213/835-3134 • 639 North Marine Avenue, Wilmington, California 90744
a specific positive or negative threshold level and in this case one section (U2A) is set for a positive threshold of approximately 1.2 V and another section (U 2 B) is adjusted for a negative threshold of equal value. A third section (U2C) is merely used as an inverter. (The fourth section is not used). Let's assume that a carrier is received which is just outside the high frequency limit of the window (i.e. 750 Hz high) and that this produces a positive voltage swing. The gain of U1 would then be adjusted (by means of R6) so that, under these conditions, pin 6 would just reach the threshold level of U2A (approximately +1.2 volts). When U2A sees this level, its output (pin 3) drops abruptly from a high (approximately +4 V) to a low (approximately zero V). This low is then inverted by U2C and again by U3A causing RS flip flop U4A/U4B to "set" pin 3 (point X) high. Similarly, if a carrier is received which is just outside the low frequency limit of the window (750 Hz low), pin 6 of U1 would just reach the threshold of U2B (approximately -1.2 volts) and pin 8 of U2B would rise abruptly from a low to a high. This high would then be inverted by U3B and cause RS flip flop U4C/U4D to "set" pin 8 (point Y) high. In summary, therefore, point \(X\) will go high if a signal on the high side of the frequency window is received and point \(Y\) will go high if a signal on the low frequency side of the window is received. As soon as one of these points goes high, it will remain high (until cleared) and simultaneously the other point is inhibited from
\begin{tabular}{llcc}
IC & IC & +5 V & GAD \\
\# & Type & PIN & PIN \\
U1 & 5556 & \(\#\) & \(\#\) \\
U2 & 1489 & 14 & 7 \\
U3 & 7400 & 14 & 7 \\
U4 & 7400 & 14 & 7 \\
U5 & 7400 & 14 & 7 \\
U6 & 7493 & 5 & 10 \\
U7 & 7442 & 16 & 8 \\
U8 & 7430 & 14 & 7 \\
U9 & 7430 & 14 & 7 \\
U10 & 7400 & 14 & 7 \\
U11 & 7402 & 14 & 7 \\
U12 & 74121 & 14 & 7
\end{tabular}
* PIN \(7=+15 \mathrm{~V}\) PIN \(4=-15 \mathrm{~V}\)
Table 1.

Prototype monitor and power supply.
going high by means of the transposed connections to pins 10 and 12 of U3A and U3B, respectively. This inhibit action insures that only one indication is processed at a time. The method of clearing the flip flops will be covered later.

U5 through U12 comprise the readout section of the monitor. Q1, a programmable unijunction, provides the clock signal. The frequency of oscillation of Q1 can be adjusted by selecting the value of R10. The 150K, shown for R10 in Fig. 1, corresponds to a code speed of approximately 20 wpm . Incidentally, if it is convenient to use a freerunning clock signal from existing I.D. circuitry, Q1 and its associated components may be omitted and the external clock signal connected to pins 1 and 2 of U5D. Assuming, for the moment, that pins 2 and 3 of U6 are low, U6, a four bit binary counter (7493), will be clocked by the oscillator (via U5D) and U6's binary output (pins 12, 9, 8 and 11) will address the inputs of U7, a one of ten decoder (7442). The outputs of U7 are connected to U8 and U9 in such a manner as to program (in Morse code) an H from U8 and an L from U9. The two outputs of U8 and U9 are gated through U10A and U10B, respectively. Point X, as previously discussed, when high, indicates a signal on the high side of the window. Point X connected to pin 2 of U10A, therefore, will permit the \(H\) to pass when it is high and Point Y, connected to pin 10 of U10B, will permit the L to pass when it is high. Whichever signal is permitted to pass is then routed through U10C, U11A and U11B. The purpose of U11B is to permit inhibiting any

Fig. 2. Power supply, if needed.
Morse code output from the monitor while the repeater I.D. is being sent. To implement this inhibit action it is necessary to apply the "I.D. hold" signal (from existing I.D. circuitry) to pin 3 of U11B.

In the resting, or idle, state of the monitor, pins 2 and 3 of U6 are high and thus inhibit U6 from being clocked. Whenever a carrier is removed from the receiver input, however, the "carrier drop" signal causes pins 3 and 4 of U12 to go from a high to a low. This, in turn, causes U12, a one-shot multivibrator (74121), to produce a negative-going pulse at pin 1 . The duration of this pulse is determined by R13 and C4, and for the values shown, is approximately 200 ms. Thus, 200 ms after the carrier drops, pin 1 of U12 returns to its high state and momentarily causes pins 12 and 13 of U10D to go high (via C5). Pin 11 of U10D, therefore, momentarily drops to a low causing RS flip flop U5B/U5C to set pin 11 of U5C (point I) high and pin 8 of U5B low. This results in pins 2 and 3 of U6 going low, allowing U6 to be clocked and thus initiates transmission of a frequency indication. Note that U6 will be so clocked each and every time a carrier is removed from the receiver input but a letter will be transmitted only if point \(X\) or point \(Y\) has been set high due to the carrier having been outside the frequency window. If neither X or Y is high, even though U6 goes through its counting sequence, the lows appearing at pins 2 and 10 of U10A and U10B will prevent any output from them. Similarly, when a carrier drop initiates an I.D., U6 will also be
clocked, but even if X or Y is high at that time, pin 3 of U11B will be held high during the I.D. sequence and so inhibit any output from the monitor. Once clocking of U6 is initiated, it will continue counting until the count of 10 when pins 9 and 11 are both high. When this occurs, pins 4 and 5 of U5A also go high causing pin 6 of U5A to go low, resetting RS flip flop U5B/U5C. This resetting once again places a high on pins 2 and 3 of U6 resetting it and also inhibiting further clocking. U6 remains in this state until the next carrier drop which starts the whole sequence over again. The reason for the one-shot multivibrator is merely to provide a suitable time interval between the dropping of the carrier and the transmission of the frequency indicating letter.

Simultaneously with pins 2 and 3 of U6 going high at the end of the counting sequence, pins 1 and 2 of U3C momentarily go high (via C2). This causes pin 3 of U3C to momentarily go low and thus reset both RS flip flops U4A/B and U4C/D. This resetting ensures that both points \(X\) and \(Y\) are reset to low to prepare them for the next frequency indication.

Point I in Fig. 1 is provided for those repeaters which do not employ any transmitter drop-out delay and can be used with existing control circuitry to ensure that the transmitter is held on for the duration of the readout sequence (approximately 1 second).

The prototype unit was constructed on an experimental type PC board which accepts the mounting of a multitude of ICs, all of which must be interconnected by hand-wiring. The board and its power supply was then mounted on a \(7 \times 10\) panel and this panel then mounted in a \(7 \times 10\) chassis so as to completely enclose the unit and provide effective shielding. With the PC board now available, a smaller enclosure may be used but shielding should still be provided for the monitor, as it should be for any solid state unit to be operated in the vicinity of a vhf transmitter. A 9 pin socket was used for the interconnecting (shielded) cable used to interface the monitor with the I.D./control circuitry. The lead from the receiver discriminator was brought in separately via an ordinary RCA type phono plug. This lead was also shielded and because of the location
of the receiver at the WR2ACI repeater site, was about 25 feet long.

Initial adjustment of the frequency monitor should begin by setting the threshold levels of U2A and U2B. Temporarily remove the jumper connecting pin 6 of U1 to pins 1 and 10 of 2 . Next, apply a variable voltage source of approximately 0 to 2 V dc to pins 1 and 10 of U 2 . (Any handy potentiometer connected across a flashlight battery will suffice to provide this variable voltage.) With just the 5 V supply connected to the frequency monitor, slowly vary the voltage to pins 1 and 10 of U2 while monitoring pin 3. As you bring the voltage up from zero, pin 3 will abruptly drop to zero from about 4 V when the voltage on pin 1 reaches approximately +1.2 V . Make note of the exact voltage on pin 1 when this drop at pin 3 occurs. We will call this the positive threshold of U2A. Reverse the voltage (battery) polarity on pin 1 and 10 of U2 and monitor pin 8 of U2B. As you increase the voltage on pins 1 and 10 of U2 (in a negative direction), the voltage on pin 8 will abruptly rise from zero to about 4 volts. The threshold adjustment for U2B consists of setting R7 so that this abrupt change from low to high occurs at the same voltage on pin 10 (but negative in polarity) as previously noted for the positive threshold of U2A. Once set, this adjustment need not be touched again.

Disconnect the variable voltage source from pins 1 and 10 of U2 and reconnect the jumper between pin 6 of U1sand pins 1 and 10 of U2. Set R6 to about mid-range and verify that there is a jumper between pin 2 of U1 and the end of R6 as shown in Fig. 1. Connect the \(\pm 15 \mathrm{~V}\) supply to the frequency monitor, ground point H and monitor pin 6 of U1 with a voltmeter. Adjust R5 for zero (off-set) voltage indication of the voltmeter. This adjustment, like the previous one, is made once and then left alone. Remove the ground from point H , connect the 5 V and the \(\pm 15 \mathrm{~V}\) supplies to the monitor and attach the variable voltage source to point H . For this step the voltage applied to point H should be variable in the range of 0 to \(\pm 0.2 \mathrm{~V}\). While varying the voltage to point H , monitor the voltage at pin 6 of U1. Pin 6 should follow the polarity of the input
voltage as you change it and also indicate an approximate gain of 10 (with R6 at midrange). The final adjustment of R6 must be made with the monitor connected to the discriminator of the repeater receiver. The amount of gain required will depend on the characteristics of the particular receiver being used. If additional gain is required, the jumper provided between pin 2 of U 1 and R6 can be replaced with a 100 k resistor. The actual gain setting of R6 will be the one which produces the \(\pm\) voltages at pin 6 of U1 which are exactly equal to the previously set threshold levels of U2 when calibrated frequency signals, set to the desired high and low frequency limits, are fed, in turn, to the receiver input.

The connections between U2 and U3 shown in Fig. 1 (i.e. \(A\) to \(C\) and \(B\) to D) are to be used if a positive output from the receiver discriminator indicates a signal on the high frequency side of center frequency. If, however, the discriminator produces a negative output for a high frequency signal, these connections will have to be transposed so that \(A\) connects to \(D\) and \(B\) connects to C. (The PC board available provides convenient pads to facilitate these changes).

The time constant formed by R1, C1 at the input to the op amp is employed to allow time for transmitter oscillators (particularly frequency synthesizers) to "settle" before being processed by the monitor. Note: C1 must be a paper capacitor (not electrolytic).

Fig. 2 shows a suitable power supply for the monitor. If convenient, the unit may be powered from an existing power supply at the repeater. The monitor requires approximately 150 mils for the 5 volt digital circuits and 2 to 3 mils for the \(\pm 15 \mathrm{~V}\) supplied to the op amp.

Point N is provided to permit inhibiting operation of the frequency monitor, when desired, by remote control via control circuitry. To inhibit the monitor, Point N should be grounded.

This frequency monitor has been in continuous service \(x\) WR2ACI since January, 1974 and I am sure thato ther repeaters will find it to be, as we have, a useful addition to their system.
...W2OC

73 MAGAZINE

\section*{SPECIAL2
BACK ISSUE OFFERINGS}

Now you can build up your ham library for next to nothing!
PACKAGE A 25 different issues (of our choice) for ONLY \(\$ 5.00\). That's just 20d an issue - it costs us more than that to print them! Choose from three different categories:

Vintage: 1962-1965
Recent: 1966-1969
Very Recent: 1970-1973

PACKAGE B

Great Gift Idea!

A complete set of 12 issues for a particular year for only \$3.95. At only 336 an issue, you're still saving a bundle. Choose any year(s) from 1963-1973. Should we run out of a particular issue, you will receive a \(50 d\) credit.

Why not send the hams on your list a complete year of 73 s in one of our handsome red binders with gold and black lettering. Special holiday price, \(\$ 7.75\). IThe regular price of the binder alone is \(\$ 5.00\) !) Come to think of it, why not give one to yourself?!

\section*{BACK ISSUE OFFERS}

PACKAGE A (\$5.00 EACH)
- Vintage: 1962-1965

ㅁ Recent: 1966-1969
\(\square\) Very Recent 1970-1973

PACKAGE B (\$3.75/year)
\(\square\) year(s)
- with binders (\$7.75 each)

Total Enclosed \$

HURRY WHILE OUR SUPPLY LASTS. ALL ORDERS ON A FIRST COME, FIRST SERVED BASIS.
Name - - - - - - - - - - - - -
Address \(\longrightarrow\) Call -
City \(\longrightarrow\) State \(\longrightarrow\) Zip

\section*{What's Really Inside The Regency HT ?}

If you have been in the market for a hand-held transceiver for the 2-meter FM frequencies, you are by now aware that there are several such units on the market and that there is much diversity in both features and price. One unit, which is at the lower end of the price scale while still retaining a respectable position on the features chart, is the Regency Model HRT-2.

This transceiver is a five channel, all solid-state (3 IC's, 22 transistors, 6 diodes), compact package featuring a Hi-Low of
output of \(1 \mathrm{~W} / 2.2 \mathrm{~W}\) and a receiver sensitivity of 0.7 uV for 20 dB quieting. Individual netting capacitors are provided for each of the 5 transmitting and 5 receiving crystals. All crystals are the plug-in type. Frequency modulation is generated via the standard biased varactor diode arrangement. An internal pot permits deviation adjustment from 0 to 7 kHz and is factory set at approximately 5 kHz . The receiver section is a double-conversion, super-hetrodyne design and uses two ceramic filters to assist in cross-channel interference rejection. Both transmitter and receiver are designed to operate uniformly across the entire 144-148 MHz band. Plug jacks are provided for using an external microphone with a remote PTT switch. (This is required when the rig is worn with a belt clip - a convenient mode of operation.) An external earphone jack is likewise provided.

The HRT 2 does not come battery equipped from the factory, leaving the operator with the choice of purchasing either the mercury type or the more expensive, rechargable, nickel-cadmium battery pack. The ni-cad need not be removed from the transceiver for recharging, as there are two recessed contacts located on the bottom of the unit for this purpose. NOTE: these contacts are automatically not connected when a mercury battery is installed. . .they tend to make loud noises when an attempt is made at recharging. The battery charger, a rubber duckey antenna, external microphone, earphone, etc., are available from Regency.

One other feature of the handie-talkie, not yet mentioned, is that its case is made of Acrylonitrile-Butadiene-Styrene. Say that three times real fast! In other words, high impact plastic, for when the time comes that you will drop the unit from your beer can type grip.

Priced at \(\$ 179.00\), Regency should sell a lot of these radios.
. . .W3WTO

Behold, the complete schematic.

\section*{TECO}

Teco is a subsidiary of Tucker Electronics. Tucker is the world's largest supplier of reconditioned test equipment, the original tested instrument DISTRIBUTOR (with 18 lines of new test equipment), and the Southwest's leading repair and calibration facility.

\section*{5 Good Reasons Why YOU Should Buy Your Ham Equipment From TECO}
1. Wats Communication: You can shop by either mail or by telephone, toll free. You merely dial 800-527-4642 and ask for Teco. Your questions will be promptly answered.
2. Trade-ins: We will allow top dollar for your excess test equipment in trade for new ham equipment. Typical trade-in allowances: HP \(200 \mathrm{CD}(\$ 100.00)\), HP 608D (\(\$ 600.00\)), HP 410B (\(\$ 90.00\)), Bird 611 (\(\$ 100.00\)). We will also take Ham and CB equipment and calculator trade-ins.
3. Financing: You can finance your purchase through BankAmericard, Master Charge or American Express, with up to 24 months to pay.
4. Shipping Facilities: Complete facilities for both domestic and export shipments.
5. Service: Teco is service oriented. Complete service facilities in-house. A complete comprehensive technical manual library is available to assist you with equipment problems.

TECO

HP 616A SIGNAL GENERATOR: Direct reading and direct control from 1.8 to 4.2 GHz . The HP 616A fea5ures \(\pm 1.5 \mathrm{~dB}\) calibrated output accuracy from -7 dBm to -12 dBm . The output is directly calibrated in microvolts and dBm with continuous monitoring. Simple operation, frequency dial accuracy is \(\pm 1 \%\) and stability exceeds \(0.005 \% /{ }^{\circ} \mathrm{C}\) change in ambient temperature. Calibrated attenuator is within \(\pm 1.5 \mathrm{~dB}\) over entire output band. 50 ohm impedance unit has internal pulse modulation with rep rate variable from 40 Hz to 4 KHz , variable pulsewidth (1 to \(10 \mu \mathrm{sec}\)) and variable pulse delay (3 to \(300 \mu \mathrm{sec}\)). External modulating inputs increase versatility. New price exceeds \(\$ 2000.00\).
TECO PRICE \(\$ 495.00\)

BALLANTINE 300 H VTVM: The 300 H is a compact, conservatively designed instrument for applications where high accuracy, low maintenance cost, long life, freedom from power line disturbances and simplicity of operation are of prime importance. Its basic accuracy of \(2 \%\) of reading combined with calibration stability of 5000 hours and high sensitivity of \(30 \mu \mathrm{~V}\) in the null detector mode makes the 300 H a versatile laboratory tool. It is also usable as a 40 dB gain wide band amplifier. Voltage range is \(300 \mu \mathrm{~V}\) to 300 V with frequency range from 10 Hz to 1 MHz , input impedance of \(2 \mathrm{M} \Omega\) shunted by 15 or 25 pF and -10 to +10 linear dB scale \(\$ 130.00\)
MILITARY AN/UPM-15 200 VOLT PULSE GENERATOR: A portable, general purpose pulse generator set used for testing pulse amplifiers and networks, and for modulating oscillators in field and depot maintenance. It generates single or double pulses of variable repetition rate, width, amplitude, separation, delay and rise decay time. The pulses may also be synchronized with oscillators or other instruments. Output rep rate is externally or internally variable from 50 Hz to 10 KHz , pulsewidth variable from 0.5 to \(100 \mu\) seconds, amplitude 0.002 to 200 volts and calibrated delay from 2 to \(225 \mu \mathrm{sec}\). An extraordinary value ... \(\$ 75.00\)

NEW FLUKE COUNTER AT BIG CLOSEOUT DISCOUNT SALE-WHILE THEY LAST \$249.95: The Fluke 1941A 5 Hz to 40 MHz range with frequency, totalize and RPM functions. Big 6-digit gas-discharge display and five standard gate times. The input sensitivity is 40 mVrms with push-button attenuator, all pushbutton range selection, switchable low pass filter. Don't miss this fantastic never-to-be-repeated, nationally advertised offer. One year full warrentee - you can't lose. Fluke 1941A Counter
\$249.95

TEXTRONIX 105 SQUARE-WAVE GENERATOR: From 25 Hz to 1 MHz and with a risetime of less than 20 nsec into a terminated 93 ohm cable - the 105 will generate up to 15 V and more than 15 mA peak-to-peak. Precision square waves over the complete range make the 105 a perfect instrument for testing amplifiers and other test instruments. The TECO price makes it even better
.\(\$ 75.00\)
MILITARY UPM-4A TRANSPONDER TEST SET: Three piece unit in single cabinet includes power supply, simulator unit and oscilloscope display unit. The UPM-4A performs many measurements on radar equipment operating in the 925 to 1225 MHz range including checks on decoding, receiver bandwidth and frequency, receiver sensitivity, pulse counting, pulse analysis and IFF target generators. This unit sold new for nearly \(\$ 5000\) but at TECO its cost is a low.. \(\$ 250.00\)

\section*{MEASUREMENTS MODEL 95 (MILITARY VERSION} SG-3) STANDARD FM SIGNAL GENERATOR:
A super buy. Perfect for the Ham using the \(220 \mathrm{MHz}, 2\) or 6 meter bands. Frequency range is 50 to 400 MHz in three bands and a \(\pm 0.5 \%\) direct reading dial. Output voltage is continuously variable from 0.1 to \(100,000 \mu \mathrm{~V}\) into \(50 \Omega\). The many features in these excellent condition instruments make this the TECO buy of the quarter
. \(\$ 475.00\)

CAUTION: THESE INSTRUMENTS ARE SOLD AS-IS. WHILE EVERY ATTEMPT IS MADE TO ASSURE COMPLETENESS AND TO DELIVER AN OPERATIONAL INSTRUMENT, THERE IS NO WARRANTY IMPLIED OR STATED EXCEPT: "YOU MAY EXAMINE THE UNIT FOR TEN DAYS AND, IF YOU ARE NOT SATISFIED, YOU MAY RETURN FOR FULL CREDIT PAYING ONLY THE FREIGHT CHARGES". EVERY TECO INSTRUMENT IS CONSIDERED TO BE A GENUINE BARGAIN, BUT THE BUYER SHOULD HAVE ACCESS TO COMPETENT TECHNICAL TALENTS TO MAKE THE PURCHASE PRACTICAL.

SEND FOR THE LATEST "BARGAIN HUNTER" BROCHURE - IT'S FREE!

\section*{SCIENTISTS/ENGINEERS MATHEMATICIANS /STUDENTS}

NOW . . . there's a hand-held electronic slide rule that's really affordable . . . with performance features equivalent to others costing much more.

- Transcendental functions \(\sin , \cos , \tan , \sin ^{-1}, \cos ^{-1}\), tan-1, log (common logarithm), In, (natural logarithm), ex, \(x y\)

\section*{Price: \(\$ 149.95\)}

\section*{Features}
- 14 scientific functions
- 37 keys
- Trigonometric functions performed using degree or radian entry
- Algebraic problem entry
- Solves complex problems involving
up to two levels of parenthesis
- Solves problems in minutes that take hours with a slide rule
- Single function keys help eliminate ambiguity in operation
- Performs full chain calculations with any sequence of functions
- Error and low battery indicators
- Separate system clear and clear entry keys
- Accuracy is orders of magnitude better than slide rule
- All solid state electronics
- Bright, readable solid state display (light emitting diode)
- Display automatically cuts off after inactive period - extends battery life
- Full floating decimal
- Operates on rechargeable batteries or AC - use it anywhere
- Basic functions \(+,-, \ldots, x\)
- Additional functions \(\sqrt{x}, 1 / \mathrm{x}, \mathrm{x}^{2}\)
- Calculation range: \(1 \times 10.99\) and \(\left(10-10 .{ }^{9}\right) \times 10^{-17}\)
- Displays up to 10 digit precision for mantissa and 2 digits for exponent plus signs
- \(\pi\) key
- Factor reversal (\(\begin{aligned} & X \\ & \text { - }\end{aligned}\)) key
- Light to indicate radian mode
- Separate memory key for storage of intermediate results or constants
- Change sign key
- Automatic selection of floating point or scientific notation for result display
- Minus sign, overflow, and low battery indicators
- Size: \(61 / 4^{\prime \prime} \times 31 / 2^{\prime \prime} \times 1-3 / 166^{\prime \prime}\)
- Power system: Ni Cad rechargeable battery
- Weighs \(101 / 2\) ozs. including batteries
- Warranty: One year parts and labor

MADE IN U.S.A.

\title{
The most popular three band beam in the world!
}

Superior construction and performance make the difference in Hy-Gain's popular 3-element Thunderbird.
- Thunderbird's "Hy-Q" traps provide separate traps for each band. "Hy-Q" traps are electronically tuned at the factory to perform better at any frequency in the band-either phone or CW. And you can tune the antenna, using charts supplied in the manual, to substantially outperform any other antennas made.
- Thunderbird's superior construction includes a new, cast aluminum, tilt-head universal boom-to-mast bracket that accommodates masts from \(11 / 4^{\prime \prime}\) to \(21 / 2^{\prime \prime}\). Allows easy tilting for installation, maintenance and tuning and provides mast feed-thru for beam stacking.
Taper swaged, slotted tubing on all elements allows easy adjustment and readjustment. Taper swaged to permit larger diameter tubing where it counts! And less wind loading. Full circumference compression clamps are mechanically and electrically superior to self-tapping metal screws.
- Thunderbird's exclusive Beta Match achieves balanced input, optimum matching on all 3 bands and provides DC ground to eliminate precipitation static.
- Up to 8 db gain
- 25 db front to back ratio
- Power capability 1 Kw AM, 2Kw PEP
- SWR less than 2:1
- Extra heavy gauge, machine formed, element to boom brackets with plastic sleeves used only for insulation. Bracket design allows full mechanical support.

Model 388
\$169.95

\section*{Other tri-band beams to choose from:}
- 6-element Super Thunderbird TH6DXX
- 3-element Thunderbird Jr. TH3JR

Model 389 \$199.95
- 2-element Thunderbird TH2Mk3

Model 221 \$119.95
Model 390 \$109.95

new rca meters at special teco savings

UP TO 15\% OFF ON ALL B\&K/DYNASCAN NEW INSTRUMENTS
- CALCULATORS -

CORVUS, BOWMAR, MELCOR, SINCLAIR (WE TAKE TRADE-INS)
- CITIZENS BAND RADIO -

COBRA, HY-GAIN, MIDLAND, E. F. JOHNSON, \& OTHERS
- AMATUER RADIOS -

GENAVE, MIDLAND, TEN-TEC, HY-GAIN, \& MANY OTHER MODELS

\section*{- ANTENNAS -}

ANTENNA SPECIALISTS, CUSHCRAFT, HY-GAIN, ROHN, CDE, \& MORE
- NEW TEST EQUIPMENT -

B\&K/DYNASAN, LEADER, PHILLIPS, WESTON, FLUKE, RCA, \& OTHERS
- USED TEST EQUIPMENT -

HEWLETT-PACKARD, TEKTRONIX, GENERAL RADIO, FLUKE, \& OTHERS
- COMPONENTS -

WORKMAN, G-C (CALECTRO), RCA, GOLD LINE, \& MANY MORE
- TECHNICAL PUBLICATIONS -

SAMS' BOOKS, TAB BOOKS, ARRL BOOKS, HAM RADIO, '73, CQ, ETC.

Dick McDonald, K5WOR
CALL: (214) 348-1560
WRITE: PO BOX 1050, GARLAND, TEXAS 75040

Now that most repeaters have been relicensed and hundreds of new repeaters are on the air, get this, the most complete list of repeaters available anywhere, and be sure to have it in your glove compartment when you travel, or with you when you fly so you know which repeaters to use.

This new 1974 edition of the Repeater Atlas of all the repeaters in the world is just off the press. This edition, with the monthly repeater update in the 73 newspages, will keep you posted.

1.50

Magazine = Peterborough NH - 03458

\section*{NEW TECHNIQUE LETS YOU LEARN NOVICE THEORY FAST!}

\footnotetext{
You learn faster by listening than reading because you can play a cassette tape over and over in your spare time - even while you are driving - getting a little more each time you hear it.

You can't progress without solid fundamentals - and these four cassettes (four hours) will give you all of the basics you'll need to pass the Novice exam easily. The exam these days changes so fast you can't memorize for it any more - plus you'll have an understanding of the basics which will be invaluable for the rest of your life.

There are three one hour cassettes of theory explained by Wayne Green and one hour of questions and answers from the very latest Novice exams.

These tapes are being used by many radio clubs as an introduction to radio and electronic theory.

You'll be astounded at how really simple the theory is when you hear it explained on these tapes. Nine year old children have used these cassettes to breeze through their Novice exam.

Most cassette tapes these days sell for around \$6. Since 73 is interested in helping get more amateurs and not in being in the tape business, these tapes are being sold for the incredible price of \(\$ 13.95\) for the complete set of four one hour cassettes - and these will play on any cassette player . . . portable, car or cassette deck.

73 MAGAZINE Peterborough NH 03458
}

\section*{FM Schematic Digest}

A COLLECTION OF MOTOROLA SCHEMATICS Alignment, Crystal, and Technical Notes covering 1947-1960 136 pages \(11 \frac{112 "}{} \times 17^{\prime \prime}\) ppd \(\$ 6.50\)

\section*{S. Wolf}

Box 535
Lexington, MA 02173

\section*{TOOLS}

Assorted Needle Nose and Cutters. \(41 / 2\) to \(6^{\prime \prime}\) sizes. Ideal for P.C. work. (Per-
 fect for Christmas Gift) American Made. Specify Sizes preferred or General Assortment. Send \$17.50 for assortment of 10.

GREENE'S ELECTRONICS
P.O. BOX 626

ST. GEORGE SC 29477
Phone: 803-563-3148

\section*{MINIATURE \\ SUB-AUDIBLE \\ TONE ENCODER}

- Compatible with all sub-audible tone systems such as Private Line, Channel Guard, Quiet Channel, etc.
- Glass Epoxy PCB, silicon transistors, and tantalum electro
lytics used throughout
- Any miniature dual coil contactless reed may be used
(Motorola TLN6824A, TLN6709B - Bramco RF 20)
- Powered by \(12 \mathrm{vdc} @ 3 \mathrm{ma}\)

Use on any tone frequency 67 Hz to 250 Hz
- Miniature in size \(2.5 \times .75 \times 1.5^{\prime \prime} \mathrm{high}\)
- Wired and tested (A.). \(\$ 14.95\) freqs. for \(\$ 17.50\) eal
- Output \(3 v\) RMS sinewave, low distortion
- Postpaid - Calif, residents add \(5 \%\) sales tax

\section*{COMMUNICATIONS \\ SPECIALISTS}
P.O. Box 153, Brea CA 92621

\section*{Keyer Module}

keyer module has full squeeze or normal operation, yet draws less than one ma., key down! Attach a 9v transistor battery and forget it! Has dot, dash and space memories. Use with any key lever and 4 to 15 vdc source. Write or call for brochure. (303)794-7234. Dealer inquiries invited.
CONTROL SIGNAL CO

\title{
Would You Believe
}

\section*{187,000}

\section*{Phone Patches?}

Martin W. Krey K7NZA 7037 East Chaparral Road Scottsdale AZ 85253

Some fine volunteer phone patch operations are going to bite the dust. The persistent winding down of American military involvement in Southeast Asia and the continuing homeward parade of servicemen are good indicators of the declining need for family communications between the U.S.A. and the Thailand area. It's a safe bet that with the need for their services gone, the groups providing the phone patch hookups stateside will disband, or change their equipment and operation so much as to be unrecognizable as the organization of Viet Nam conflict vintage.

Before the big change is made, one ham decided to record as much as possible of the nature and spirit of one of the most successful patch outfits in the land, Bash-Hal-NeAe. That's Navajo for "Metal that talks, sees and listens," and it's part of Ben-Nun-I-Kin; Navajo for "House on the Hill." Bash-Hal-\(\mathrm{Ne}-\mathrm{Ae}\) is a club station with 34 members, and it's owned by a guy described by an old friend as being "as common and down to earth as a dirt farmer." His main QTH is in Scottsdale, Arizona, and he's Barry Goldwater K7UGA.

Bash-Hal-Ne-Ae is known on the air as AFA7UGA, and according to Doris Counts, club secretary, the club began Air Force MARS service in August of 1967. Since that time, she says, the members have completed well over 187,000 phone patches for Airmen in the Viet Nam-Thailand-Philippines area. The club was organized solely to perform this service.

To visit Bash-Hal-Ne-Ae, you've got to get permission from the new head honcho, Tom Moore W7FCQ. (Bill Eccles K7MJC, well known manager for seven years recently retired due to illness.) The shack is just a few steps outside Senator Goldwater's back door, and while he is described as a very friendly guy, he doesn't want so many people up there that his grandchildren get trampled on their way to the swimming pool. Once you get inside Barry's shack, you will agree that it is one of the most far-out ham hangouts in existence.

First off, if Tom Moore or one of the other hams is inside chasing AIA8NA at Makhon Phanom, or one of the other seven Air Force MARS stations in Thailand all over the allotted frequencies, you won't make it inside the locked door. Nobody will hear you pounding. That means you're going to have to sit outside that beautiful stone shack in a stretchy relaxing chair and look out over a sparkling swimming pool, let your eyes take in the gorgeous homes and sprawling churches all around below you, and lay your eyeballs on serene desert mountain peaks such as Pinnacle Peak, Squaw Peak, and the famous Superstitions and other mountains that ring the Valley of the Sun. You can drink in great lungfuls of pure desert air and look up into a sky that is sparkling, bright and clear.

But you won't sit for long. Eagle-eyed Clarence Gartman will bear down upon you like he just caught you stealing the knob off the front door. You've blinked an electric

How can you ever get the whole membership of a club together? Here are 24 of the 38 Bash-Hal-Ne-Ae members. That's Barry Goldwater third from left in front and long-time station manager Bill Eccles first from the left. Husband and wife team of MARS members is Barbara Chamberlin WA7UHP, front center, and Bob WA7EIG. Group has completed over 187,000 phone patches for Airmen in Southeast Asia.
eye on the way in, and the grim caretaker has been sorting out your characteristics from inside the main house beyond the pool. He sees a strange car - no stars on the license plate - a droopy-shouldered guy with eyes glazed from hamming all night. You're gonna get bounced, unless you can prove that someone inside wants you in.

Then out pops a key, and Clarence lets his face wrinkle into a grin, and his eyes twinkle. You're inside.

The first thing you see is the friendly face of Tom Moore, Dave Pollard WA7OVH, or one of the other club members behind the mike turning knobs or gently reminding an emotional wife in Brooklyn or Miami that

\title{
Painio bury prive qrour kit MAKES PRINTED GIRCUITS THREE WAYS!
}

I FULL SCALE ARTWORK MASTER

\title{
USES DATAK'S POS-NEG PROCESS The revolutionary photographic way that makes PERFECT printed circuits from original art or a printed page.
}

KIT CONTAINS: \(5^{\prime \prime} \times 6^{\prime \prime}\) steel printing frame, 4 sheets \(5^{\prime \prime} \times 6^{\prime \prime}\) photocopy film, yellow filter, chemicals for 1 pint film developer and 1 pint film fixer. \(5^{\prime \prime} \times 6^{\prime \prime}\) copper clad board, \(3^{\prime \prime} \times 41 / 2^{\prime \prime}\) copper clad board, spray can of photo etch resist, 1 pint resist developer, 2 sheets \(81^{\prime \prime} \times 11^{\prime \prime}\) layout film. 1 roll \(1 / 16^{\prime \prime}\) printed circuit tape, 1 roll \(1 / 32^{\prime \prime}\) printed circuit tape. 8 sheets dry transfer direct etch PC patterns including pads, transistors, round can and flat pack ICs. DIP ICs, edge card connectors, lines, circles, jogs. etc.. \(1 / 4 \mathrm{lb}\) anhydrous ferric chloride to make 1 pint etchant. instructions.

\section*{ER-4 COMPLETE PHOTO ETCH SET postpaid \(\$ 24.95\) AT YOUR DISTRIBUTOR OR DIRECT (N. J. residents add sales tax) The DATAK corp. \(\bullet 6571\) st St. \(\bullet\) Guttenberg, N. J. 07093}

Tom Moore W7FCQ, station manager at Goldwater's Bash-Hal-NeAe MARS station, wonders why they can't hear him in Thailand. Take heart, novices, for after checking the scope, this fine ham found he hadn't flipped the switch on the T-12 amplifier.
she's got to say "over" so that the radio hams can flip the switches to let her husband in Thailand or the Philippines talk.

Your eye quickly takes in the Robot slow scan television equipment and the double bank of Collins S-Line ham gear that is set in a gleaming wooden walk-in cabinet built by Elmer Olsen K7GPZ before he became a
silent key two years ago. You note the S-1 and T-12 amplifiers, the Tektronix RM-15 scope, and the digital Heathkit frequency indicator. You see the airplane pedal foot controls for transmitters and receivers and the row of weather instruments indicating air temperature, pressure, wind direction, etc.

A picture of Kenny Hinderleiter K7HQF stands on a shelf above the weather instruments. He's the ham, blind since age fifteen months, who has run over a hundred thousand phone patches for servicemen, and whom the Air Force flew to Okinawa and feted in 1971.

Your eye becomes aware of a vast array of art treasures and trophies that cover the walls of the shack. Forty colorful Kachina dolls pop out from the stones of the fireplace, forty sacred and valuable manifestations of the Hopi gods, given to Barry by Indian friends. The dolls are the remnant of a 400 -doll collection that Barry gave to the Heard Museum. Over the fireplace is a color enlargement of an Indian photograph, a study of a pensive Indian woman's face.

A long, built-in, cushioned bench fits under a row of picture windows on the north wall, looking out upon the length of Mummy Mountain. Above it is a collection of Air Force shoulder insignias.

Awards and plaques cover the walls even behind the ham gear cabinet. The north wall beside the picture windows is perhaps the most striking, for it bears a pencil sketch of a youthful Goldwater, surrounded by hundreds of signatures. It bears a dateline of 1960, Waldorf Astoria and the letters CSSC. Around the picture are autographed pictures of Presidents Kennedy, Johnson, Nixon, Eisenhower and Hoover. Jimmy Doolittle and Eddie Rickenbacker are there, as well as generals Spatz, MacArthur, Twining, LeMay, Mark Clark and many others. Even the Duke of Windsor has his picture there.

Right under this display is a low refrigerator for cold refreshments and a setup for making hot drinks. Visiting hams are invited to partake.

A ten-foot bookcase reaches nearly to the ceiling left of the door, and a quick glance tells you that the OM who owns them has a mind that likes to poke into many corners of knowledge. Among the hundreds of books are Buckley's Eye of the Hurricane, White's Christ and Satan, Lasky's J.F.K., and Copley and Pourade's Anza Conquers the Desert.

To the right of the door another wall is covered by plaques and awards, all given to Goldwater. There is a YMCA Distinguished Service Award, and Inspiring Leadership Certificate from the Republican Conference, 88th Congress, two honorary doctor of laws degrees, and two Goldwater golden dollars, with his face on one side and the Liberty Bell on the other. The whole wall is covered.

But this is primarily a MARS station, so in the most obvious places, right over the ham gear, Senator Goldwater has placed the awards and certificates earned by the men and women who belong to the club and are responsible for its remarkable DX phone patch record. There's a certificate from Air Force Communications dated October 12, 1968, showing appreciation to AFA7UGA hams for running 10,000 phone patches for soldiers in Southeast Asia. Another dated July 15, 1970, is a Certificate of Achievement from the Department of Defense,

Tell us what you have - Here's a partial list of what we want:
\begin{tabular}{|c|}
\hline *w/control boxes \\
\hline RT-743/ARC-51A . . RT-698/ARC-102 \\
\hline RT-823/ARC-131 . . . Magnavox FM-622 \\
\hline RT-857/ARC-134 . . . RT-859/APX-72 \\
\hline RT-524/VRC . . . RT-246/VRC \\
\hline R-442/VRC . . . R-390A/URR \\
\hline RT-648/ARC-94 . . AN/TRC-68 \\
\hline AN/VRC-24 . . AN/URC-9 . . AN/PRC-77 \\
\hline CU-1669/AR . . 490T-1 . . . 618T-1-2-3 \\
\hline C-6287/ARC-51BX . . . AN/PRC-25 \\
\hline Wilcox 807 . . AN/ARC-114/115/116 \\
\hline
\end{tabular}

We buy all types of military test equipment. . . radios, etc. Do you have a TS-683/TSM crystal impedance meter, \(H-P\) or TEKTRONIX equipment? If you hate \(\$ \$ \$\) we'll trade for NEW ham gear! But if you love green stuff, let's trade YOUR equipment for OUR dough!
COLUMBIA ELECTRONIC SALES, INC. Box 9266-A; No. Hollywood, CA 91609 Phone: (213) 764-9030

8038C VCO WAVEFORM GENERATOR
New, factory parts, full specs. 14 pin DIP
LM566CH VCO FUNCTION GENERATOR
New, TO-5, specs.
\(\$ 4.00\)
MC 1455(555) PRECISION TIMER
New,Mini-Dip
\(\$ 1.65\)
MM5314 CLOCK CHIP
New, full specs
\(\$ 9.50\)
8220 MEMORY
8 bit \((4 \times 2)\) content addressable memory. TTL and DTL compatible. For use in DATA-TO- MEMORY camparison, pattern recognition, cache memory, auto correlation, virtual memory, learning memory. New, House numbered. 16 pin DIP, specs, \(\$ 6.00,10 / \$ 45.00\)

VOLTAGE REGULATORS
MFC 6034 , variable to \(+20 \mathrm{~V}, 200 \mathrm{~mA}\)........................ \(\$ 1.00\)
ML 7805, 7806, 7812, 7815, 7824, pos,voltage, 1A
MC 7912, 7915 neg.voltage, 1 A \(\$ 2.50\) \(\$ 2.50\)
\(\$ 2.50\)
723 G variable 2 to \(37 \mathrm{~V}, 150 \mathrm{~mA}\), house numbered
DTL SALES
930 Dual 4-input NAND GATE 946 Ouad 2-input NAND GATE 962 Triple 3 -input NAND GATE

TTLSALE
New - House numbered SN7400, SN7402, SN7410, SN7430, SN7450, SN7453, SN7460 \(\$.25\) each, \(10 / \$ 2.00,100 / \$ 17.50\) ANY MIX

ALL ORDERS POSTPAID - PLEASE ADD INSURANCE MINIMUM ORDER - \$5 U.S./\$15 FOREIGN LATEST LISTS - 10d stamp

\section*{Hихипи}

While we are to some extent a prisoner of the authors of the articles - if they don't write them we can't print them still we do like to know your reaction to what we do publish so we can keep trying to bring you what you enjoy the most. In the interests of science then, please let us know which articles you enjoyed the most and which you disliked most. The author of the article with the most votes will get a check for \(\$ 50\) extra to encourage him to get busy and write more.
wow!
UGH!!

VOXPOOP, 73, Peterborough NH 03458
Military Assistance Command, signed by General Creighton Abrams. Still another, from the Department of the Air Force, is for completing 100,000 phone patches between December 1965 and December 1971, signed by General John D. Ryan, Chief of Staff.

On the end of the rig cabinet, facing the door, are individual engraved name plates for the four club members who have become silent keys since the beginning of the phone patch service.

Between the rig and the long bench stands a glass-topped trophy table containing an array of pins, medalions, gavels, keys to cities, and other trophies given to K7UGA by people all over the nation. But placed prominently on top of the glass is a large, thick book of letters from soldiers, YL's, XYL's, and parents who wanted to say thanks for phone patches.

A wife in Tucson wrote in 1970, "No greater Christmas gift could I and my two children have than a call from my husband." A Houston father wrote in 1971, "My wife - in between tears - was thrilled to hear the voice of our son." An undated letter from a sergeant in the combat zone said simply, "A call to loved ones is the next best thing to being with them."

A letter from a Phoenix hospital thanks the hams for speedy contact with a doctor in Viet Nam when the postal service couldn't get the job done in two months. The writer voices surprise that the station could put the hospital person-to-person with their man so quickly "over a distance of 13,000 miles."

The most striking thing about the phone patch service is the apparent ease at which the whole thing is carried off. Tom Moore or another op points the Collins 237B log periodic beam toward Thailand, tunes the \(32 S-3\) to a MARS frequency, zero beats the \(75 S-3 C\), and calls one of the stations he's recently had good, solid hook-ups with. If conditions are good, he gets a booming answer, signal reports are exchanged, the stateside ham gets a Ma Bell long distance operator on the line, and the waiting Airmen at some base in or near Thailand get to talk home.

The character of the conversations has changed since the life-or-death element has been lifted from Southeast Asian duty.

\title{
CMORE THIAN THRDE YDARS AGO, HDATH DNGINDDRS ACCDPTDD THE CHALLDNGE TO DEVIJOP A COMPLJTDLY NDW APPROACH TO ANATEUR RADIO DDSIGN.
}

\author{
THE RUSSULTS SOON WILL BE HISARD WORLD-WIDE.
}

\title{
GHIS NOW HISATHKIT SOLID-STATE TRANSCJIVDR
}

\section*{SB-104...the most advanced design in amateur radio}

All the modern circuitry, built-in features, high performance, and honest operating convenience you have wanted for years... here today.
Completely solid-state...from front end to RF output, with over 275 advanced solid-state devices, including 31 ICs, 75 transistors and 171 diodes. The result is a design that runs cooler, quieter, better, longer. The four finals are totally protected.
Totally broadbanded. The new 104 means instant QSY. You can go from CW on the low end of 80 to USB on the high end of 10 in seconds \(\ldots\) with perfect tune. Gone are the bothersome Preselector, Load and Tune controls. Just choose the band, dial in the operating frequency, select your mode ... and go!
True digital readout. The new SB-104 provides 6 digits of large, bright, easily read frequency information... with resolution down to 100 Hz on all bands. And unlike other so-called digital readout systems that interpret just the VFO frequency, the SB-104 incorporates true digital frequency measurement circuitry that takes into account all three frequencies: VFO, HFO and BFO. What you see is where you are... always.
Total operating convenience. The front panel is clean, well-labeled and easy to use. The large spinner knob on the VFO delivers about 30 kHz per revolution. To the right of the VFO knob are controls for Drive Level, Bandswitch and the switched (Off-fast-slow) AGC to suit various operating conditions. Pushbuttons select mode (USB/LSB/CW), a Tune button for loading linear amplifiers, a Hi-Lo power switch, and Power on-off switch. On the left of the VFO knob are controls for audio and RF gain, jacks for a PTT mike and phones, and pushbuttons to monitor input DC voltage, ALC action and relative power on the front panel meter. The built-in VOX can be switched in and out with another pushbutton....and we've put the VOX gain and delay controls on the front panel, too. And, if you've installed the optional Noise Blanker, a front panel pushbutton switches it on or off.

Performance-plus! The SB-104 is more than convenient to use...it's a pleasure. The transmitter delivers a solid 100 watts output in the high power position; for QRPers the output can be switched to one watt instantly with the front panel pushbutton.
The broadband receiver performance is spectacular... carefully designed to minimize crossmodulation and intermodulation; active devices are kept to a minimum ahead of the highly selective crystal filter. Adjacent signal overload is negligible, yet sensitivity is better than \(1 \mu \mathrm{~V}\). And there is a 15 MHz WWV receive position on the band switch.
Easy assembly and alignment. We believe the new SB-104 is the most sophisticated amateur radio transceiver on the market. It has over 2800 parts, consequently it won't go together in just an evening or two, (we have averaged about 50 hours in pre-production assembly). But it does go together easily, easier than any we've ever offered. All but a handful of the components mount on one of the 15 glass epoxy boards, and two wiring harnesses eliminate most of the point-to-point wiring. Eleven of the boards plug-in for easier assembly, and 7 of them can be extended out of the chassis.
And still more features! The SB-104 will operate directly from a 12 V automobile electrical system. For fixed station use, just hook-up the new HP-1144 supply. Complete back panel inputs and outputs...see feature photo on right page. And, we've even designed-in a place on the readout panel where you can light up your call sign when you build the SB-104 ... we give you all the letters and numbers you need to do it.
This is the transceiver you'll be hearing worldwide. Years ahead of every other... at any price. The SB-104 ...it belongs at your operating position.
Kit SB-104, 31 lbs .
669.95

Kit SBA-104-1, Noise Blanker, 1 lb ., mailable 24.95

Kit SBA-104-2, Mobile mount with hinged rear, telescoping front support, \(11^{\prime}\) cable, power relay, and circuit breaker, 6 lbs., mailable. \(\$ 34.95\) Kit SBA-104-3, 400 Hz CW crystal filter, \(1 \mathrm{lb} .\), mailable

\section*{CHECK THESE ADVANCE DESIGN FEATURES:}

Completely solid-state design...including the finals. Over 275 solid-state devices, including 31 integrated circuits. The SB-104 output board and final transistors are warranted for one full year

Completely broadbanded. Neither the transmitter nor receiver sections require tuning from 3 to \(30 \mathrm{MHz} \ldots\) instant QSY from 80 to 10 meters is a reality.

Complete back-panel connections: Phone patch in \& out; auxiliary audio input; speaker; key; ALC; VFO in \& out; driver out; IF out; accessory plug; power plug; two spare jacks; separate transmit \& receive antenna jacks.

True digital readout. Six \(1 / 2^{\prime \prime}\) gas-discharge displays deliver resolution down to 100 Hz with across-the-room visibility.

Circuit board construction. Most components mount on 15 circuit boards for easy assembly. The seven major boards can be extended out of the chassis for adjustment or troubleshooting while rig is operating.

New noise blanker plugs into SB-104 \& solves the ignition noise problem. Provides up to 50 dB of effective blanking. Rep rate 10 to 2000 pulses/sec.; pulse widths 1 to \(250 \mu\) sec.

\section*{SOLID-STATE ACCDSSOLIES}

\section*{SB-614 Station Monitor}

How clean is your signal? With the SB-614, you'll know. It monitors transmitted SSB, CW, and AM signals up to 1 kW from \(80-6\) meters. The highly visible \(11 / 2 \times 2^{\prime \prime}\) CRT, with push-pull drive tor a keystone-free, sharp, clean trace, indicates a wide variety of common operating problems. non-linearity, insufficient or excessive drive, poor carrier or sideband suppression, regeneration, parasitics and CW key clicks. The manual includes 40 CRT display illustrations and explanations.
Complete controls. All standard scope control functions are available in the " 614 "...Vertical Gain \& Position, Horizontal Gain \& Position, Focus, Mode (SSB, Trapezoid \& Cross for RTTY Mark/ Space adjustments). The improved recurrent, automatic sync-type sweep generator is adjustable in three ranges from 10 Hz to 10 kHz . Front panel control gives 11 steps of attenuation. For limited test applications the " 614 " can be used as a normal scope, and provides 10 Hz to 50 kHz bandwidth, good sync and high input sensitivity. A rear panel \(10: 1\) vertical attenuator provides extra convenience. Additional features include all solid-state design; rear panel Astigmatism control; standard horizontal and vertical inputs for use as a scope; exciter and linear inputs/outputs. Circuit board/wiring harness design makes assembly fast and easy. What kind of signal do you have? Order your new SB-614 today and know.
Kit SB-614, 17 lbs.
139.95

\section*{SB-230 Conduction-Cooled}

\section*{1 KW Linear}

Strong and silent. The new " 230 " uses a husky Eimac 8873 triode in proven, stable, grounded grid circuitry to deliver up to 1200 watts PEP SSB, 1000 watts CW input from less than 100 watts drive. And the " 230 " is also rated at 400 watts input for slow-scan TV and RTTY. A massive heat sink eliminates the need for a fan.
Complete operating convenience. On the front panel of the new SB-series low profile cabinet you'll find all controls at your fingertips for easy operating. Bandswitching is done with a
single knob...Load and Tune controls are clearly marked. Full metering facilities.
A full complement of built-in safety features. The cabinet features microswitch interlocks on both the top and bottom to shut down the primary power when the cabinet shells are removed. Front panel status lights indicate Hi Temp, Exciter and Delay. The heat sink for the 8873 is temperature monitored; if the temperature rises too high, a thermal circuit breaker opens, the linear shuts down and the Hi Temp light goes on. The Exciter light indicates that the linear is running straight through, without amplification. To allow the tube sufficient time to warm up, a delay circuit is built-in. When warm-up is completed, the Delay light goes out. The On-Off switch also includes a built-in circuit breaker for the primary side of the power transformer. And the cathode of the tube is fused for additional protection.
Easy assembly. The new SB-230 goes together in 15 to 20 hours. No alignment is necessary. The new SB-230, styled to match the SB-104 transceiver, delivers all the features and performance you've come to expect from Heath. We think you will agree it's the greatest value in modern linears.
Kit SB-230, 40 lbs. 319.95
GET FULL DETAILS Send for the new FREE 1975 Heathkit Catalog.

\section*{ONEW STSTOM-FNGINDFRDD}

\section*{SB-604 Station Speaker}

Designed and styled to match the new SB-104 Transceiver, the cabinet is large enough to house the HP-1144 AC Power Supply. The \(5^{\prime \prime}\) \(\times 7^{\prime \prime}, 3.2\) ohm speaker is response-tailored for SSB. Connector cable \& plug are included. Kit SB-604, Speaker \& cabinet,
8 lbs., mailable
29.95

HP-1144
Fixed-Station

\section*{AC Power Supply}

This new \(120 \mathrm{~V} / 240\) VAC operated supply provides the 13.8 VDC required by the new SB-104 Transceiver. The full-wave bridge circuit has triple Darlington regulation with an integrated circuit which samples, compares, and automatically adjusts transistor bias to maintain a fixed output level. Output is remotely sampled at the load end of the power cable, thereby compensating for voltage drop across fuse and cable, to provide almost no change in voltage from no load to full load conditions. A cable and socket provide output power and a series connection to the SB-104 remote on-off switch. The generous heat sink fits on the back of the supply, and the entire unit may be mounted within the SB-604 speaker cabinet.
Kit HP-1144, fixed-station supply,
28 lbs., mailable
89.95

\section*{SB-634 Station Console}

\section*{Five station accessories in one!}

24-hour digital clock: six half-inch gas discharge digits indicate hours, minutes and seconds. The clock runs continuously, as long as the console is plugged in.
Ten-minute ID timer: Three gas discharge digits indicate minutes and seconds up to 9:59. At ten minutes the timer recycles and provides either a visual alarm or both visual and audible alarms. Pushbutton zero reset.

RF wattmeter: The big meter delivers measuring capability of either 200 watts or 2000 watts full scale. 160 through 10 meters.
SWR bridge: Push a button to measure SWR. Separate front panel SWR sensitivity control.
Phone patch: The hybrid patch can be used either manually or with VOX control without switching connections. VU capability on the meter and separate front panel controls to adjust transmitter and receiver gain independently. Line isolation can be adjusted with a rear panel control.
Kit SB-634, 14 lbs.
179.95

\section*{SB-644 Remote VFO}

Designed exclusively for the new SB-104. The new SB-644 provides serious DXers with really useful split transmit/receive capability. With the " \(104 / 644\) " combination, you aren't frequency limited in any way - the transceiver can be at one end of the band, the remote VFO at the other end.
Multi-mode capability. The "644" allows transceive operation on either itself or the " 104 "... transmit on the "104" and receive on the " 644 " ... receive on the " 104 " and transmit on the " 644 ". And you can use either of the two crystal positions in the " 644 " for fixed-frequency control.
Easy pushbutton operation. Front panel pushbuttons on the " 644 " control all transceive, transmit and receive modes on both the "104" and the remote VFO. No switching on the "104" is necessary. Status lamps behind the window indicate frequency-control mode.
Digital readout in the SB-104. Although the SB-644 includes a linear dial on its front panel to get you into the right frequency area, actual frequency readout takes place in the "104". The display automatically changes to the correct frequency as you go from transmit to receive.
Kit-built VFO. The "644" uses the same kit VFO as the new SB-104. And thanks to the true digital frequency readout in the "104", concern about dial VFO linearity problems is a thing of the past. If you work serious DX with your new SB-104, you'll want the new "644".

\title{
SPECIFICATIONS
}

SB-104 SPECIFICATIONS - TRANSCEIVER SECTION - GENERAL OPERATION: Frequency Coverage: 3.5 MHz through 29.7 MHz amateur bands, 15 MHz WWV receive only. Frequency Stability: Less than \(100 \mathrm{~Hz} / \mathrm{hr}\) drift after \(30-\mathrm{min}\). warmup; less than 100 Hz drift for \(\pm 10 \%\) change in primary voltage. Modes of Operation: Selectable upper or lower sideband (suppressed carrier) and CW. Readout Accuracy: Within \(\pm 200 \mathrm{~Hz} \pm 1\) count. Audio Frequency Response: 350 to 2450 \(\mathrm{Hz} \pm 75 \mathrm{~Hz}\) (6 dB bandwidth). Dial Backlash: 50 Hz max. Phone Patch Impedance: 4 ohm output to speaker; high impedance output to transmitter. Power Requirements: 13.8 VDC nominal (max. 16 VDC) at: Receive: 2 amp. Transmit: low power: 3 amps.; hign power: 20 amps . TRANSMITTER: RF Power Output: High Yower (50 ohm non-reactive lead). SSB: 100 watts PEP \(\pm 1 \mathrm{~dB}\); CW: 100 watts \(\pm 1 \mathrm{~dB}\). Low Power SSB: 1 watt PEP (minimum); CW: 1 watt (minimum). Output Impedance: 50 ohms, less than 2:1 SWR. Carrier Suppression and Unwanted Sideband Suppression: 55 dB down from 100 watt single-tone output at 1000 Hz reference, Harmonic Radiation: 45 dB below 100 watt output. Spurious Radiation: -50 dB within \(\pm 3 \mathrm{MHz}\) of carrier; -60 dB farther than \(\pm 3 \mathrm{MHz}\) from carrier, except -40 dB at 3.39 MHz on 80 meter band. Third Order Distortion: 30 dB down from two-tone output, reference at 100 watts PEP. Transmit/Receive Operation: SSB: PTT or VOX; CW: Keyed-tone VOX or manual. CW Side-Tone: Internally switched to speaker or headphones in CW mode. Approximately 700 Hz tone. Microphone Input: High impedance with a rating of -45 to -55 dB; approx. 25 K ohms to match Heath desk-type microphone. RECEIVER - Sensitivity: Less than 1.0 microvolt for 10 dB signal-plus-noise-to-noise ratio for SSB operation. Selectivity: 2.1 kHz minimum at 6 dB down, 5 kHz maximum at 60 dB down. (2:1 nominal shape factor). CW Selectivity: (with accessory CW filter) 400 Hz at 6 dB down; 2 kHz max. at 60 dB down. Overall Gain: Less than 1 microvolt for 0.5 watt audio output. Audio Output: 2.5 watts into 4 ohms, 1.25 watts into 8 ohms, at less than \(10 \%\) THD. Low impedance headphones (\(4-8 \mathrm{ohm}\)). AGC: Less than 1 millisecond attack time; switch selectable \(100 \mu \mathrm{sec}\). and 1 msec . release, and OFF. Intermodulation Distortion: - 65 dB min . Image Rejection: -60 dB min . IF Rejection: -60 dB min. Internally Generated Spurious: Below 2 microvolt equivalent antenna input, except at \(3.65,3.74\), and 21.2 MHz . MECHANICAL Front Panel Controls/Switches: AGC - Off, Slow, Fast; AF Gain; Microphone Jack; Headphone Jack; Main Tuning; Mic/ CW Level; Vox Gain; Vox Delay; Band Switch. Pushbuttons: ALC (Meter); 13.8 V (Meter); Relative Power (Meter); 100 Hz (Disable); Noise Blanker (On \(/\) Off); LSB (Mode); USB (Mode); CW (Mode); Tune; Hi/Lo (Power Select); VOX (On/Off); PWR (\(\mathrm{On} / \mathrm{Off}\)). Rear Panel Controls/Sockets: Anti-Trip; Sidetone Level; Linear Amplifier ALC Input; Phone Patch Input; Phone Patch Output; Key (CW) Input; Speaker (4 ohm) Output; Spare (2); Receiver Audio Input; VFO Input; VFO Output; IF Output; Driver Output; Ground Post; Power Plug; Accessory Socket (includes relay output); Antenna Input; Receiver Antenna Input; Common/Separate Antenna Switch. Dimensions: \(53 / 4^{\prime \prime}\) H \(\times 1415 h^{\prime \prime}\) W \(\times 1376^{\prime \prime} \mathrm{D}\). (Less knobs, feet and connectors). Weight: 20 lbs.

\section*{The SB-104 output board and final transistors are warranted for one full year.}

HP-1144 SPECIFICATIONS - Output Voltage: 13.8 VDC regulated (Adjustable from approximately 11 to 16 VDC). Maximum Output Current: 20 amperes, Intermittent. 8 amps continuous. Transistor Integrated Circuit and Diode Complement: 2 N 3643 transistor; 2 N 3055 transistor; 40411 pass transistor (2); MFC6030 regulator IC; 1 N4002 silicon diode; MDA990-2 bridge rectifier. Power Requirements: 110 to 130 VAC @ 6A or 220 to 260 VAC @ \(3 \mathrm{~A}, 50 / 60 \mathrm{~Hz}\) maximum.
 than \(2 \%\) output voltage variation from no load to 20 amperes. Ripple: Less than \(1 \%\) at 20 amperes. Fuses: 7 -amp, 3 AG , slow-blow primary. 20 -amp, 3 AG , output. Net Weight: 23 lbs .

SB-604 SPECIFICATIONS - Speaker Size: \(5^{\prime \prime} \times 7^{\prime \prime}\) oval. Voice Coil Impedance: 3.2 ohms. Frequency Response: 300 to 3000 Hz . Magnet Weight: 3.16 oz . Cabinet: Aluminum with gray wrinkle finish. Dimensions: \(718^{\prime \prime} \mathrm{H} \times 1018^{\prime \prime \prime} \mathrm{W} \times 14^{\prime \prime} \mathrm{D}\).

SB-644 SPECIFICATIONS - Frequency Coverage: 5.0-5.5 MHz allowing \(80,40,20,15,10\) meter operation in the SB-104. Frequency Stability: Less than 100 Hz drift per hour
after thirty minute warmup. Modes of Operation: Remote VFO; Main VFO; Receive Remote/Transmit Main; Receive Main/Transmit Remote; Crystal frequencies (2) (crystals not supplied). Dial Backlash: 100 cycles max. Power Requirements: 11V and 13.6 V at 500 mA from the SB-104. RF Output: 0.34 to 0.4 V RMS over 5 to 5.5 MHz into a 50 ohm load.

SB-634 SPECIFICATIONS - CLOCK - Display: Six full digits. Time Base: 24 hours. Accuracy: Determined by accuracy of power line frequency. TIMER - Display: Three full digits. Time Interval: 10 minutes with automatic reset. Manual reset at any portion of 10 -minute period. Accuracy: Determined by accuracy of power line frequency. Signal: Visual only or both visual and aural; switch selected. RF POWER/ SWR METER - Frequency Range: 1.8 to 30 MHz . Wattmeter Accuracy: \(\pm 10 \%\) of full-scale reading. Power Handling Capability: 2000 watts (maximum). SWR Sensitivity: Less than 10 watts. Impedance: 50 ohm nominal. SWR Bridge: Continuous to 2000 watts P.P. Connectors: UHF type SO-239. PHONE PATCH - Circuit: Telephone hybrid circuit. Allows voice control or manual operation. TELEPHONE LINES - Input Impedance: Approximately 600 ohm. Null Depth: At least 30 dB isolation between transmit and receive circuits. Receiver Impedance: Effective match from 3 to 16 ohm. Transmitter Impedance: 600 ohm or higher impedance output. GENERAL - Meter: \(100 \mu \mathrm{~A}\) movement. VU readings for phone patch monitoring. Null depth indication. RF power output, relative power, and SWR readings. FRONT PANEL CONTROLS - Timer: Off, Visual, Aural Visual. Reset: Pushbutton switch. Patch Gain: Transmitter, Receiver. SWR: Sensitivity. Mode: SWR, Forward and Reflected. 2000 W and 200 W. Phone Patch. Rear Panel Controls - Clock: Time hold, minutes set, seconds set. Null Adjust control; NullMonitor switch; \(C\) adjust control; \(R\) adjust control. Power Requirements: \(120 / 240\) VAC, \(50 / 60 \mathrm{~Hz}, 15\) watts.
SB-614 SPECIFICATIONS - RF SAMPLING SECTION: Frequency Coverage: 80 through 6 meters (\(3.5-54 \mathrm{MHz}\)). RF Power Limits: Exciter input (\(50-75\) ohm) 10 to 300 watts; Antenna input (\(50-75\) ohm) 10 to 1000 watts (up to 1500W PEP). Insertion Loss: Negligible. VERTICAL AMPLIFIER: Input Impedance: 1 Megohm shunted by 75 pf . Sensitivity: \(60 \mathrm{mV} \mathrm{rms} / 1 / 4^{\prime \prime}\) vertical deflection. Attenuator: 2 position; \(\times 1,2\) volts rms max. input; \(\times 10,20\) volts rms max. input. Frequency Response: 10 Hz to \(50 \mathrm{kHz} \pm 3 \mathrm{db}\). HORIZONTAL AMPLIFIER: Input Impedance: 1 Megohm shunted by 50 pf . Sensitivity: \(50 \mathrm{mV} \mathrm{rms} / 1 / 4^{\prime \prime}\) horizontal deflection. Frequency Response: 10 Hz to \(3 \mathrm{MHz} \pm 3 \mathrm{~dB}\). SWEEP GENERATION: Type: Recurrent, automatic sync. Frequency Range: 10 Hz to 10 kHz in three ranges. GENERAL: CRT: 3RP1/A flat face, green, medium persistence phosphor. Graticule: .250 inch squares \(6 \times 8(1.5 \times 2.0\) inches total viewing area). Power Supplies: All solid-state rectifiers. All amplifier supplies regulated. Power Requirements: \(110-130\) or \(220-260\) VAC, \(50 / 60 \mathrm{~Hz}, 35\) watts. Front Panel Controls: Intensity - Off-on; Mode - SSB. TRAP CROSS; Focus; Vertical Gain; Vertical Position; Horizontal Gain; Horizontal Position; Sweep - variable; Range - 100 \(\mathrm{Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}\). Rear Panel Controls: Astigmatism; Vertical attenuator - X1, X10. Rear Panel Connectors: Antenna: S0-239; Exciter: Phono; Vertical Input: Phono; Horizontal Input: Phono. DIMENSIONS: \(71 / 4^{\prime \prime}\) H \(\times 10^{1 / 4^{\prime \prime}}\) W \(\times 151 / 4^{\prime \prime} \mathrm{D}\). Net Weight: 12 lbs.

SB-230 SPECIFICATIONS: Band Coverage: 80, 40, 20, 15 and 10 meter amateur bands. Maximum Power Input: 1200 W PEP SSB; 1000 W CW; 400 watts RTTY/SSTV. Duty Cycle: SSB: continuous voice modulation; CW: continuous (max. keydown time 30 seconds); RTTY/SSTV: 50\% (max. transmit time 10 minutes at 400 watts). Driving Power Required: less than 100 W. Third Order Distortion: -30 dB or better. Output Impedance: 50 ohms at 2:1 SWR max. Input Impedance: 52 ohms at 1.5:1 SWR max. Meter Switch: Exciter only; Relative Power; Plate Current; Grid Current; High Voltage. Front Panel: Load; Tune; Band; Relative Power sensitivity; Power switch; Meter switch. Rear Panel: ALC output; Exciter relay; RF input; RF output; Ground lug; Fuse; Line cord. Tube: Type 8873 . Zero signal plate current: 25 mA . Power Requirements: \(120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, 14 \mathrm{~A} \max .240\) VAC, \(50 / 60 \mathrm{~Hz}, 7 \mathrm{~A}\) max. Dimensions: \(143 / 4^{\prime \prime} \mathrm{W} \times 16^{\prime \prime} \mathrm{D} \times 7^{\prime \prime} \mathrm{H}\). Net Weight: \(331 / 2 \mathrm{lbs}\).

HEATH COMPANY BENTON HARBOR, MICHIGAN 49022

There are still tears and emotion, but much of the anxiety and assurances of safety have been replaced by information on duty changes, instructions to wives, requests for information on the kids, wifely requests for blue star saphire rings, etc.

Right now AFATUGA is experiencing propagation problems because of the bottoming section of the eleven-year sunspot cycle, and Tom Moore has only two shifts of operators working. One starts at \(4: 30\) a.m. and runs to 7:30 a.m.; then the other takes over and goes until the bottom falls out. Twenty-five to fifty completed patches a day is typical.

Typical, too, is the broken contact anywhere from 9:00 a.m. to noon, when the D-layers open up. "Four and a half KW's," says Tom then, "and all of it right out through the old chicken wire."

That's when he pulls the big switch and tells the sweet-voiced land-line operator, "We've been shot right out of the saddle. Better knock a couple of minutes of waiting time off that last call, and we'll buzz you tomorrow."

Then he secures the gear and the shack, ushers the nosey visitor out, and goes home to grab a bite before dashing off to work. Before he drives off, he hangs out of his car window and says, "You just can't imagine the dedication of our club members. Why, Bob Kraig W7OYC hasn't missed a Sunday in eight years. He works every Sunday from 4:30 a.m. until noon. That's the kind of participation that has made our station successful."

By the time the sunspot cycle has made MARS DX as good as an eyeball QSO again, there may be virtually no need for its Southeast Asian phone-patch services. But in case some other need arises, it's a good bet that Barry Goldwater and other shack owners will keep big books of thank you letters handy to remind them that they should keep the old bucket of bolts in good working order.

And the hams? You know they'll be ready.

Much more than a Q\&A Mannual. With this new book Ybu LEARN the THEORY. So simply explained that anyone can understand it the first time through. Never has there been such a simple theory course. Be ready for that 1974 FCC Exam with this 1974 book.

Other study manuals ask you to memorize questions and answers - this one lets you learn the theory so - -
youll know the ANSWERS
1974

78
Magazine - Peterborough NH - 03458

\section*{GPR \\ ERRREEN}

\author{
SPELL MY NAME RIGHT
}

There is an old addage that any publicity is good publicity - say anything you want to about me, but spell my name right. In this vein I would like to express restrained appreciation for the PR job being done in my behalf by ARRL officials. It is nice to be recognized.

I am sure that some of the people who have devoted a good deal of the last ten years hating my guts for opposing the "incentive licensing" restructuring of amateur radio will be as astounded as I to hear that it was I who was responsible for this debacle which the FCC is now getting ready to try and rectify. My opposition to that ARRL petition for rule making (1963) was on the philosophical grounds that it is psychologically better to get desired results with a carrot than with a stick - the result in this case being to encourage amateurs to go for higher classes of license. Taking away bands to force amateurs to increase their grade of license would, I felt, create resentment and frustration.
The League worked hard and long to get their proposals accepted and they succeeded. Yet today I have a tape of my good buddy Lew McCoy telling a club that I was responsible for incentive licensing. While on the one hand I suppose that I should be flattered that the single most important change in the amateur rules, in recent years, was due to me, it is difficult to pretend anything but resentment over the whole concept of using punishment instead of rewards to achieve ends. . which is what incentive licensing comes down to.
Surely I must be either lying or exaggerating - right? In case you might find a copy of this tape of interest - Lew talks about the current FCC plan to restructure amateur radio - tells how badly the recent FCC hearing went - and has some interesting things to say about Prose Walker this is all available on a 90 minute tape for \(\$ 5\) from 73, Peterborough NH 03458. Ask for the Real McCoy.

\section*{RADAR ZAPPER?}

A chap stopped by the 73 offices the other day - reads 73 - goes by
the name of Bad Back on channel 10 he said. He was awfully concerned about the new two-way radar which allows police in unmarked cars to get copy on Bad Back's speed even when they're going in opposite direction. There must be something that can be done about an invasion of privacy like that!

Another channel 10 denizen who goes by the name of Radio Doctor (he fixes FM sets) stopped by and explained that what Bad Back needs is a simple 10.5 GHz oscillator modulated at 3400 Hz . This would add 100 mph to the radar reading, which would either result in one whale of a speeding ticket or a very confused cop.

While we certainly don't want to help people break the law, even by speeding, the idea that it would be nice to have a little old 10.5 GHz oscillator circuit around for testing out those radar units stuck in mind. I'm sure that there are a whole lot of readers who at one time or another would like to be able to help a state trooper test out one of those damned radar units. So, how about it. . .any Edison types out there who can coax enough 10.5 GHz rf out of something we can all afford to cut the mustard? You know, a thing like that might sell like crazy at truck stops if some entrepreneur got busy making them.

\section*{MAKING YOUR HOBBY PAY}

I've been looking back over the last year or so of 73 and, while we've had some exciting articles, I just don't feel that overall we've had as much really good stuff as we used to. We need a lot more articles and we are going to pack the magazine with them.

If you've built something that your friends are enthusiastic about, whether it be a receiver, QRP rig, FM rig, repeater, sideband rig, amplifier, keyer, test equipment, an antenna, logic or digital circuits, preamplifier; if it's your own design then you should write it up (double space typed), sketch the circuit, and have a couple of pictures taken (or send in the unit so I can take the pictures).

There are several benefits. First of all it is nice to be a published author. Your friends will be impressed at the club -- and when you get on the air you'll be surprised at how many fellows know you. It doesn't hurt with your own family and non-ham friends either. The cash we pay for articles may not put you into a higher income bracket, but it will help buy a new rig or some parts. We do pay well compared to some of the other ham magazines. . .very well. Several of our writers have made thousands of dollars.

It doesn't hurt when you're apply-
ing for a job to have a list of your published articles on your resume.

While I am more interested in construction projects, large and small, than anything else, we still need a lot of articles on every aspect of our hobby: DXing, traffic handling, MARS, Races, certificate hunting, contests, moonbouncing, satellite work, CW, VHF DXing, VHF sideband, antennas of all sorts, 160 m , Novice problems and solutions, service net info, intelligent discussion of FCC dockets and proposals, and even humor.

One warning - it might be prudent not to say too much around home about how much we pay for articles. One author let his wife know how much he was getting and from then on she made him write ten pages every night before she would let him go to bed with her. He was one of our most prolific writers.
... WAYNE

\title{
SOME PEOPLE TALK POWER - \\ \\ WE DELIVER IT. \\ \\ WE DELIVER IT. VHF, CLASS C POWER AMPLIFIERS
}

\author{
- 2 METERS - CW AND FM OPERATION
}

FULL ONE YEAR WARRANTY
- SELECTION OF POWER RATINGS

MODEL P15A1 - Nominally 0.5-2.5 W RF input for \(5-25 \mathrm{~W}\) output. 13.4 V at 2 amps. \$59 FOB Factory
MODEL P50A10 - Nominally 1.5-20 W RF input for 8-65 W output. \(\quad 13.4 \mathrm{~V}\) at 6 amps. \$98 FOB Factory

MODEL P100A25 - Nominally \(15-30 \mathrm{~W}\) RF input for 75-110 W output. Remote control available. 13.4 V at 14 amps . \$155 FOB Factory.
MODEL P100A10 - Nominally 1.5-18 W RF input for 60-120 W output. Remote control available. 13.4 V at 14 amps . \$198 FOB Factory.

These quality power amplifiers are designed by \(M-\) TECH Engineering and manufactured under rigid quality control by American Basic Corp., Electronics Division. Dealers please inquire for details.

\section*{ELECTRONICS DIVISION 542 NORTH FREDERICK AVE. American Basic Corporation \\ GAITHERSBURG, MD. 20760 \\ (301) 948-6701}

We will swap you a year's FREE subscription to 73 HOTLINE for a year's subscription to your club's bulletin. How can you loose? Just complete the form below and return. . .
\begin{tabular}{|c|}
\hline Name \\
\hline Address \\
\hline
\end{tabular}

\section*{Нихрипри}

Readers have been asking for articles and commenting on 73 - here are some of these recent comments: Let's see some RTTY info. How about a surplus column? You devote far too much space to 2 m stuff! - WA6SOJ. (That's a good idea about the surplus column, anyone interested in working on that? Send in an outline of what you would cover and a sample column. . .wayne) Like the article on the 10 minute timer - WA1PAL. Need more product reviews. Encourage owners of new equipment to comment. Restrict the articles to top flight equipment only. Who cares if poor items are poor? - W9BNQ. (Excellent! Readers should remember that 73 pays for articles, so if you get something new and have an interesting report on it, pass it along. . . wayne) It was nice to see the \(390 / 392\) surplus article, but these are out of my price range so I would like to see articles on cheaper surplus - especially 160 m and FM gear - WA6SLN. (Right, how about it readers?. . .wayne) Newspages are great and the IRS notes interesting to say the least. Would like to see more specialized columns such as RTTY, fast scan TV, and VHF work. The brevity of the DX and contest columns are appreciated, but also contain info enough for those who are interested in these fields. Keep up the good work - W5SSN. Keep up the IRS info - WB6AYJ. How about an article on a homebrew 2 m FM repeater? Solid state or using the VHF Engineering modules? - WA3WID. IIn the works, watch for it. . .wayne) Possibly more antenna articles, including \(2 m\) FM - WA7WOC. Enjoyed all your articles, particularly K1CLL! Maybe you could keep both solid state columns? - WB2PAP. Circuits is great and liked Scott's solid state column. Less repeaters and don't forget the CW guys, particularly QRP. More on ICs and simple transistor circuits - K6AE. (Bill has said it, so let's see more QRP, more CW articles, more ICs, and build up those simple gadgets for us. . .wayne) I'm tired of reading about your troubles with the IRS - WA7SFL. The magazine needs more theory articles such as in a continuing series - WN7VUC. (Any volunteers to write same?. . wayne) Don't forget the Novice projects, we need them! - WN2TQM. (Let's have a whole lot of info for Novices - simple projects to build - rigs - QRP operating ideas, the lot...wayne) Would like to see more of K1CLL; more VHF and UHF construction articles - K5HTE. (We have a lot more in the works Doyle, and plead with readers who are playing with this
stuff to write as CLL is retiring!. . .wayne) I like the editorials and newspages the best. It's impossible to print too much on 2 meter FM. Like articles on antenna design and construction - WBØFZL General discussion of propagation conditions and the sunspot cycle and when it will get better - WN3VZN. (Alas, better is still a long way off. It's best to cope with it as it is and enjoy - there's lots of good stuff to work. ..wayne) Please put in more UHF construction articles - WNØMBY. Boy, do you troops fill a gap in the ham hobby! Just keep up the good work - more easy to build construction projects how about the care and feeding of LEDs? Any tube projects in mind? Just curious - K7ATU. (Yep, we have some coming along for us old timers and Novices too...wayne) The Circuits column is great. How about an antenna column?...that's all that is keeping me subscribing to CQ WBøICG. (Lordy! I never realized how badly 73 needed an antenna column before. Any volunteers with an outline and sample column?. . wayne) You got a good ham radio magazine, thanks - WN8RDN. (Thanks Mike. . .wayne) VHF 2 m FM construction, starting simple and working up to the complex W7DOU. Both solid state columns were good - WBøNAG. I liked Scott's solid state column best - WA2ADZ. We need more news about what the DOC/FCC is doing about clamping down on CB and what we hams can do about these bootleggers VE2BAQ. IThe Canadian proposal to legalize hobby and skip CB operation could be the answer - and it could mark the end of amateur radio too. . wayne) I think 73 is well balanced so keep up the good and interesting work - WA8SHT.

\section*{RECIPROCAL LICENSES IN THE UNITED KINGDOM}

Overseas members are reminded that there are several different types of license available to them allowing them to operate amateur radio stations in the U.K. provided a reciprocal licensing agreement exists between their country and the U.K.

The simplest form is an authorization for a visiting amateur to operate the station of a licensed U.K. amateur. In this case no call sign is issued. For example, should F8TH operate from G3BID under this arrangement he would use G3BID's call and sign the \(\log\) as operator just as another G operating from G3BID would have to do. Such permission is granted for seven days maximum.

The other category is when a G5-plus-three call is granted and it is
here where some confusion seems to have arisen. There are two types of such license. Amateur (Sound) license C and Amateur (Sound Mobile) License C are valid for one year and are only issued to persons coming here for more than three months (NB this may be six months now). It is intended for those coming to work or live and such applicants must produce an Alien's Registration Certificate before a C License will be granted.

The second of this type of license is probably the more frequently issued and is the D License which is now valid for six months. This is the one to apply for when you are coming here on a vacation and, like the \(C\) version, is available for fixed or mobile operation.

An important point to remember is that you may apply just for the mobile license if you are not going to operate a fixed station. By contrast U.K. amateurs cannot be granted a mobile license unless they also hold a fixed station license.

Full information on reciprocal licensing can be obtained from the Society's Information Service. The address is: BCM/ARMS, London WC1V 6XX

Please do NOT send queries on reciprocal licensing to any other address as it will only delay matters. When you get the information, please read it carefully and make sure you apply for the proper type of license.

Mobile News

\section*{THE LONG WAVE CLUB OF AMERICA}

Michael Kane's (WA1PJG) letter about ULF listening prompted me to write. There is indeed a club devoted to dxing the frequencies below 550 kHz known as The Long Wave Club of America which started this January. (Present membership is about 75.)

We publish an 8 -page mimeo bulletin called the Lowdown, which lists member's loggings and carries technical articles from time to time. Sample copies are available for SASE. Of particular interest is the license free band \((160-190 \mathrm{kHz})\) which we are trying to organize -1 am looking for an editor to write a column on activities in this area. Dues are free and to join just send a letter that you wish to receive the Lowdown. I am, however, asking all joiners to send me a year's supply of self-addressed legal size envelopes to cut down on publishing time. Also a \(\log\) of 2500 beacons in the western hemisphere is available in limited quantities (like about 80) from the club for \(\$ 2.00\) postpaid Write: John Clements, President, Long Wave Club of America, 11425 Albers Street \#5, North Hollywood CA 91601.

1, absolute mint plus Tempo 502B in/45 out) \(\$ 250\). ! 867-5200, ext.

Free catalog ;A, GaAs: \$10.75; ; INTEL 8008: ท: \(\quad \$ 2.25 ; 1103\) E B585351, . \(5^{\prime \prime}\) : j0 LIQ. Xtal, \(3^{11 / 2}\) ir: \(\$ 9.75\) 2513, ms: \(\$ 12.75\) Elecs, 138 N. 81 st St.,
for govt. surplus ch: R-390/URR, IRM-25D, CV ! \(78 / \mathrm{GR}\), TRM-1, 497B/URR, TT 2. W3IHD, 7218 ington DC' 20021.
44 mh , unpotted, RR-13 receivers, ble, \(\$ 35 ; 24\) volt im. Box 4117. 13.
take all the code all over again! I ook only 6 weeks test to license. I old days!

Tom Norman
1 surinhurn Nir.

Our Q-BOX audio filter features: Bandwidth CONTINUOUSL Y VARIABLE from 30 Hz (almost \(100 x\) sharper than most xevrs!) to 2 kHz . Active filter (no coils). No insertion toss. Not a breadboard. Ready to plug into ANY rcvr/xcyr. Drives phones or ext. spkr. amp. Full instructions. In use worldwide. Plug one into your recelver
today! Only \(\$ 17.95\) + \(\$ 1\) shipping in US. (Add Sales Tax in Cal.) 10 day moneyback guarantee. SEND FOR FREE LITERATURE AND TEST REPORTS.
Autek research
Box 5390L, Santa Monica California 90405

CANADIANS We stock a broad line of electronic parts, including solidstate - send for free flyer, DARTEK ELECTRONICS, Dept. 7, Box 2460, Dartmouth, Nova Scotia.

YOUR SWAP-N-SELL ads run free in TRADIO, a public service publication of Wichita Amateur Radio Society Box 4391 Wichita Falls TX 76308.

DUAL MODE Hal DKB-2010 keyboard with 128 key buffer. Factory assembled, brand new - won at Dayton 1974. \$510. Richard Mawhorter, 10584 Latina Ct., Cincinnati OH 45218.

INSTRUCTION MANUALS Thousands available for test equipment, military electronics. Send \(\$ 1.00\) (refundable first order) for llsting. Service of Tucker Electronics, Box 1050, Garland TX 75040.

AN/FRR-23 (AN/SRR-13) general coverage modular receiver with book, excellent condition. \$100. WA1TEJ, 100 Granite Street, Londonderry NH 03053.
suming. Use a tool for inserting and removing ICs. Stranded wire with fused tining is convenient to strip and handle but cannot be flexed much without breaking.

If the instrument consists of several functions, construct and toct, anh

\section*{Solid State from page 17.}
high on the appropriate digit select pin. Both BCD and digit select outputs have three state controls providing an "open circuit" when these controls are high and allowing time multiplexing. Several MC 14534CL's can be cascaded to provide higher count sequences. This counter can be used in many real time counting applications such as event, frequency and control counters. When used with faster logic families, it could become a significant part of a VHF frequency counter.

Both of these CMOS ICs are intended for 5 to 15 VDC operation. Power consumption is from 2 to 37 milliwatts. Both are available from your Motorola distributor at \$25.26 for the MC 14534 CL and \(\$ 8.34\) for the MC 14536CP in single quantities.

An observant reader, Max Hauser of W6-land, reminded me that in my July column (written in Jan.), I overlooked two quad op-amps that are now available. These are the National LM324 and Raytheon RC4136 which are claimed to meet or exceed all specifications for the single 741 op-amp. You can obtain these ICs from several 73 advertisers for approximately \(\$ 2.00\).

Finally, why don't you send that QSL listing your ideas right now while you're thinking of it. 73 for now!

\section*{MORE IRS MAIL}

I've been reading with initial shock and increasing horror about the tyrannical tactics of the IRS, both in 73 Magazine and in the newspapers (I remember seeing that story break last summer concerning the several IRS agents all coming up with different ways of figuring identical tax returns - it seemed funny then, but it isn't funny anymore). I was intrigued by your reporting the element of the "tax revolt" that crosses out the perjury statements on its several returns, and decided to try it. Much to my surprise, it works!! I mailed my form 1040A (short form) on 25 January and received my refund March 4. I also crossed out the perjury statement on my sister's return, which I prepared; her refund came in the mail with mine. Our refunds totaled over \(\$ 500.00\). So, chalk one (or two) up to the "tax revolt." I hope we can, through modification (read "sweeping revision") of the federal tax laws, eliminate its necessity for existence, but until then, it is necessary for it to exist.

To change the subject (but not a lot), thank you for being controversial in 73. I am a life member of ARRL and a lifetime subscriber to 73 , and I
find both QST and 73 necessary to have. I think they complement each other quite well - the conservatism of OST and the liberal (if not sometimes radical) stands taken by 73. Your editorial policy re technical articles has been vindicated many times over, and I prefer your policy of finishing one article before starting another (thus eliminating the "see page \(x\) " nonsense found in almost any other given magazine of over 8 pages).

You got me interested in Mensa through editorial mention of it some 3 or 4 years ago. I've since joined and enjoy being an \(M\) quite a bit (whenever my ego is feeling bruised I get out my membership card and look at it for a while). Haven't seen anything about it lately in 73, though.

Enjoyed the article about calculators in December issue. Got a Texas Instruments SR-11 and that is one real nice piece of stuff for only a hundred and ten dollars - it's kinda like a "poor man's HP-35!"
Please don't publish my real name if you decide to print this letter in the magazine. I've got enough problems trying to graduate from college and work fulltime without having the IRS on my ass, as I'm sure they would be if my name and call were published.

Keep on Keepin' on, Wayne!
Name Withheld

\title{
CIRCUITS, CIRCUITS, CIRCUITS.
}

The following circuits have appeared in the reference books, magazines, application notes, etc. While we try to reproduce all of the information that should be needed by an experienced constructor, readers may want to avail themselves of the original sources for peace of mind.

Readers are requested to pass along any interesting circuits that they discover in sources other than U.S. ham magazines. Circuits should be oriented toward amateur radio and experimentation rather than industrial or computer technology. Submit circuit with all parts values on it, a very brief explanation of the circuit and any additional parts information required, give the source and a note of permission to reprint from the copyright holder, if any, and the reward for a published circuit will be a choice of a 73 book. Send your circuits to 73 Circuits Page, 73 Magazine, Peterborough NH 03458.

SB-144 mod to key an amplifier - added 55 ohm resistor and capacitor delay the SWR protection circuit for a fraction of a second permitting relay in amplifier to switch over. Thanks WB9IMM.

W8KOI attic antenna for 40 and 15 m . Uses RG8/U and no balun. Use \#18 wire and staple gun for installation. No bad antenna whery an outdoor antenna is a problem.

WA \(O K C\) aid for pulling tower sections up a gin pole uses hollow gas pipe and dumb bell weights for counterbalance. Clever!

Hot line side finder - uses body capacity to light neon bulb - glows only when bulb connected to hot side of line - resistor value not critical. Thanks B. Sutphin of St. Petersburg FL. Could save your life.

Which input is first? This circuit will tell. Makes a good game - with two people trying to push a button first, etc. Two 7400's may be used. Thanks WA7SBH, who gets a free book of his choice for submitting this circuit.

\section*{CORRECTION}

\section*{73, June 74, p. 77}

FSK Demodulator from July 19, 73 Electronics: You left out the Bridged Tee feedback loops on both 741 's. I sent you the clipping from my copy, but I am sure they were on the original. Hi-Z in, so audio feed is no problem except for too much input and distortion.

Fritz K4ETZ

\section*{CASSETTE RECORDERS}

\section*{SONY TC-152SD}

Features: Automatic shut-off - line in/line out - mike attenuator - spill-proof tape transport - separate monitor/playback vol and tone controls - tape counter - stereo headphone jack - pause control with lock - two VU meters - nicad recharger peak limiter - Dolby noise reduction circuit - \(\mathrm{CrO}_{2} /\) normal tape bias selector \(-117 \mathrm{vac} / \mathbf{1 2 v} \mathbf{~ d c}\) operation - will work from car battery or optional nicad pack - built in monoural amplifier and speaker for monitoring - ferrite heads - slide record controls - just about the last word in tape decks, and portable too! Most cassette deck experts agree that this is the finest unit available today - and it is portable to boot.
Sony TC-152SD complete \(\$ 299.00\) (shipping included).
\$50 worth of cassettes FREE with 152 if ordered before October 15, 1974.

\section*{BATTERY PORTABLE}

Features: key board control - locking fast forward and rewind keys so you don't have to stand and hold them - peak modulation indicator - 120 vac - self contained batteries - external 6 v supply 220 vac also mike input - line input earphone/line output - remote start/stop - auto matic recording level circuit - very easy unit to use - versatile - adequate for SSTV - excellent for code tapes and not too hi-fi music. \$32.95

\section*{BLANK CASSETTES}

Low noise tape cassettes - excellent quality
C- 6060 minutes. . . 99 (reg \$1.29)
C-90 90 minutes. . . \(\$ 149\) (reg \$1.79)
C.90 Extra Hi-fi. . \(\$ 2.25\) (reg \$2.99)

Panasonic RS-26IUS
Features: stereo deck - pause control \(-\mathrm{CrO}_{2}\) bias or normal - automatic stop at end of tape - two VU meters - counter - headphone jack mike input - line in and out. Great medium price cassette deck quite adequate for top notch SSTV work - put your records on tape.
FREE with RS-26IUS - \(\$ 20\) worth of blank tapes. . . \(\$ 99.00\)

eatures: Rotary control for ease of use with one hand (like in the car) - peak indicator - automatic level circuit for optimum recording level at all times - 117 vac - built in batteries - remote stop-start mike input - line input - earphone/ line output - fine unit for voice or Morse code study - adequate for lo-fi music - excellent bargain at the price. \(\$ 23.95\)

CAR CASSETTE PLAYER - 12 vdc - stereo with two stereo speakers - volume and tone controls, balance control - fast forward for tape and reject button. Now carry hi-fi with you in the car - slow scan TV - touchtone tapes - your favorite records on cassettes.
Car Cassette Player. . .Special. . . \(\$ 49.95\) plus UPS collect charges.

\section*{LETTERS from page 15.}

\section*{FCC BRAVOS}

Just like to send a note about an experience dealing with the FCC. I was employed this summer as one of two counselors in a summer camp instructing in ham radio. As part of the instruction, those interested in obtaining their licenses were drilled on code and theory and then administered their Novice tests while at camp. We had one camper pass his code test about halfway through the season and within two weeks had received his written. Somehow during the period he had completely lost interest and declined to take the written. Meanwhile another young camper had passed his code test and since time was running out, we feared the written portion of the test would not arrive in time. Being only 20 or so miles from Gettysburg, I made the trip there one afternoon. After passing the building 4 times, unknowingly, I got directions and entered the small recessed office. Upon entering I was ushered to the main office area from the lobby and proceeded to explain my problem to the woman at the nearest desk. She escorted me to another clerk to whom she explained the problem, and they both put aside what they were working on and began to pull out other files. In a matter of minutes the necessary paperwork had been completed and a Novice test package completed, addressed and sealed. When they handed me the test, it was with a smile and a wish of good luck for the applicant.

I was amazed that with all the work they have, they could make time to handle a problem like mine and be very friendly about it. Take my word for it when I say they have some wonderful people down there.

Chuck Davidson WA3LXB

\section*{PHONE PHREAKS VS MA BELL PART II}

If you're like me, the original article on the "Phone Phreaks VS Ma Bell" left me on edge like an Alfred Hitchcock movie. Being an inquisitive individual, I began my search at the local library for the October 1971 issue of Esquire magazine. Mr. Rosenbaum's article was also a Hitchcock special, as he rather conveniently neglected to mention what the "super-secret" tone frequencies were. Needless to say, this was the driving force I needed to really launch an all-out search for those tones, AND HOW Ma Bell uses them. . .NOT to defraud the phone company, just to be able to say, "I know!"

After several months of searching the archives of various collections of electronics publications I found what I was looking for AND MORE!

All right, Mr. Rosenbaum's article was correct in that the whole show starts with 2600 Hz . Now, ever wonder why the common Touchtone
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { 2-out-of-6 } \\
\text { code }
\end{gathered}
\] & Assigned freq (Hz) & ! & \# Desired in dialing & Components of desired \# \\
\hline 0 & 700 & & 1 (0 plus 1) & \(700+900\) \\
\hline 1 & 900 & & 2 (0 plus 2) & \(700+1100\) \\
\hline 2 & 1100 & & 3 (1 plus 2) & \(900+1100\) \\
\hline 4 & 1300 & & 4 (0 plus 4) & \(700+1300\) \\
\hline 7 & 1500 & & 5 (1 plus 4) & \(900+1300\) \\
\hline * & 1700 & & 6 (2 plus 4) & \(1100+1300\) \\
\hline & & & 7 (0 plus 7) & \(700+1500\) \\
\hline & & & 8 (1 plus 7) & \(900+1500\) \\
\hline & & & 9 (2 plus 7) & \(1100+1500\) \\
\hline & & & 0 (4 plus 7) & \(1300+1500\) \\
\hline & & Key Pulse & (4 plus *) & \(1300+1700\) \\
\hline & & Start & (7 plus *) & \(1500+1700\) \\
\hline
\end{tabular}
(TM) pad came equipped with such an array of wierd tones? I'm referring to those oddball frequencies of 697 Hz , \(770 \mathrm{~Hz}, 1209 \mathrm{~Hz}\), etc. Who was the nut who decided on these particular tones and why? The answer is simple. Touchtone (TM) frequencies were selected so they can in no way interfere with the trunk signaling tones. It soon becomes obvious that the trunk signaling tones were picked first, otherwise we would probably have nice even frequencies in our TT pads.

Yes, I hear the shouting, "what are the tones. . what are the tones?" The trunk signaling tones ARE: 700, 900 \(1100,1300,1500\) and 1700 Hz . Ma Bell assigns these tones numbers, and pairs them together in a two-out-of-six code. The PAIRS are then and only then valid signaling information (see chart).

As shown in the chart, the tones are paired together so that the two-out-of-6 sequence adds up to the number desired in actual dialing. The Key pulse and Start digits are equipment information bits that tell the trunk decoding equipment that a series of tones are coming up or have ended. International country codes ALSO use these same tones, for uniformity.

\section*{How The Phone Phreaks Do It}

They begin by dialing (on a regular phone) an 800 area code (INWATS) number KNOWN to be registered in a state besides their own. When the distant end begins ringing, then immediately beep out a short burst of 2600 Hz (disconnect tone). The distant end then stops ringing. Next they send out the "key pulse" pair followed by the area code and the number (using tones in above chart). This is followed immediately by the "start" pair. When the distant end rings this time, it is the number they desire, toll free!

\section*{They Get Caught}

Ma Bell is always dreaming up super-sophisticated ways of foiling phone phreaks. A couple methods involve the use of 2600 Hz filters on the subscriber side of the line. One method filters out all 2600 Hz coming from the customer end, so the wouldbe phone phreak never gets off the ground. Another method brings up a central office alarm and seizes the incoming line. Even if the phreak hangs up, his line will remain seized until the phone company can trace
him down and ask him what he is using 2600 Hz for!

A loud and clear word of caution: Do not attempt to build, buy, beg, borrow or steal a tone generating device capable of reproducing the tones given in the chart, with the idea in mind of using it to place calls. Such use CONSTITUTES FRAUD AGAINST THE TELEPHONE COMPANY. This article is for educational information only.
. . .WB9FOP

\section*{References}

ESQUIRE, October 1971, P. 116 "Secrets of the Little Blue Box" by Don Rosenbaum.

73, January 1972, p. 31, "Phone Phreaks VS Ma Bell" by Martin Bradeley Weinstein.

\section*{A LITTLE DISSENT}

Wayne Green may have a point. If the big magazines, newspapers, etc., are terrified of the IRS its up to the unterrified little guys to speak up. And it may be that a little dissent won't hurt amateur radio.

Anyway, here is a three year renewal to 73 to go along with my subscriptions to QST, Ham Radio and CQ. I think they all have something worthwhile.
M.C. Bowers, Jr. K4VO

\section*{OUR REPEATER IS LICENSED}

Enclosed is a check to help defray the cost of your HOTLINE paper which our club would like to subscribe to.

I would also like to take this opportunity to thank you for the information which your magazine. covered about 18 months ago about how to license a repeater. I followed this guideline fairly close and was privileged to have the first repeater in the state to be licensed under a WR call. I received the call in about 3 months. A second application filed almost exactly like the first took 53 weeks. This one had to take an al| out effort by the FCC to take so long, A couple of letters and a phone call finally woke them up.

Most of the members here take 73. All of us appreciate the efforts that you have made for us and other amateurs.

William C. Cousin
 Discriminators for Superior CW reception through ORM
Q QRN. Plug in installation, one year watranty is \& QRN. Plug in installation, one year warranty. ISday \(\$ 1.00\) for DC models
\(D E-101\) for phones anly, 115 VAC \(\quad532 .95\) \(\begin{array}{ll}D E \\ D E 1 A \text { for SPKR } \& \text { phones, } 115 \text { VAC ... } & \$ 33.95 \\ D E\end{array}\) \begin{tabular}{ll}
\(D E\) \\
\(D E 1 B\) for \(S P K R \&\) phones, 12.18 VDC & \(\$ 32.95\) \\
\(D E\) & 101 C tor phone onlv. 12.18 VDC \\
\hline
\end{tabular}
 \(\begin{array}{lll}\text { C.B Tested DE } 101 \mathrm{C} \text { uiruit hourd } & \$ 15.95 \mathrm{ppd} . \\ \text { CB } 2 \text { Tested audio PWR umplitier BD } & \$ 11.95 \mathrm{ppd}\end{array}\) CH
Dynamic Electronics, Inc.
Box 1131 Decatur, AL 35601

\section*{RECEIVER - TRANSMITTER}

\section*{R - 392/URR RECEIVER:}

High performance, rugged, 32 bands; 500 kHz thru 32 MHz continuous. Mechanical counter type digital readout to 300 Hz Separate Megacycles and Kilocycles tuning. Triple conversion lower eight bands, double conversion all others, Built in crystal calibrator, squelch, of gain, audio gain antenna tuning. BFO, variable selectivity \(8,4,2\) kHz . Requires \(22-30\) VDC 3 amps. Size: \(11 \%\) x \(14 \% \times 11^{\prime \prime}\). WT.: 52 lbs Shpg wt.: 65 lbs . USED, REPARABLE: \(\$ 125.00\). USED, CHECKED: \(\$ 195.00\)

T - 195/GRC - 19 TRANSMITTER: \(1.5-20 \mathrm{MHz}, 10\) bands Frequency stability \(0.03 \%\) plus 1000 Hz . Manual or automatic tuning. CW, voice or FSK operation. Power output: 50 Ohm antenna; 1.5-12 MHz 100 watts, \(12-16 \mathrm{MHz} 90\) watts, \(16-20 \mathrm{MHz} 80\) watts. Input voltage required: \(22-30\) VDC 42 Amps maximum, standby 9 amps . Size: \(11 / / 2 \times 14 \% \times 22\)." Wt.: 122 lbs.; Shpg. Wt.: 150 lbs .
Price: Used - Complete Reparable: \(\mathbf{\$ 8 9 . 5 0}\)
MT - 851 MOUNTING BASE for R-392 \& T-195. Shpg. Wt.: 60 lbs . \(\$ 10.00\)

CX 11599 CABLE, connects R-392 to T-195 - \(10^{\prime \prime}\) length: \(\$ 6.95\) BATTERY CABLE for T-195 w/plug: \$4.95. AN/GRC-19 MANUAL \(\$ 8.50\). T-195 MAINTENANCE MANUAL: \(\$ 7.50\)
COMBINATION OFFER: Reparable R-392, T-195, MT-851, CX-1599, T-195. Battery Cable: Special Price complete: \(\$ 200.00\)

All Prices FOB, Lima OH. Send for FREE CATALOG - Dept. 73

\section*{1016 E. EUREKA - Box 1105 - IIMA, OHIO . 45802}

\section*{YOU ASKED FOR IT! Ccm-5B FM \\ modulation meter}

\section*{Only \$99.95}
less batteries and crystals

0.7 .5 kHz deviation peal

Meets commercial requir
Operates \(30-500 \mathrm{MHz}\)
Crystal controlled for easy operation
Telescopic antenna
New Options
NICAD power pak \(\$ 20.46\)
Charger \$29.95
Audio/scope output with earphone \(\$ 12.95\)
Write or call for complete info
Send check or money order for \(\$ 99.95\) plus \(\$ 1.50\) for shipping. Indiana residents add 4\% sales tax. Crystals for 146.94 MHz : 3.95 All other freq: 7.10

Cash for any Collins military or commercial equipment or parts, especially 618 T Tranceivers. 490 T antenna couplers. AN/ARC-102. AN/ARC-94.

AN/MRC-95. SPACE ELECTRONICS CO. 76 Brookside Drive, Upper Saddle River, N.J. 07458 (201) 327-7640
\begin{tabular}{|l|l|l|}
\hline LOOKING FOR A NEW GHALLLENGE? \\
\hline
\end{tabular}
Isolated-Pad-Drill - Mill
Precision circuit board construction
without etching. Fits hand drill, electric
drill. Simple, fast, economical, safe.
Sizes. \(20,15, .10\) inch dia.
With replaceable 60 drill,
Calif. residents add \(5 \%\).
A F STAHLER Co
PO BOX 354 CUPERTINO, CALIF 95014

TRUMBULL, 833 BALRA DR. . EL CERRITO, CA. 94530

\section*{WORLD QSL BUREAU-}

5200 Panama Ave., Richmond CA USA 94804
THE ONLY QSL BUREAU to handle all of your QSLs to any where; next door, the next state, the next county, the whole world. Just bundle them up (please arrange alphabetically) and send them to us with payment of \(6 k\) each.
 CORNELL'S New Color Catalog
 48 Pgs. New Items IN LOTS OF 100
f. C \(_{\text {per }}\)

ORDER FREE IF NOT SHIPPED IN 24 HOURS! 4215 S University Ave. San Diego, Calif. 92105

SST T-1 RANDOM WIRE ANTENNA TUNER
All band operation (80-10 meters) with most
any random lengtth wire. 200 watt power capability, Ideal for portable or home opera
tion. A must for Field Day. Size: \(2 \times 4 \% \times x\) \(23 / 8\). Built tin nean tune-up indicator. Guaran teed for 90 davs
\(\cdots\)..
POSTPAID IadD SALES TAXINCALLI
Box 1. Lawndale CA 90260

\section*{73Books eo stuff}

\section*{the BDOKI 5} YOU CAN BUILD

37 simple make - covers VOMs VTVM you covers VOMs, VTVMs testing units, dip watt meters, and just abou the test lab and ham shack.

\section*{RF \& DIGITAL TEST} EQUIPMENT YOU CAN BUILD

\section*{\(\$ 5.95\)}

RF burst, function, square wave generators, variable length pulse generators -100 kHz marker, i-f and rf sweep generators, audio osc, af/rf signal injector, 146 MHz sy nthesizer, digital readouts for counters, several counters, prescaler, microwavemeter, etc. 252 pages.

ORDER NOW!

\section*{EXTRA CLASS STUDY GUIDE}

Does the theory required for the Extra Class exam panic you? No need, for this book reduces it to easy comprehension. Many amateurs find that a quick reading through this book is enough to get them through the tough Extra Class exam. Face that exam with confidence.

FM REPEATER CIRCUITS MANUAI
hardbound \$7 hardbound \(\$ 7\)
softbound \(\$ 5\)
Contains almost every conceivable circuit that might be needed for use with a repeater. All circuits explained in detail. All aspects covered, from the operator to the antenna. Also contains chapters on setting up a mobile station, plus much more.

\section*{HOW TO USE FM}
\(\$ 1.50\)
This book presents the basics of two meter FM operation and repeaters in short form with the end in mind of getting you on FM quickly and easily.
It is easy to make some blunders when you are getting started with anything new. It is also embarrasing. A fast reading of this book should help you avoid the pitfalls.

\section*{VHF PROJECTS FOR}

AMATEUR AND EXPERIMENTER
A must for the VHF op Opening chapters on operating practices and chapter started in VHF , both AM and getting started in VHF, both AM and FM, followed by 58 chapters on building useful test equipment modifying existing and surplus gear, building complete stations, both fixed and portable, linears, converters, control units, preamps, band scanners, antennas, noise suppression, plus many more.

\section*{FASCINATING WORLD OF \\ RADIO COMMUNICATIONS}

All about broadcast band DXing, tuning the tropical DX bands, DXing radio amateurs, antennas for short wave, radio licenses, pioneers in elec tricity and radio, commercial broadcast stations, WWV, etc.

TVI
\(\$ 1.50\)
Discusses all types of interference problems in great detail with recommended steps to cure these problems. Good for both the amateur and citizens band operator. Try this cure and suffer no longer.

\section*{IC PROJECTS}

This book tells how to understand and use ICs, with numberous construction projects.

\section*{1974}

FM REPEATER ATLAS
\(\$ 1.50\)
Listings by states (or countries) and cities of all repeaters, both open and closed, in the world. Periodically updated. Handy size for mobile use.

> SOLID STATE
> PROJECTS

More than 60 projects of interest to anyone in electronics. The devices range from a simple transistor tester to a ham TV receiver. This collection will help you become more intimately acquainted with zeners, ICs and varactors, etc.

TRANSISTOR PROJECTS
Crammed full of home construction Crojets from projects, fransmitters and all in between. Chapters include such articles as zener diodes, how they work, how to use, test and
buy them; integrated circuits; how to buy them; integrated circuits; how to
design transistor amplifiers; and many more.

\section*{DX HANDBOOK with MAP}

How to work DX, how to get QSL'S, country lists, award lists, QSL bureaus, maps of the world, great circle maps centered on major U.S. cities, DX bearing charts for major U.S. cities, how to go on your own DXpedition, and much more. Wall size DX map of the world included.

DIODE CIRCUITS

\author{
INTRODUCTION TO \\ RTTY
}
\$1
In this book the world of radioteletype is explained in an easily understood manner for the beginner There's also a chapter on RTTY Ar which will teach you everything you need to know in order to be a RTTY Artist. The last part of this book contains a bibliography of everything published about RTTY since 1952

\section*{RTTY HANDBOOK}
\$6
A comprehensive book covering all areas of radio teletype, from getting started with the basic principles, what equipment to procure and how to make it work. The only up-to-date book available on the subject. Well written, easy to read and understand.

73 USEFUL
TRANSISTOR CIRCUITS
Useful transistor circuits for audio eceivers, transmitters and test equipment. 47 chapters with circuit diagrams for each, complete with component values, etc. A must for the solid state home brewer. Easy to read and to understand.

\section*{SLOW SCAN}

\section*{TELEVISION HANDBOOK}
hardbound \$7 softbound \(\$ 5\)
This excellent book tells all about it, from its history and basics to the present state-of-the-art techniques. Contains chapters on circuits, monitors, cameras, color SSTV, test equipment and much more.

\section*{SIMPLIFIED MATH \\ FOR THE HAMSHACK}

115 diode circuits including power supply application regulators, ac meter applications, receiver detector for AM-FM-SSB, noise limiters, squelch, AGC, varicap tuning, audio clippers, compressors FM modula tors, RTTY keying, varactor multi pliers, noise generators.

\section*{VHF ANTENNA HANDBOOK}
\$3
Would you believe that the secret to success in VHF/UHF is in the antenna system? This is no earth shaking discovery, but it's true. A complete, detailed book with descriptions, dimensions, tuning data, diagrams and photos. Antennas from the instant coathanger to the giant collinear beam can be found here.

\section*{DIGITAL CONTROL}

OF REPEATER
hardbound \$7 softbound \$5
Here's a book for the FMer who wants to design and build a digital repeater control system. Contains sections on repeaters, basic logic functions, logic circuit design, control systems, support circuits, mobile installations, touch-tone, plus a special section on a "mini" repeater control system.

\section*{COAX HANDBOOK} All about coaxial cables, connectors and applications. It's all here pictures, part numbers and specifications for all types. Includes lengths for different types for quarter, half and full wave feedlines. If you use coax you cannot possibly function confidently without this book.

Mathematics made easy by explaining each step in each operation. Simplifies most calculations so they may be handled in your head. Explanations of exponents, their multiplication, division, addition, subtraction, squares, roots and powers. Algebraic manipulations with rules and problems. Slide rule instructions.

\section*{C.W. MANUAL,}

\section*{RADIO TELEGRAPHY}
\(\$.50\)
Chapters on history of C.W., learning the code, hand keying, \(Q\) signals, head reading and copying behind, semi-automatic keys, electronic keyers, keying the transmitter, etc. Very informative with plenty of proven tips on improving your sending and receiving abilities.

\section*{VHF ANTENNA HANDBOOK}
\$3
Would you believe that the secret to success in VHF/UHF is the antenna system? This is no earth shaking discovery, but it's true. A complete detailed book with descriptions, dimensions, tuning data, diagrams dimensions, tuning data, diagrams and photos. Antennas from the instant coathanger to the giant collinear beam can be found here. Your antenna is the cheapest amplifier you can build.

\section*{QUESTIONS AND ANSWERS}

Discussions of transmitting, receiving, antennas, power and audio measurement devices, etc. Circuits, gadgets, small construction projects, with complete diagrams. A wealth of interesting information.

Thousands have used this book to elp them breeze through the dvanced exam with no strain Thi Advanced exam with no strain. This s the ONLY study guide published which covers ALL the material you will have to know.

\section*{GENERAL CLASS STUDY GUIDE}

\section*{\$6}

This book will help you to really understand the theory and enable you to easily pass the FCC exam ou is easit \(Q \& A\) manual anual for ointo the exam with confidence.

\section*{NOVICE CLASS \\ STUDY GUIDE}

The world's easiest to understand ook on the theory required for the Novice amateur rad Novice ter fundamentals? exam rustrated by fundamentals? Read his book. One simple reading should carry you through the exam.

\section*{the Stuff}

\section*{73 CERTIFICATES}

\section*{WAAS}
\$1
Worked Almost All States - Proof of your having worked 49 of the 50 states. It is for those who are just unable to get that last state confirmed.

\section*{ALL MODE DXDC}
\$1
How many can qualify for this one? An award for 2 -way communications with 10 countries using CW-SSB-RTTY-SSTV modes.

\section*{DXDC}
\$1
Available for those who present proof of contact (copy of log) with 10 different countries. Awarding this certificate makes you a member of the DX Decade Club.

\section*{RTTY-DXDC}
\$1
Frame and hang this one above your machine. All operating award for those who have submitted proof of 2 -way teletype communications with 10 countries. Endorsement provisions for different bands.

\section*{SSTV-DXCC}

Dress up the shack with this award for 2-way Slow Scan Television communications with 10 countries. Endorsement provisions for separate bands.
U.S. MAPS

These wall sized maps show the states and call area. They are specially designed for coloring to show your progress toward the Worked All States award of ARRL or the Worked Almost All States award put Worked Almost All States award put 49 states). Since you will probably be 49 states). Since you will probably be wanting to work for the award on several bands you will want several maps. They come in groups of four. WORLD DX MAP

This is the same wall-sized DX map that is included with the DX Handbook except it comes to you rolled up instead of folded. This is so you can put it on the wall or have it framed. The map is designed with all country prefixes indicated and space for you to color in the countries as
you work them. Visitors can see I immediately how much of the world you have contacted! The zones are on the map as well as prefixes. Maybe you need several maps.

\section*{CUSTOMIZED DX BEARING CHART}

An amateur who works for a big computer company has a program which permits him to plug in your location and have it print out the bearings of all the countries of the world from your shack. Once you have this list you will use it for every DX contact. The chart gives the bearing and distance to all major cities and countries. Be patient when you order for these have to be run you in oroups so that we can ffer them to you such a low cost.

73 BINDERS
These binders are a gorgeous red and come with the nicest set of year stickers you've ever seen. The perfect thing for storing your issues of 73 so that they won't get lost or spilt on, or into the hands of the Jr. Op. Dress up your shack with these binders.

LAPEL BADGES
Name and call identifies you at club meetings hamfests, busted pot parties. Hand engraved by skilled New Hampshire eraftsman with lov mith lovng care. Only one lousy dollar. Send first name and call

\section*{CALL LETTER}

DESK PLATE
How about dressing up your operat ing table with a desk plate showing your first name and call? These emoossed desk plates are nice - and nexpensive. No zero available, sorry. There is room for twenty letters and spaces total.

73 Magazine, Peterborough NH 03458

\title{
Why Is Tom Durston Smiling?
}

Tom Durston is an engineer at MITS,
 Inc. He's walking around these days with a big grin on his face. And he has plenty of reason.
Tom has designed a computer terminal called the Comter 256. It's the same terminal that is featured on the cover of this month's Radio Electronics. And it's the first computer
 terminal to be marketed in kit form. Anywhere.
When Tom says, the Comter 256 is a "low cost, high performance computer terminal", he isn't using rhetoric. Just look at the specs:

The MITS Comter 256 also has a tape play/record feature, giving it virtually unlimited memory capability. Almost any type of tape recorder may be used.
The ASCII coded keyboard and 110/300 band transmit/receive rate makes the terminal compatible with almost all systems today.
A hardwire in/out connection on the back of the unit allows direct wiring to a computer. The same connector will be used for add on features such as an RS232 connection and modification from full duplex to half duplex transmission.

The Comter 256, has an alphanumeric, thirty-two character Self-scan \({ }^{\text {se }}\) display. The terminal will store 256 characters with expandability to 1,024 characters.

The built-in acoustic coupler makes computer hookup much simpler, saves extra cost, and eliminates external connections.
The auto-transmit feature allows the operator to transmit data or program material to the computer line by line instead of typing it directly into the computer, saving computer time and your money.

And when Tom says, "The Comter 256 was created to give everyone access to the sophisticated world of computers" . . . Well, just look at the PRICES:
Comter 256, kit form, complete
with easy-to-follow manual \(\$ 495.00\)
Comter 256, fully assembled \(\$ 695.00\)

\section*{mlis \\ INC.}

\section*{"Creative Electronics"}

\footnotetext{
Prices, specifications and delivery subject to change without notice.
}

Memory Expansion - per page
(256 characters)
\(\$ 79.50\)
Memory Expansion - complete 3 page . . \(\$ 230.00\)

\title{
INTERNATIONAL ELECTRONICS UNLIMITED
}

\footnotetext{
6 DIGIT CLOCK KIT
ADD A DIGITAL CLOCK TO YOUR SHACK
}

4 DIGIT CLOCK KIT

\footnotetext{
Contains - MM5313 - 6 MAN7 - all digit interface
IF's and all components needed
less pwr \(\times \mathrm{fmr}\) and case
}
\(\$ 27.95\)
IC's and all components needed
less pwr xfmr and case
\begin{tabular}{|c|c|c|}
\hline IN4148 Silicon Si TIS97 - TIS98 NPN & gnal Switching Diode & \[
\begin{aligned}
& 15 / 1.00 \\
& 10 / 1.00
\end{aligned}
\] \\
\hline 7400-7401.7403 & GATES & 6/1.00 \\
\hline 7404.7410-7420 & GATES & 5/1.00 \\
\hline LM301H/LM301N & OP. AMP. & 3/1.00 \\
\hline LM309K & \(5 \vee 1\) AMP & 1.25 \\
\hline & Comparators & 1.00 \\
\hline LM380N & 2 Watt Audio AMP & 1.25 \\
\hline LM3900N & Quad AMP DIP & 55 \\
\hline LM3905N & Precision Timer & 65 \\
\hline LM741CH/LM741C & N OP. AMP. & 3/1.00 \\
\hline MM5314 & 24 Pin Digital Clock Chip & 7.95 \\
\hline MM5316 & 40 Pin Alarm Clock Chip & 11.95 \\
\hline MM5016H & 512 Bit Dynamic Shift Reg. & 2.00 \\
\hline MM1103 & \(1024 \times 1\) Bit Dynamic RAM & 3.95 \\
\hline 2519 & \(40 \times 6\) Static Shift Register & 4.00 \\
\hline 2529 & \(240 \times 2\) Static Shift Register & 5.00 \\
\hline
\end{tabular}

LM300
LM301H/N LM302H LM304H
LM305H
LM307H/N
LM308H/N LM309K
LM310H
LM311H/N
LM319H
LM \(320 \mathrm{~K}-5 \mathrm{~V}-15 \mathrm{~V}\) - To 3 Neg. Regulator
LM324N Quad 741 Op Amp
LM339 Quad Comparator
To 5
Pos. \(V\) Reg
Improved Op Amp
Voltage Follower
Negative Voltage Regulator
Positive Voltage Regulator
Op Amp (Super 741)
Micro Power Op Amp
5 Volt Regulator / Amp
Improved Volt. Follwer Op Amp Hi-performance Volt. Comp.

Quad Comparator
A 6 C. Squelch Amp.
AM/FM \$\$ B Strip 3.30
2 Watt Audio Power Amp 1.50
RF/IF Amp 45
Dual Op Amp 1.00
Comp. Op Amp
Dual Compen. Op Amp
Freq. Adj. 741
Dual Comp. Op Amp
T.V.-FM Sound System Quad Amp
Timer
M567 Phase Looked Loops
Core Memory Sense Amp.
Core Memory Sense Amp.
Core Memory Sense Amp.
Dual Peripheral Driver
Dual Peripheral Driver
Dual (LM351)

LM370N
LM373N
LM380N
LM703H

LM741H/N
LM747H/N
LM748N
LM1458N
LM3065N
LM3900N
LM555N
LM 7522
LM 7524
LM 7535
LM75451
LM75452
LM75453

15/1.00 6/1.00 5/1.00 3/1.00 1.25 1.00 1.25 .65 3/1.00 7.95 11.95
2.00 1.95
3.95
4.00 5.00
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{8 PIN 14 PIN 16 PIN Also availabl}} & \[
\] & \begin{tabular}{l}
LDER \\
NE SO \\
GOLD \\
8 PIN \\
22 PIN \\
4 PIN \\
wrap so \\
ge volu
\end{tabular} & \begin{tabular}{l}
TAIL SO DER T ONTACT .74 \\
1.00 \\
1.05 \\
kets - 1/2 \\
nn DISCO
\end{tabular} & OCKET AIL SO & \begin{tabular}{l}
CKETS \\
PIN \\
PIN \\
PIN \\
write or call
\end{tabular} & \[
\begin{aligned}
& 1.30 \\
& 1.55 \\
& 1.75 \\
& \text { il for }
\end{aligned}
\] \\
\hline & & \multicolumn{4}{|l|}{TTL} & \multicolumn{2}{|l|}{CMOS} \\
\hline 7400 & \$. 18 & 7453 & \$. 27 & 74157 & \$1.55 & CD4001 & \$. 55 \\
\hline 7401 & . 23 & 7454 & . 40 & 74160 & 1.65 & CD4002 & . 55 \\
\hline 7402 & . 23 & 7459 & . 25 & 74161 & 1.65 & CD4009 & 1.40 \\
\hline 7403 & . 23 & 7460 & . 25 & 74163 & 2.50 & CD4010 & . 60 \\
\hline 7404 & . 25 & 7470 & . 45 & 74164 & 2.50 & CD4011 & 55 \\
\hline 7405 & . 24 & 7472 & . 41 & 74165 & 2.50 & CD4012 & . 55 \\
\hline 7406 & . 50 & 7473 & . 47 & 74166 & 1.75 & CD4013 & 1.50 \\
\hline 7407 & . 50 & 7474 & .47 & 74170 & 3.00 & CD4016 & 1.40 \\
\hline 7408 & . 25 & 7475 & . 90 & 74173 & 1.75 & CD4023 & . 55 \\
\hline 7409 & . 25 & 7476 & . 47 & 74174 & 1.85 & CD4025 & . 55 \\
\hline 7410 & . 23 & 7480 & . 50 & 74175 & 1.85 & CD4027 & 1.25 \\
\hline 7411 & . 30 & 7482 & 1.75 & 74176 & . 85 & CD4030 & . 60 \\
\hline 7413 & . 89 & 7483 & 1.15 & 74177 & . 85 & \(74 \mathrm{C00}\) & . 45 \\
\hline 7416 & . 45 & 7485 & 1.10 & 74180 & 1.05 & \(74 \mathrm{C04}\) & . 70 \\
\hline 7417 & . 45 & 7486 & .47 & 74181 & 3.75 & 74 C 20 & . 65 \\
\hline 7418 & . 25 & 7488 & 4.00 & 74182 & 1.00 & 74 C 173 & 2.60 \\
\hline 7420 & . 23 & 7489 & 3.00 & 74184 & 2.30 & 8000 Se & ries \\
\hline 7421 & . 27 & 7490 & . 89 & 74185 & 2.30 & 000 S & \\
\hline 7423 & . 32 & 7491 & 1.15 & 74187 & 7.00 & 8090 \$ & \$. 35 \\
\hline 7425 & . 27 & 7492 & . 95 & 74190 & 1.50 & 8091-809 & 98.55 \\
\hline 7426 & . 31 & 7493 & . 95 & 74191 & 1.50 & 8223 & 5.00 \\
\hline 7427 & . 32 & 7494 & . 97 & 74192 & 1.50 & 8280 & . 75 \\
\hline 7429 & . 40 & 7495 & . 95 & 74193 & 1.50 & 8288 & 1.15 \\
\hline 7430 & . 33 & 7496 & . 95 & 74194 & 1.50 & 8880 & 1.35 \\
\hline 7432 & . 26 & 74100 & 1.50 & 74195 & 1.05 & & \\
\hline 7437 & . 45 & 74107 & . 47 & 74196 & 1.25 & 8000 S & \\
\hline 7438 & . 50 & 74121 & . 55 & 74197 & 1.05 & 8000 Se & \\
\hline 7439 & . 50 & 74122 & . 47 & 74198 & 2.25
2.75 & LEDS & \\
\hline 7440 & . 23 & 74123 & 1.05 & 74199 & 2.75 & LEDS & \\
\hline 7441 & 1.10 & 74125 & . 60 & 74200 & 7.00 & MV 10 & 5/1 \\
\hline 7442 & 1.05 & 74126 & .80
1.15 & & CTS & MV 50 & 6/1 \\
\hline 7443 & 1.10 & 74141 & 1.15
1.15 & 8263 Sig. & 7.00 & MV 5024 & \(5 / 1\) \\
\hline 7444 & 1.15 & 74145 & 1.15 & 8263 Sig.
8267 & 7.00
4.00 & & \\
\hline 7445 & 1.10 & 74150 & +.95 & 8267
2513 & 4.00
14.00 & MAN-1 & 1.95 \\
\hline 7446 & 1.25 & 74151 & 1.20 & 2518 & 14.00
7.00 & MAN-3 & . 95 \\
\hline 7447 & 1.25
1.25 & 74153
74154 & 1.50
1.25 & 2518
2424 & 7.00
7.00 & MAN-4 & 1.95 \\
\hline 7448
7450 & 1.25 & 74154
74155 & 1.25
1.30 & 2425 & 7.00 & MAN-7 & 1.50 \\
\hline 7451 & . 27 & 74156 & 1.30 & 4024 & 2.25 & DL 33 & 1.95 \\
\hline
\end{tabular}

20\% Discount for 100 Pieces Combined - Above 7400 Series

> Satisfaction guaranteed. All items \(100 \%\) tested. \(\$ 5.00\) minimum order, First Class Mail - No extra charge. California residents add 6\% sales tax. Wholesale outlets - write for special discounts. Write for FREE catalog . . . data sheets \(\$.20\) each.
P. O. Box 822 - Belmont. Са. 94002

PHONE ORDERS WELCORE
[415] 592-8097

\section*{The Hybrid Analog TONE GENERATOR}

\author{
MH8913」 \(\$ 18\) 으
}

DATA and APPLICATION SHEETS FURNISHED WITH ORDER

\section*{general specifications}

\author{
Frequency Drift(1): < \(1.5 \%\)
}

Group Amplitude Stability: \(\pm 25 \%\)
Total Distortion (Harmonic + Intermodulation):
\(<5 \%\) (relative to level of fundamental frequencies)

Typical Rise Time to Specified Output and Frequency:
1) Frequency selected, power supply switched \(\leqslant 5 \mathrm{~ms}\)
2) Power applied, frequency selector switched \(\leqslant 2 \mathrm{~ms}\)
3) Power applied, frequency within same group changed \(<2 \mu\) s

\section*{features}
- Dual Frequency Capability
- Standard Telephone Tone-Dial Frequencies: Low Group - 697, 770, 852, 941 Hz ; High Group 1209, 1336, 1477, 1633 Hz
* Specification Ratings Exceed CCITT Recommendations
typical circuit connection diagram

block diagram and pin configuration

MH8913J CAN BE USED WITH CHOMERICS \#ER21624 TOUCH TONE KEYBOARD

\section*{}

FORMATS
Standard legends are
black and white set in

CALCULATOR FORMATS

TOUCH TONE FORMATS

\begin{tabular}{|cc|cc|c|c|c|}
\hline \begin{tabular}{c}
\(1 / 2^{\prime \prime}\) centers \\
Model \#
\end{tabular} & Price & \begin{tabular}{c}
\(3 / 4^{\prime \prime}\) centers \\
Model \#
\end{tabular} & Price & Format & Coding & \begin{tabular}{c}
\# of \\
Keys
\end{tabular} \\
\hline ER 21622 & 7.15 & ER 21605 & 7.70 & Touch tone & Single pole & 12 \\
ER 21623 & 8.70 & ER 21606 & 9.25 & Touch tone & Touch tone & 12 \\
ER 21624 & 9.25 & - & - & Touch tone & Direct to MH8913 & 12 \\
- & - & ER 21607 & 7.70 & Calculator & Single pole & 12 \\
- & - & ER 21608 & 11.00 & Calculator & BCD & 12 \\
ER 21625 & 8.70 & ER 21609 & 9.25 & Calculator & Single pole & 16 \\
- & - & ER 21610 & 9.25 & Touch tone & Single pole & 16 \\
- & - & ER 21611 & 11.15 & Touch tone & Touch tone & 16 \\
\hline
\end{tabular}

CODING

\title{
SOLID STATE SURPLUS four months later \\ Dear Customer,
}

Four months ago we ran our first ad in these pages. You may even remember the "just what the world needs. . another surplus place?" banner which said, in effect, we aim to do things a little differently.

Those of you who have ordered from us know what we're about. . .hobbyist parts at truly competitive prices, fast turnaround, no backordering. . .and judging from your reaction, this is what you want.

For those reading about us for the first time, a few comments. One, we do not publish a catalog, for two reasons. First, our "catalog" is this page - it lists every product we sell. (A couple of months ago, we had an ad saying "Solid State Surplus proudly announces its first catalog." The point of the ad was that the ad itself is our catalog, although we didn't manage to make that point too clearly.. . I guess that's what happens when you let electronics freaks do the advertising.) There's another reason why we don't have a catalog: We'd have to charge more for our parts. When you send in your \(65 \varnothing\) for a regulator, you want to pay for the regulator, not the price of mailing catalogs out to other people. We are trying to avoid anything that would force higher prices. . .hence, no catalog. What's for sale is listed in the ad.

Another comment: we enjoy dealing with you, our friends and customers. We appreciate the notes, the comments and the criticisms, too. If you have something you feel like saying to us, go right ahead; we've all got big ears and we listen hard. The increased interest in the 4016, for example, is what put it in our repertoire of ICs. . .and who knows what we'll come up with in the months ahead?

But to return to the present, here's what we sell now. You know the rest; spiffy data sheets, orders filled (usually airmail) within 48 hours of receipt, no backordering, and individual testing of each part. . just what the world needs, another surplus place.

SOLID STATE SURPLUS
LM 309K 5V 1 A regulator \(\$ 1.20\)
LM 311M high performance comparator \(\$ 1.00\)
LM 339 dip quad comparator \(\$ 1.50\)
LM 555 timer \(\$.85\)
LM 723D adjustable precision voltage regulator \$. 65
LM 741 mini compensated op amp \$. 45
LM 747 dip dual \(741 \$.70\)
LM 3900 dip quad op amp \(\$.45\)
LM 4250 TO5 programmable op amp \(\$ 2.00\)
LM 1558 mini dip dual \(741 \$.75\)
NE 531 minidip hi slew op-amp \(\$ 1.25\)
CD 4016 quad analog switch \(\$ 1.00\)

ABOVE MATERIAL IS GUARANTEED FUNCTIONAL, RETESTED MATERIAL. USER SATISFACTION GUARANTEED FOR HOBBY AND EXPERIMENTAL APPLICA-

SOLID STATE SURPLUS BOX 255 MONTE RIO CA 95462 TIONS.

\title{
eupare fin \\ WILL NOT BE UNDERSOLD! \\ \\ november \\ \\ november thankseiving thankseiving \\ \\ SALE OF
} \\ \\ SALE OF
}

These goodies will last longer than the Thanksgiving turkey

\section*{TWO METER PORTABLES}

TEK Portable Mobile Transceiver. This 8 watt portable slides into a mounting rack and becomes a 25 watt mobile. The entire unit is transistorized. These units are less than two years old. Price includes Nicad battery, mobile mounting rack, mobile speaker, microphone.
\[
\text { All for } \$ 400.00
\]

MOTOROLA H23AAC. \(1 \frac{1}{2}\) watts output on two meters. This is the familiar "Lunchbox" which uses transistors in the receiver and instant heat tubes in the transmitter, with a dry battery supply. \(\$ 30.00\) each MOTOROLA HT200 (H23DENF fomres sild state receiver and transmitter. These units require some mbins and are not operable at this time. Only 4 left at \(\$ 75.00\) each

\section*{SIX METER PORTABLES}

MOTOROLA HT2OO (H21DCN) 1/2 watts: output. Solid state throughout. TWO FREQUENCY transmit and receive. These are presently tuned to 47.7 mc and will tume to 54 mc without further conversion. Most are with the carrying case. \$150.00 each

\section*{BASE STATIONS:}

MOTOROLA L41GGB: 30 watts output from these table top base stations. These units are presently tuned to 46.46 mc . \(\$ 150.00\) each GENERAL ELECTRIC: Remote control units, Model number 4EC8, only \(\$ 35.00\) each

Supplies are limited, so don't delay, send your check today to;
\[
\text { DU PAGE FM INC. P.O. Box } 1 \text { Lombard, III. } 60148
\]
\[
\text { (312) } 627.3540
\]

\footnotetext{
TERMS: All items sold as is. If not as represented return for exchange or refund (our option) shipping charged prepaid within 5 days of receipt. Illinois residents must add \(5 \%\) sales tax. Personal checks must clear before shipment. All items sent shipping charges collect unless otherwise agreed. Accessories do not include crystals, relay or antennas.
}

\section*{COMMUNICATIONS UNLIMITED}

SPECIALISTS IN CCTV, VTR's, FM COMMUNICATIONS.
Toledo
SB-23 - 9 mile exit
NB-23 - Barker Road exit - 1 block to Main Street
Store: 9519 Main
Whitmore Lake MI
Hours - Noon - 6pm Tue - Sat ES
Closed some Saturdays
313-449-4367
We sell M-Tech, Midland, Larson, A/S, Hitachi, Motorola, Dak, Ampex and many others

We are an independent sales and service company. Our product loyalty is from experience not sales franchise. Qualified, unbiased.

Consultation service available for video systems large and small.

\title{
III-1448
}

\author{
TWO METER F.M. PORTABLE
}

See p. 16 for New Product Review
CRYSTAL SOCKETS INCLUDED! IMPROVED TRANSMIT AUDIO! UP TO 6 KC DEVIATION!
.35 uV SENSITIVITY OR BETTER!
. 25 SQUELCH SENSITIVITY! IMPROVED INSTRUCTION MANUAL!
F.C.C. TYPE APPROVAL PENDING!

KIT ONLY \$129.95 COMPLETE less batteries AND for a limited time only we will furnish ONE SET OF CRYSTALS FREE! Your choice of 94-94; 52-52; or 34-94.

\section*{IT'S AN EVEN BETTER BUY NOW!!!!!!}

ACCESSORIES:

> "Rubber Duckie" Antenna (BNC Connectors) \$12.95

Nicad Batterie Charger . \$ 4.95
Sealed 12V Nicad Battery Pack \$29.95

Please include \(\$ 1.00\) for Shipping and Handling - N.Y.S. residents add sales tax

\section*{7-Segment Readout} 12-PIN DIP
Three digits with right-hand decima Plugs into DIP sockets
Similar to (LITRONIX) DL337
Magnified digit approximately . \(1^{11}\) Cathode for each digit
Segments are parallel for multiple operation
5-10 MA per segment
EACH \$3.00 4 (12 Digits) \(\$ 11.00\)

Potter \& Brumfield
TYPE KHP RELAY
4 PDT 3A CONTACTS
24 VDC (650
coil).... \$1.50
120 VAC (10.5 MA
coi1).... \$1.75
Power Supply SPECIAL!
723 DIP variable regulator chip 1-40V, + or - output @ 150 MA 10A with external pass transistor--wi th diagrams for many applications.
EACH \$1.00
10 FOR \$8.95

\section*{\(\Rightarrow\) SPECIAL}

Special 741 fully-compensated operational amplifiers. 14-Pin DIP (only). Unmarked, tested, gharanteed. Super Special!
EACH \$. 35
10 FOR \(\$ 3.00\)

\section*{5001 Calculator}

40-Pin calculator chip will add, subtract, multiply, and divide. 12-digit display and calculate. Chain calculations. True credit balance sign output. Automatic over-flow indication. Fixed decimal point at \(1,2,3\), or 4 . Leading zero suppression. Complete data supplied with chip

CHIP AND DATA........ ONLY \(\$ 6.95\)
DATA ONLY (Refundable) ... \$1.00
5002 LOW POWER CHIP AND DATA \(\$ 12.95\)

\section*{High Quality PCB}

\section*{Mounting IC Sockets}

8-PIN, 14 -Pin, 16 -Pin and 24 -Pin PCB mounting ONLY--no wire wrap sockets.

8-Pin.
14-Pin.
16-Pin.
n.......
.. \$. 30
24-Pin
24-Pin

All IC's are new and fully-tested. Leads are plated with gold or solder. Orders for \(\$ 5\) or more will be shipped prepaid. Add 55 f for handing and postage for smaller orders; residents of California add sales tax. IC orders are shipped within 2 workdays--kits are shipped within 10 days of receipt of order. \(\$ 10\) minimum on C.O.D.'s (phone in).
MAIL ORDERS:
P. O. Box 41727 Sacramento, CA

4811 Myrtle Ave
Sacramento, CA
MONEY BACK GUARANTEE ON ALL GOODS! SEND FOR FREE FLYER LISTING 100 's OF MONEY-SAVING BARGAINS!

\section*{CTHL SPECIAL}

Complementary Transistor Logic. This logic family is unique in that both NPN and PNP transistors are combined in the same package. Unlike TTL \& DTL, the outputs are current sources (in the high state) as well as sinking current in the low state. These are brand new units, some of which are mismarked with DTL numbers.

CTL 9956 dual 2 -input AND buffer
CTL 9953 2-2-3-input AND/OR gate
CTL 9952 dual 2 -input NOR gate
Data supplied; all parts are dual-
in-line. MIX OR MATCH. 5 FOR \$1.00
LED's
MV50 Red Emitting
10-4 MA @ 2 V

MV5024 Red TO-18 High Dome

10 FOR \$2.95

MV10B Visible Red 5-7 MA @ \(2 V\)

10 FOR \(\$ 2.50\)
\begin{tabular}{|lrrr}
\hline \multicolumn{4}{c}{ CMOS } \\
CD4001 & \(\$.75\) & CD4023 & \(\$.75\) \\
CD4002 & .75 & \(74 C 20\) & .75 \\
CD4011 & .75 & \(74 C 160\) & 3.25 \\
CD4012 & .75 & & \\
\hline 3-Amp Power Silicon Rectifiers
\end{tabular}

MARKED EPOXY AXIAL PACKAGE
\begin{tabular}{ll}
PRV PRICE & PRV PRICE \\
\(100 \ldots \ldots . \$.10\) & \(800 \ldots \ldots . \$.30\) \\
\(200 \ldots \ldots .15\) & \(1000 \ldots \ldots .40\) \\
\(400 \ldots \ldots . .18\) & \(1200 \ldots \ldots .50\) \\
\(600 \ldots \ldots . .23\) & \(1500 \ldots \ldots .65\) \\
\hline
\end{tabular}

DIDDE ARRAY \(10-1\) N914 silicon signal diodes in one package. 20 leads spaced. \(1^{11}\); no common connec-

tions.
EACH. \$. 29
10 FOR \(\$ 2.50\)
BABYLOR ELECTRORICS
\begin{tabular}{|c|c|c|c|}
\hline 7400 & \$. 25 & 74H51 & \$. 35 \\
\hline 74H00 & . 35 & 7453 & . 20 \\
\hline 7401 & . 20 & 7454 & . 25 \\
\hline 74H01 & . 35 & 74 L 54 & . 35 \\
\hline 7402 & . 35 & 74L55 & . 35 \\
\hline 7404 & . 28 & 7460 & . 20 \\
\hline 74H04 & . 35 & \(74 \mathrm{L71}\) & . 30 \\
\hline 7405 & . 28 & 7472 & . 40 \\
\hline 7406 & . 70 & 74 L 72 & . 50 \\
\hline 7408 & . 35 & 7473 & . 60 \\
\hline 74H08 & . 35 & 74173 & . 75 \\
\hline 7410 & . 25 & 7474 & . 65 \\
\hline 7413 & 1.25 & 74H74 & . 80 \\
\hline 7417 & . 40 & 7475 & 1.40 \\
\hline 7420 & . 25 & 7476 & . 60 \\
\hline 74L20 & . 35 & 74178 & . 80 \\
\hline 74H20 & . 35 & 7480 & . 65 \\
\hline 74H22 & . 35 & 7483 & 1.00 \\
\hline 7430 & . 25 & 7489 & 4.00 \\
\hline 74 H 30 & . 35 & 7490 & 1.20 \\
\hline 74 L 30 & . 40 & 7492 & . 90 \\
\hline 7440 & . 25 & 7493 & 1.15 \\
\hline 74H40 & . 35 & 7495 & 1.15 \\
\hline 7441 & 1.25 & 74 L 95 & 2.00 \\
\hline 7442 & 1.20 & 74107 & . 70 \\
\hline 7447 & 1.50 & 74145 & 1.20 \\
\hline 7450 & . 25 & 74180 & 1.25 \\
\hline 74H50 & . 35 & 74193 & 1.50 \\
\hline 7451 & . 25 & 74195 & 1.00 \\
\hline 74L51 & . 30 & & \\
\hline 7400 & Seri & & DIP \\
\hline
\end{tabular}

25K Trimmer
PRINTED CIRCUIT BOARD TYPE EACH \(\$.20\)

10 FOR \(\$ 1.50\)

\section*{Rectifiers}
\begin{tabular}{|c|c|c|c|c|}
\hline VARO & FULL-WAVE & BRIDGES & & \\
\hline V5447 & 2 A & 400 V & & \$. 90 \\
\hline V5647 & 2 A & 600 V & & \$1.10 \\
\hline MR810 & Rectifier & 50 V & 1 A & \$. 10 \\
\hline
\end{tabular}

\section*{Special 811: Hex Inverter}

TTL DIP Hex Inverter; pin interchangeable with SN 7404. Parts are brand new and branded Signetics and marked "811."
\begin{tabular}{|c|c|c|c|}
\hline & EACH....... \$ & .30
.50 & 811 un \\
\hline dATA & 10 FOR. & 2.50 & 811 \\
\hline SHEET & 100 FOR & 23.00 & W7\% 70 \\
\hline
\end{tabular} SUPPLIED 1000 FOR . \(\$ 220.00\)
\(0-9\) plus
letters. MAN 3
Right-hand decimal point. Flat-pack type case. Long operating life. IC voltage requirements. Ideal

EACH \(\$ 1.25\) for pocket calculators! 10 OR MORE \(\$ 1.00\) EA

\section*{MAN 4 \({ }_{7 \text {-Segment, }} 0-9\) plus letters.} Right-hand decimal point. Snaps in 14pin DIP socket or Molex. IC voltage requirements. Ideal for desk or pocket calculators!

EACH \$2.75
10 OR MORE \(\$ 2.50\) EACH

\section*{CD-2 Counter Kit}

This kit provides a highly sophisticated display section module for clocks, counters, or other numerical display needs. The unit is \(.8^{\prime \prime}\) wide and \(43 / 8^{\prime \prime}\) long. A single 5 -volt power source powers both the ICs and the display tube. It can attain typical count rates of up to 30 MHz and also has a lamp test, causing all 7 segments to light. Kit includes a 2 -sided (with plated thru holes) fiberglass printed circuit board, a 7490 , a 7475 , a 7447 , a DR2010 RCA Numitron display tube, complete instructions, and enough MOLEX pins for the ICs... NOTE: boards can be supplied in a single panel of up to 10 digits (with a 11 interconnects); therefore, when ordering, please specify whether you want them insingle panels or in one multiple digit board. Not specifying will result in shipping delay.
COMPLETE KIT ONLY \$11.95
FULLY-ASSEMBLED
UNIT \$15.00

\section*{Boards supplied separately © \(\$ 2.50\) per digit.}

\section*{L I N E A R S}
\begin{tabular}{|c|c|}
\hline NE540 & 70-Watt power driver amp.............. \$2.00 \\
\hline NE555 & Precision timer......................... 1.50 \\
\hline NE560 & Phase lock loop DIP................... 3.25 \\
\hline NE561 & Phase lock loop DIP................... 3.25 \\
\hline NE565 & Phase lock loop T0-5 3.25 \\
\hline NE566 & Function generator T0-5.............. 4.00 \\
\hline NE567 & Tone decoder T0-5. 3.00 \\
\hline 709 & Popular Op Amp DIP.................... . 45 \\
\hline 710 & Voltage comparator DIP............... . 75 \\
\hline 711 & Dual comparator DIP.................. . . 40 \\
\hline 723 & Precision voltage regulator DIP...... 1.00 \\
\hline 741 & Op amp T0-5/MINI DIP.................. . . 55 \\
\hline 747 & Dual 741 op amp DIP. 1.50 \\
\hline 748 & Op Amp T0-5. 1.00 \\
\hline CA3018 & 2 Isolated transistors and a Darling-ton-connected transistor pair....... 1.00 \\
\hline CA3026 & Dual differential amp................ 1.00 \\
\hline CA3045 & 5 NPN transistor array............... 1.00 \\
\hline LM100 & Positive DC regulator T0 \(-5 \ldots1 .00\) \\
\hline LM105 & Voltage regulator.................... 1.25 \\
\hline LM302 & Op Amp voltage follower T0-5........ 1.25 \\
\hline LM308 & Op Amp T0-5. 2.00 \\
\hline LM309H & 5V 200 MA power supply T0-5.......... 1.00 \\
\hline LM309K & 5 V 1A power supply module T0-3...... 2.00 \\
\hline LM311 & Comparator T0-5........................ 1.75 \\
\hline LM370 & AGC amplifier............... 2.00 \\
\hline LM380 & 2-Watt Audio Amp 1.75 \\
\hline LM1595 & 4-Quadrant multiplier................. 2.00 \\
\hline MC1536T & Op Amp. 2.00 \\
\hline
\end{tabular}

\section*{CALCULATOR KIT}

Kit contains NORTEC calculator chip 4024,21 driver transistors, 8 LED's, 7 segment readout by EXITON, 3 LED for overflow, low btry, overrange, a keyboard by FLEX KEY. All this \(\$ 45\) value for only

\section*{BASIC CLOCK KIT}

We furnish clock chip CT7001 and 4 first line LED readouts .3 inch hgt. You furnish the misc. minor parts. A \(\$ 35\) value for
\(\$ 19.95\)

\section*{LIQUDD CRYSTAL WATCH}

Build a wrist watch or desk clock with this liquid crystal display. Recently written up in several magazines. Display with special socket reads hours and minutes \$15 2 for \$25

\section*{UNDERWATER LISTENING}

Brand new by OLIN. Use it for a swim pool mon-itor-alarm, use it on lake or ocean listening to underwater noises, fish, etc. Complete with hydrophone, 50 ft . mike cable, speaker-amplifier console. Operates from 115 volts AC or 15 volt dry cells. 12 lbs. \(\$ 25\)

\section*{CALCULATOR GHIPS}

5001 LSI (40 pin) Add, subtract, multiply divide 12 digit. With data subtract, \(\$ 6.95\) Data alone 50 cents

\section*{GMOS 4814 HEX INVERTER}

CMOS HEX INVERTER, dual inline package. 3-18 volt range, dual diode protection against static charge. Dielectrically isolated complimentary MOS.
\(\$ 1.00\) each 12 for \(\$ 10.00\)

\section*{DUAL 16 BIT MEMORY}

Dual 16 bit memory, serial MOS by Philco TO- 5 case, brand new with 2 page specs. \#PLR 532 \$1.00 each \(\$ 10 / 12\)

\section*{\(A M=5 M\) in \(0 \& 5.50\)}

Due to the West Coast ship strike they came in too late for the customer. Now it's your bargain. Use it as is or build it into your own cabinet, desk, wall, etc. All built, ready to use, with AC supply. To make it portable all you do is power it with a couple of "D" cells. Fully assembled solid state chassis with AC power supply, less speakers. Covers full AM as well as FM broadcast. The price . . an astounding meager \(\$ 5.50\)

FLEX-KEY KEYBOARD FOR POCKET CAL-
CULATORS

\section*{POWER AMP XFMR 380 WATT} 115 volt input, 64 VCT 6 amp output.
\(\$ 11.95\) each, \(2 / \$ 22,5 / \$ 50\)

\section*{COLUMBIA 4 CHANNEL SQ}

Solid state SQ 4 channel adapter, 2 amps built in. Decodes 4 channel or synthesizes 4 channel.
\(\$ 35.00\)

\section*{LED READOUTS 5/\$1.00!}

The price is not a mistake. We have some hobby variety with some segments out. Ukinbuyem for as low as

5 for \$1.00

\section*{PHOTO STROBE}

For use with most Instamatic cameras. With nicad battery and built-in charger. Never buy flash cubes again.
\(\$ 9.95\)

\section*{AM-FM RADIO}

For console installation, w/face plate, no knobs. Stereo amplifiers for tape or turnable playback.
\(\$ 15.00\)
Pair of matching speakers \(w / \times f \mathrm{mrs}\) for above
\(\$ 5.00\)

\section*{CALCULATOR CHASSIS}

Fully assembled pocket calculator chassis with calculator chip. Uses LED readouts, not included.
\(\$ 5.00\)

\section*{ELECTRIC SIREN \$10.00}

Brand new, operate 6 or 12 volts dc. Just the thing to protect car or boat. Used also as burglar or fire alarm in house \& camp. Kinda scarce, but we found some. While they last
\(\$ 12\) each, 2/\$20.00

\section*{SOLAR ENERGY}

Electricity for free from the sun. An exciting experimental device. Instructions included show how to make a solar energy bank for higher voltages and/or current, also how to make a solar operated radio receiver.

Giant cell \(\mathbf{2}^{\prime \prime}\) diameter - \(\$ 1.50\)
Large cell \(13 / 4^{\prime \prime}-\$ 1.25\)
Medium cell \(1^{\prime \prime}\) diameter - \(\$ 1.00\)
Rectangular \(3 / 4 \times 11 / 2^{\prime \prime}-\$.75\)
Any six for the price of \(5 \ldots\)

\section*{BOOKSHELF SPEAKERS}

Completely finished, \(9 \times 12 \times 5\) inches. 16 ohm, with extension cord. \$15 a pair.

\section*{RGS ELECTRONICS}

\section*{008A MICROCOMPUTER KIT}

8008 CPU, \(1024 \times 8\) memory; memory is expand able. Kit includes manual with schematic, programming instructions and suggestions; all ICs and parts supplied except cabinet, fuses \& hardware. Includes p.c. boards.
\(\$ 375.00\)
MANUAL ONLY, \$25.00

\section*{008A-K ASCII KEYBOARD INPUT KIT}

Includes keys, p.c. board, all ICs, power supply, instructions, schematic. Intended to interface ONLY with the RGS Electronics 008A Microcomputer
\(\$ 50.00\)

\author{
SPECIAL - THIS MONTH ONLY! \\ LM 1800 PLL stereo demultiplexers. No coils!! Regularly \(\$ 2.50\); THIS MONTH, \(\$ 2.00\) ea.
}
"THE CUBE" Fully assembled subaudible tone generator for small handheld or portable FM radios. 9-16 volts; no moving parts; set anywhere between \(98 \& 240 \mathrm{~Hz}\) with a trim resistor.

\author{
\(5^{\prime \prime} \times .6^{\prime \prime} \times .7^{\prime \prime}\) \\ \$19.95 \\ Set on frequency by the factory, \(\$ 5.00\) extra
}

TTL
\begin{tabular}{rrrr}
7400 & \(\$.20\) & 7485 & \(\$ 1.40\) \\
7401 & .20 & 7486 & .50 \\
7402 & .20 & 7489 & 2.90 \\
7403 & .20 & 7490 & .80 \\
7404 & .25 & 7492 & .80 \\
7405 & .25 & 7493 & .80 \\
7406 & .45 & 7495 & .90 \\
7407 & .45 & 7496 & .85 \\
7408 & .25 & 74107 & .50 \\
7409 & .25 & 74121 & .60 \\
7410 & .20 & 74122 & .60 \\
7411 & .30 & 74123 & 1.10 \\
7413 & .85 & 74125 & .65 \\
7416 & .45 & 74126 & .65 \\
7417 & .45 & 74141 & 1.25 \\
7420 & .20 & 74150 & 1.70 \\
7430 & .20 & 74151 & 1.00 \\
7432 & .30 & 74153 & 1.40 \\
7437 & .50 & 74154 & 1.70 \\
7438 & .50 & 74157 & 1.40 \\
7440 & .20 & 74161 & 1.50 \\
7442 & 1.10 & 74163 & 1.70 \\
7446 & 1.45 & 74164 & 2.00 \\
7447 & 1.45 & 74165 & 2.00 \\
7448 & 1.45 & 74166 & 1.75 \\
7450 & .20 & 74174 & 2.20 \\
7451 & .20 & 74175 & 2.20 \\
7453 & .20 & 74176 & 1.60 \\
7454 & .20 & 74177 & 1.35 \\
7473 & .45 & 74181 & 3.90 \\
7474 & .45 & 74192 & 1.50 \\
7475 & .80 & 74193 & 1.45 \\
7476 & .50 & 74195 & 1.00 \\
7483 & 1.10 & 74200 & 8.00
\end{tabular}

PS 25-1 0 to 25 v 1a lab type power supply with adjustable current limiting; remote sensing \& remote programming for voltage \& current. Instructions included. All parts except chassis \& meter(s).
Kit of parts with schematics
\(\$ 14.95\)
P.C. boards available, No. 007,
\(\$ 3.00\) ea

PS 5-1 \(5 v\) 1a regulated power supply kit with p.c. board \(\&\) instructions. Board measured \(2^{\prime \prime} \times 6^{\prime \prime}\); completed kit is \(2^{\prime \prime}\) high. Transformer has internal r.f. shield.
\(\$ 8.00\)

\section*{RGS ELECTRONICS}

\author{
3650 Charles St., Suite K • Santa Clara, CA 95050 • (408) 247-0158
}

We sell many ICs and components not listed in this ad. Send a stamp for our free flyer. TERMS OF SALE: All orders prepaid; we pay postage. \(\$ 1.00\) handling charge on orders under \$10.00. California residents please include sales tax. Please include name, address and zip code on all orders and flyer requests.

GODBOOFBOX 2673, OAKLAND AIRPORT, CA 94614

THOSE WHO HAVE BOUGHT THE 8008 PROCESSOR FROM US OR RGS OR CYBERTRONICS WHO ARE INTERESTED IN SHARING HARDWARD AND SOFTWARE PLEASE SEND FULL NAME AND ADDRESS - AND WE WILL PREPARE A MAILING LIST AND SEND IT TO ALL WHO HAVE SENT IN NAMES AND ADDRESSES.
8008 PROCESSOR 8 bit on a chip

\(\$ 50.00\)

21G2102/2602 N CHAN Bit static RAM.
SPECIAL FOR THIS MONTH ONLY \$15.00
TTL SPECIAL 74175 Quad Latch \(\$ 1.10\)
MOS DYNAMIC MEMORY \(1 \times 1024\) bit MM5260 \(\$ 5.00\)
LINEAR SPECIAL 741 Mini Dip op amp 10/\$3.50
LM 309K 5V 1A REG \(\$ 1.75\)
LM 320K NEG Reg available in 5V 12V \& 15V \$2.25
LM 340 K POS Reg available in \(6 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 24 \mathrm{~V}\) \$2.25
4194 TK adjustable dual tracking reg TO66 \$3.90
4195 TK dual tracking reg \(\pm 15 \mathrm{~V}\) TO66 \$3.40
ICs, most TTL \& LINEAR in stock - Send stamp for FREE catalog

CMOS DIGITAL
\begin{tabular}{lrlrlllr}
74C00 & .60 & CD4011 & .55 & CD4042 & 2.95 & 555 & .85 \\
74C02 & .60 & CD4012 & .55 & CD4044 & 2.95 & 556 & 1.60 \\
74C04 & .85 & CD4013 & 1.10 & CD4049 & 1.10 & \(723 T\) & .95 \\
74C10 & .60 & CD4014 & 4.00 & CD4050 & 1.10 & \(723 D\) & .75 \\
74C20 & .60 & CD4015 & 4.00 & CD4116 & 1.25 & \(741 M\) & .45 \\
74C73 & 1.65 & CD4016 & 1.10 & LINEAR & & \(741 T\) & .50 \\
74C74 & 1.25 & CD4017 & 3.20 & LIS \\
74C76 & 1.75 & CD4018 & 3.25 & LM301M & .45 & \(747 D\) & .75 \\
74C107 & 1.75 & CD4019 & 1.25 & LM311M & .95 & \(748 M\) & .50 \\
74C151 & 3.30 & CD4020 & 3.50 & LM318 & 1.75 & 1595 & 1.50 \\
74C160 & 3.25 & CD4021 & 4.00 & LM339 & 1.50 & 1596 & 1.75 \\
74C161 & 3.25 & CD4023 & .55 & LM370 & 1.25 & CA3028 & .75 \\
74C162 & 3.25 & CD4024 & 2.75 & LM371 & 1.25 & CA3065 & .75 \\
74C163 & 3.25 & CD4025 & .55 & LM372 & 1.25 & CA3086 & .45 \\
74C195 & 3.15 & CD4027 & 1.50 & LM374 & 2.00 & 3900 & .65 \\
CD4001 & .55 & CD4029 & 6.00 & LM380 & 1.65 & 4136 & 1.95 \\
CD4002 & .55 & CD4030 & .55 & LM381 & 1.75 & 42507 & 2.25 \\
CD4008 & 4.00 & CD4035 & 2.50 & LM382 & 1.75 & \(5556 M\) & 1.50 \\
CD4009 & .75 & CD4037 & 2.95 & LM399 & 1.75 & 5558 & .75
\end{tabular}

ALL ITEMS IN STOCK and will be shipped within 24 working hours of receipt of order! Include 50 d postage and handling on orders under \$10.00 Sorry, NO C.O.D. 's. CALIFORNIA RESIDENTS ADD sales tax.

\section*{JUGE}

\section*{(a) \\ MOTOROLA 2 m FM}
- 25 or 10 watt models with 1 -watt low power switch
- Installation of receive frequency crystal provides receive, simplex transmit and repeater transmit (-600 kHz)
- Best intermod and adjacent channel refection available
- 12-channel capability
- Optional tone burst encoder - mounts internally
- Optional secondary transmit offset frequency kit
- Snap-in mounting tray
- Typical Motorola quality and performance

25 watt model

FOR A LIMITED TIME . . .
(financing available) ED JUGE ELECTRONICS, INC.

3850 S. FREEWAY
FT. WORTH TX 76110

11181 HARRY HINES BLVD. DALLAS TX 75229

\section*{READER SERVICE}

Check appropriate boxes for desired company brochures，data sheets or catalogs and mail in to 73．Include your zip code，please．Send money directly to advertisers．
LIMIT： 25 requests．

\section*{ADVERTISER INDEX}
\begin{tabular}{|c|c|}
\hline & Adirondack 77 \\
\hline & ADVA 101 \\
\hline & Airwaves Elec 133 \\
\hline & American Basic Corp 137 \\
\hline & Aptron 31 \\
\hline & ATV 145 \\
\hline － & Audio Land 35 \\
\hline & Autek 133 \\
\hline & Babylon 157 \\
\hline \(\square\) & Cassette HO 143 \\
\hline & CFP 96 \\
\hline & Clegg 51 \\
\hline & Columbia 127 \\
\hline & Comm Spec 123 \\
\hline & Comm Unitd 155 \\
\hline & Control Signal 123 \\
\hline & Cornell 145 \\
\hline & Curtis Electro Devices 66 \\
\hline & Data Eng 21， 72 \\
\hline & Datak 126 \\
\hline & Dupage 154 \\
\hline & Dynamic Elec 145 \\
\hline & ECM 145 \\
\hline \(\square\) & Egbert 128 \\
\hline 口 & Emergency Beacon 18， \\
\hline & Erickson 162 \\
\hline & Fair 145 \\
\hline 口 & Freck 96 \\
\hline & Gateway 99 \\
\hline & GENAVE 24,25 \\
\hline & Godbout 163 \\
\hline － & Greene 123 \\
\hline 口 & Hal 79 \\
\hline － & Ham Radio Center 160 \\
\hline & Heath Insert \\
\hline & \\
\hline & \\
\hline
\end{tabular}
－Int．Elec Unitd． 150
－Int．Telecomm 39
a James Elec 151
－Jan 135
－Juge 164
－K A Sales 152
a K－Enterprises 86
－KLM 43
\(\square\) Meshna 158
MITS 149
－Morgain 96
－Nasem 96
－Newtronics Cl
－Palomar 86
\(\square\) Poly Paks 165
－Radio Amateur Callbook 106
\(\square\) Regency 56，57，62， 63
\(\square\) RGS Elec 159
－R\＆LElec 133
－Rohn 47
\(\square\) Sentry 11
－Solid State Surplus 153
\(\square\) Solid State Systems 161
\(\square\) Space Elec 145
－Spec Comm CIII
－SST 145
－A F Stahler 145
－Standard 111
－Sumner 65
－1 TPL 33
－Tri Tek 127
－Trumbull 145
－Tucker 118，119，120，121， 122
－VHF Eng 156
［．Weirnu 59
\(\square\) Wilson 22， 23
－World OSL 145
－Yaesu C IV

\section*{73 STUFF}

Hotline 83
QSL 87
73 Cassette Code Course 91
73 Rep Ad 103
73 Subscription Ad 107
73 Back Issues 115
－NEWSSTAND
＊Reader service inquiries not solicited．Correspond directly to company．

NOVEMBER 1974
Reader＇s Service
73 Inc．，Peterborough NH 03458
Please Print or Type
Name \(\qquad\) Call \(\qquad\)
Address
City \(\qquad\) State \(\qquad\) Zip

Coupon expires in 60 days

PROPAGATION CHART J．H．Nelson
Good（open）Fair（■）Poor（0）
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{November} & \multicolumn{3}{|l|}{－ 1974} \\
\hline Sun & Mon & \(T_{\text {ue }}\) & Wed & Thu & Fri & Sat \\
\hline 3 & 4 & 5 & & & \[
8
\] & 9 \\
\hline 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline 17 & 18 & 19 & 20 & 21 & 22 & 23 \\
\hline 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
\hline
\end{tabular}

\section*{EASTERN UNITED STATES TO：}

CENTRAL UNITED STATES TO：
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ALASKA & 14 & 7 A & 7 & 3 & 3 & 3 & 3 & 3 A & 7 & 14 & 14 A & 14 \\
\hline ARGENTINA & 14 & 7 & 7 & 7 & 7 & 7 & 7 A & 21 & 21 & 21 & 21 & 21 \\
\hline AUSTRALIA & 14 A & 14 & 78 & 78 & 78 & 7 B & 7 & 7 & 14 & 14 & 14 & 21 \\
\hline CANAL ZONE & 14 & 7 & 7 & 7 & 7 & 7 & 7 A & 21 & 21 & 21 & 21 & 21 \\
\hline ENGLAND & 7 & 7 & 7 & 3 & 7 & 7 & 78 & 14 & 14 & 14 & 7 B & 78 \\
\hline HAWAII & 14 A & 14 & 7 & 7 & 7 & 7 & 7 & 7 & 7 A & 21 & 21 & 21 \\
\hline INDIA & 7 & 7 & 78 & 38 & 78 & 78 & 38 & 7 A & 7 A & 7 B & 78 & 78 \\
\hline JAPAN & 14 & 78 & 78 & 7 & 7 & 7 & 3 & 7 & 7 & 7 B & 78 & 14 \\
\hline MEXICO & 7 & 7 & 7 & 7 & 7 & 3 & 3 & 7 A & 14 & 14 & 14 & 14 \\
\hline PHILIPPINES & 14 & 78 & 78 & 38 & 38 & 78 & 3 A & 7 & 7 & 7 & 78 & 14 \\
\hline PUERTORICO & 14 & 7 & 7 & 7 & 7 & 7 & 7 A & 14 A & 21 & 21 & 14 A & 14 \\
\hline SOUTH AFRICA & 14 & 7 & 7 & 7 & 78 & \(7 B\) & 14 & 21 & 21 A & 21 & 14 & 14 \\
\hline U．S．S．R． & 7 & 7 & 3 & 3 & 7 & 7 & 78 & 14 & 7 A & 7 B & 78 & 7 \\
\hline
\end{tabular}

\section*{WESTERN UNITED STATES TO：}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ALASKA & 14 & 7 A & 7 & 3 & 3 & 3 & 3 & 3 & 7 & 14 & 14 & 14 \\
\hline ARGENTINA & 14 & 14 & 78 & 7 & 7 & 7 & 78 & 14 & 21 & 21 & 21 & 21 \\
\hline AUSTRALIA & 14 A & 14 A & 14 & 78 & 78 & 78 & 7 & 7 & 14 & 14 & 14 & 21 \\
\hline CANAL ZONE & 14 & 7 & 7 & 7 & 7 & 7 & 7 & 14 & 21 & 21 & 21 & 21 \\
\hline ENGLAND & 78 & 7 & 7 & 3 & 7 & 7 & 78 & 7 B & 14 & 14 & 7 B & \(7 B\) \\
\hline HAWAII & 21 & 14 & 7 A & 7 & 7 & 7 & 7 & 7 & 7 A & 21 & 21 & 21 \\
\hline INDIA & 7 & 14 & 78 & 38 & 38 & \(7 B\) & 38 & 7 & 7 & 7 & 7 & \(7 B\) \\
\hline JAPAN & 14 A & 14 & 78 & 78 & 7 & 7 & 7 & 3 & 7 & 7 & 78 & 14 \\
\hline MEXICO & 14 & 7 A & 7 & 7 & 7 & 7 & 7 & 7 A & 21 & 14 A & 14 A & 14 \\
\hline PHILIPPINES & 14 A & 14 & 78 & 78 & 78 & 78 & 78 & 3 A & 7 & 7 & 7 B & 14 \\
\hline PUERTO RICO & 14 & 7 & 7 & 7 & 7 & 7 & 7 & 14 & 21 & 21 & 21 & 14 \\
\hline SOUTH AFRICA & 14 & 7 & 7 & 7 & 78 & 78 & 78 & 7 A & 21 & 21 & 14 & 14 \\
\hline U．S．S．R． & 7 & 7 & 7 & 3 & 3 & 3 A & 3 & 7 A & 7 A & 78 & 78 & 78 \\
\hline EAST COAST & 14 & 7 & 7 & 7 & 7 & 7 & 7 & 14 & 14 & 21 & 21 & 14 A \\
\hline
\end{tabular}
\(A=\) Next higher frequency may be useful also．
\(B=\) Difficult circuit this period． w/carrying strap \& 18 " antenna.

MADE IN USA - 90 DAY WARRANTY Fully wired \& tested - not a kit.

> NOW THERE'S NO EXCUSE FOR NOT JOINING THE FUN ON 2 METERS

Engineered to provide the best possible performance at the lowest possible price, the SpecComm 560 opens the world of 2 Meter FM to everyone.

Integrated circuitry is used to the greatest possible extent for top performance and reliability, along with other 'State of the Art' circuit techniques which are now practical at low cost. The receiver features a very wide dynamic range front end which provides excellent intermod and overload performance. This is followed by a six pole monolithic crystal filter for superior adjacent channel rejection. (Many more expensive radios use a less selective four pole filter).

The transmitter features a low distortion phase modulator combined with excellent speech processing for beautiful sounding audio with 'plenty of punch.' The final stage uses a fully VSWR protected transistor, thus eliminating the nuisance and expense of critical shutdown circuitry.

A complete complement of accessories will be available so that the unit may be operated over the shoulder, mobile or fixed. Compact, clip-on modules are an integral part of the radio - not an afterthought! Another Plus - the SpecComm 560 uses commonly available, low cost, TR22 type crystals.

Order your SPEC COMM 560 today . . . direct from the factory at the low introductory price of \(\$ 139.95\) (til \(11 / 15 / 74\)) w/l set \(x\) tals (.52 simplex).

Mobile Mounting Bracket Include Postage and Handling (PA residents add 6\% tax)
\(\$ 6.95\)
\$2.00
 Prices and specifications subject to change without notice.

\section*{There's nothing amateur about our radios.}

Deluxe "101 Series".. . The ultimate base station combination.

FR-101 Digital - Total coverage capability: 160 thru 2 meters +12 major S.W. bands.* SOLID-STATE - Direct frequency readout to 100 Hz .
RECEIVER - Provision for all-mode reception: SSB, CW, AM, RTTY \& FM.**
- Reliable, plug-in, modular circuitry.
- Compatible transceive operation with 101 series.
* Six and two-meter converters and crystals optional. ** Filters and FM detector optional.

FL-101
- 240 Watts PEP.

SOLID-STATE TRANSMITTER
- 160 thru 10 meter coverage +2 optional auxiliary bands.
- All-mode operation: SSB, CW, AM \& FSK.
- Reliable, plug-in, modular circuitry.
- Provision for RF speech processor.

Specifications subject to change without notice.

Visit your dealer for details or write for our new catalog. All Yaesu products warranted by the selling dealer. Complete after-warranty service available in Paramount, Calif.```

[^0]: COVER STORY: An inside look at the club whose members spent so many dedicated hours completing phone patches for airmen overseas. Senator Barry Goldwater, above, is one of its members.

[^1]: ANSWER TO LAST MONTH'S CRYPTOGRAM
 Secret message from kindly editor: Shape up or else! Tell the damned FCC what you think re proposed regs.

